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We study the leading thermal corrections to various observables in the high-energy limit in super-

symmetric theories and observe that they preserve supersymmetry. Our findings generalize previous

observations on the equality of asymptotic thermal masses in weakly coupled plasmas. We observe

supersymmetry in the leading thermal effects for both the real and imaginary parts of self-energies, on the

light cone and away from it, in both weakly and strongly interacting theories. All observed supersymmetry

violations are found to be suppressed by more than two powers of the (large) energy.
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I. INTRODUCTION

Supersymmetry is usually considered as being broken at
finite temperature (see e.g. [1]). A simple reason is the
different statistics and population functions assumed by
Bose and Fermi fields, making it hard to see how a Bose-
Fermi symmetry could be preserved. In Euclidean space,
Bose-Fermi symmetry is explicitly broken by boundary
conditions along the periodic time direction (which has
period 1=T), which are, respectively, periodic for bosonic
fields and antiperiodic for fermionic fields. Nevertheless,
one can still ask whether the supersymmetry of the under-
lying equations of motion leaves any trace in physical
observables.

One example along these lines was described in [2]: due
to the existence of a conserved supercurrent, the effective
hydrodynamics theory which describes the long-
wavelength modes of the plasma must contain fermionic
degrees of freedom. In this paper we will consider the
opposite end of the energy spectrum, high-energy
observables.

In the strict high-energy limit one expects the plasma to
decouple, and supersymmetry to be recovered, provided it
is present in the vacuum theory. More interestingly, one
may look to the leading thermal corrections received by
high-energy observables. We see no obvious reason why
these should preserve supersymmetry. Nevertheless, the
aim of this paper is to report the intriguing fact that, for a
wide class of high-energy observables, the leading correc-
tions indeed do.

This work was motivated by the well-known observation
of supersymmetry preservation for the asymptotic thermal
masses in weakly coupled plasmas. We will find that it also
applies to other quantities, in fact to all high-energy corre-
lators we could study. More precisely, parametrizing su-
persymmetry violations by the relative power of the energy
E�n by which they are suppressed, in all cases we find n >
2 with strict inequality. Since the leading thermal correc-
tions have n � 2 in all cases this is a nontrivial statement.

We will discuss in turn the relevant effective theories for
the various observables we have considered. These include
the effective particle masses at weak coupling, in Sec. II,
where previously unknown next-to-leading order (NLO)
results will also be reported; the imaginary part of self-
energies at weak coupling (including collinear bremsstrah-
lung processes and 2 ! 2 collisions), in Sec. III; the self-
energies of neutral particles in strongly interacting plasmas
having a gravity dual, in Sec. IV; and finally the operator
product expansion (OPE) for deeply virtual correlators, in
Sec. V.
By use of the phrase ‘‘effective theory’’ we mean to

emphasize that the details of the plasma are always probed
only through a restricted set of low-energy operators,
whose expectation values provide the parameters of
medium-independent high-energy effective theories. We
thus understand the phenomenon of supersymmetry pres-
ervation as an intrinsic property of these effective theories:
the thermal or equilibrium nature of the underlying me-
dium probably plays no significant role.

II. THERMAL MASSES AT WEAK COUPLING

At the leading order in perturbation theory, thermal
dispersion relations (of massless particles) are known to
approach the form E2 ¼ p2 þm21 for any energy E � gT
[3], with g ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

4��s

p
a coupling strength. In applications

to supersymmetric theories, it has been repeatedly ob-
served that the asymptotic masses m1 � gT are the same
among particles within a supersymmetry multiplet [4].
Compiling results from the literature [6], or by direct
evaluation of one-loop diagrams such as those shown in
Fig. 1, they can be summarized by the formulas:

m21;g ¼ m2
1;� ¼ g2CAðZg þ Z�

fÞ
þ g2NmatterTMðZc

f þ Z�Þ; (1a)

m21;c ¼ m2
1;� ¼ g2CMðZg þ Z�

f þ Zc
f þ Z�Þ

þ y2ðZc
f þ Z�Þ; (1b)

where the Zi are tree-level condensates that we give*scaronhuot@physics.mcgill.ca
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shortly; g, �, �, and c stand for gluon, gluino, scalar, and
fermionic matter fields, respectively, Nmatter is the number
of chiral superfields, and CA;M, TA;M, and dA;M are the

quadratic Casimirs, Dynkin indices and dimensions of
the adjoint and matter representations, respectively. For
simplicity, the Yukawa contribution in Eq. (1) is normal-
ized to correspond to a term � yffiffi

2
p �c c þ c:c: in the

Lagrangian of a single-field Wess-Zumino model. We ex-
pect supersymmetry to be preserved for more general (e.g.,
nonrenormalizable) superpotentials, though we have not
checked this explicitly.

Nonzero expectation values for the D or F auxiliary
fields, not considered in Eq. (1), could break the super-
symmetry by lifting bosonic masses. Since this is not a
specifically thermal source of supersymmetry breaking [7]
this will not be considered in this paper.

The (nonlocal) dimension-2 condensates in Eq. (1), each
normalized to give the contribution from 2 degrees of
freedom, admit the following gauge-invariant definitions
and tree-level thermal expectation values:

Zg � 1

dA

�
v�F

�� �1

ðv �DÞ2 v�0F�0
�

�

¼ 2
Z
q

nBðqÞ
q

¼ T2

6
; (2a)

ZS � 2

dM
h���i ¼ 2

Z
q

nBðqÞ
q

¼ T2

6
; (2b)

Zc
f � 1

2dM

�
�c

v6
v �D c

�
¼ 2

Z
q

nFðqÞ
q

¼ T2

12
: (2c)

Here v� ¼ ð1; vÞ is the four-velocity of the hard particle,R
q ¼

R
d3q=ð2�Þ3 and nB;F are the standard Bose-Einstein

and Fermi-Dirac distribution functions. All condensates
are time-ordered products, as is appropriate due to the
high energy of the probe [8]. Useful examples include
the thermal masses in N ¼ 4 super Yang-Mills (SYM)
theory, which are all equal tom21 ¼ g2NcT

2, and the gluon
and gluino masses in pure glue supersymmetric QCD,
m2

1;gð�Þ ¼ 1
4g

2NcT
2.

The structures in Eq. (2) are identical to those entering
the hard thermal loop (HTL) effective action [10]. This is
not a coincidence: these are the unique dimension-2 gauge-

invariant operators that can be built out of a lightlike four-
vector v�.
Although our derivation of Eq. (1) was only carried out

at the leading order in the coupling, we claim that it
correctly describes next-to-leading order corrections,
which are OðgÞ. The point is that, OðgÞ corrections arise
only from gT scale HTL physics [10] but not from the hard
scale �E (from which only �g2 quantum corrections
arise). But Eq. (1) is precisely designed to separate high-
energy physics from low-energy physics, in the spirit of a
(real-time) operator product expansion, so we conclude
that at OðgÞ only the matrix elements in Eq. (2) receive
corrections but not the coefficients, which contain only
hard scale physics. In particular, the OðgÞ corrections
also preserve supersymmetry. The evaluation of the con-
densates Eq. (2) at OðgÞ, which requires HTL resumma-
tion, has not previously appeared in the literature and is
performed in the Appendix. For completeness we record
the results here (with ZNLO

f ¼ ZLO
f þOðg2T2Þ):

ZNLO
g ¼ T2

6
� Tm1;g

�
ffiffiffi
2

p þOðg2T2Þ; (3a)

ZNLO
S ¼ T2

6
� Tm1;S

2�
þOðg2T2Þ: (3b)

Since the energy scale from which the corrections originate
is gT, the NLO mass shifts obtained by substituting Eq. (3)
into Eq. (1) should be valid, up to Oðg2Þ effects, for any
energy E � gT.
Next-to-leading order (momentum-averaged) thermal

masses were also obtained in [11] by means of an indirect
thermodynamic argument, by relating them to the well-
known�g3T3 corrections to the QCD entropy. The results
are in agreement with Eqs. (3) [12].
We have no idea about how one should make sense of

Eqs. (1) and (2) beyond NLO order (at order g2), when
genuine quantum corrections and renormalization group
effects will first appear; at present we view the factorized
form Eq. (1) as simply a convenient way to summarize the
known leading-order results (and NLO results, we have
argued). In particular, we have no idea as to whether
supersymmetry will survive at higher orders in perturba-
tion theory, should it be possible at all to define asymptotic
masses.
Following our derivation, we interpret the supersymme-

try of the thermal masses as a statement about the cou-
plings of soft particles (of all spin) to hard propagators:
these turn out to be the same among hard superpartners.

III. IMAGINARY PARTS OF SELF-ENERGIES AT
WEAK COUPLING

The imaginary parts of self-energies at weak coupling,
or scattering rates, are due to 2 ! 2 scattering against
plasma particles as well as to induced collinear radiative
processes (bremsstrahlung or pair production). For charged

g

gψ λ

φ λψ

φψ ψ ψ ψ

FIG. 1. One-loop fermion self-energy of a fermion c due to
the gauge interaction, at large energy E. At leading order the
asymptotic thermal mass is the sum of four condensates, which
are extracted by letting each of the propagator become soft in
turn (e.g., with all components �T in Minkowski space-time)
and expanding the rest of the diagram in powers of T=E.
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particles in gauge theories, the dominant contribution to
Im� is �g2TE due to small-angle elastic Coulomb scat-
tering, though the dominant inelastic contribution

�g4T3=2E1=2 (barring logarithms) is due to induced col-
linear processes which we will discuss first. These pro-
cesses also dominate the self-energies of neutral particles
in gauge theories, provided these particles are allowed to
pair produce charged ones. In nongauge theories, self-
energies begin at �g4T2E0 due to ordinary 2 ! 2 scatter-
ing, which we will discuss in Sec. III B.

A. Collinear radiation

At the risk of oversimplifying matters, the key aspects of
collinear radiative processes may be briefly summarized as
follows. These processes are only relevant in gauge theo-
ries, where they are initiated by the very frequent small-
angle (Coulomb) scatterings suffered by either the parent
or the daughter particles. At high energies E � gT, their
long formation times (associated with the collinearity)
allow multiple soft scatterings to occur during them and
these must be summed coherently. This causes a parametri-
cally significant destructive interference, the so-called
LPM effect [14], that is responsible for the nonanalytic

power � / E1=2 (neglecting logarithms). For relativistic
plasmas, a complete leading-order treatment was given (for
photons) in [15] (see also [16,17], in which different
approximations are made). Somewhat schematically, the
result may be written in the form (� 2 Im� ¼ 2E�):

� 2 Im�aðEÞ ¼
X
bc

Z 1

0
dzPa!bcðzÞFa!bcðE; zÞ; (4)

where Pa!bc are ordinary Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi (DGLAP) kernels [18], governing collinear
physics, b and c denote the final states, and z ¼ Eb=Ea is
the longitudinal momentum fraction.We have omitted final
state Bose-enhancement or Pauli-blocking factors, which
are not needed unless z or ð1� zÞ is very small, �T=E.
The functions FðE; zÞ depend in a complicated way on E
and z and are to be obtained by solving an effective
inhomogeneous Schrödinger equation for the wave func-
tion of the pair in the transverse plane [15]. This equation

depends on the details of the plasma through a collision
kernel d�=d2q?, which is a function of the transverse
momentum transfer.
Its only property that we need, however, is that it in-

volves only eikonal physics: it cares not about the spins of
the particles. For our purposes, FðE; zÞ in Eq. (4) is thus
just some universal function that is the same for all final
states among a given supersymmetry multiplet. In the
leading logarithmic approximation [15],

FðE; zÞ � g4N2
cT

3=2E1=2z�1=2ð1� zÞ�ð1=2Þ

�
�
log

�
ET

g2T2zð1� zÞ
��

1=2
:

The only ingredients in Eq. (4) which could break
supersymmetry are thus the DGLAP splitting kernels
Pa!bcðzÞ. Such kernels are listed in Table I, for various
supermultiplets of initial and final states. As shown in the
table, when complete supermultiplets of final states are
summed over [thereby enforcing the symmetry under z !
ð1� zÞ], supersymmetry with respect to the initial particle
is restored. Not shown in the table (it is related to the first
three entries by a crossing symmetry [18]), but which also
preserves supersymmetry, is the process of bremsstrahlung
of a gauge multiplet off a matter particle. Thus, all in-
medium splitting rates preserve supersymmetry.
Observations of supersymmetry in DGLAP kernels were

made long (for instance, in the last reference of [18]), and
subsequently given an explanation in [19]. Here we are
simply reporting on their implications in a medium.
We expect coupling constant corrections to Eq. (4) to

first arise at OðgÞ. In thermal perturbation theory, �g
factors arise from ordinary loop factors g2 multiplied by
large bosonic occupation numbers nB � T=p0 � T=gT,
and come strictly from gT scale physics. Such soft physics
can only interfere with scatterings that have a sufficiently
long duration, such as the soft scatterings contributing to
collision rate d�=d2q? with q? � gT, so we believe that
this is the only ingredient in Eq. (4) (through the function
F) which receives OðgÞ corrections. These soft collisions
have a purely diffusive effect, so equivalently we are
claiming that all OðgÞ corrections at high energies should

TABLE I. DGLAP splitting kernels for various branching processes. Supersymmetry is
restored when complete supermultiplets of final states are summed over.

Process DGLAP kernel PðzÞ Sum

� ! c yc e2½z2 þ ð1� zÞ2	 e2

� ! �y� e2½2zð1� zÞ	
~� ! �yc e2½2z	 e2

g ! gg 2g2CA½ð1�zÞ
z þ z

1�z þ zð1� zÞ	 g2CA½2z þ 2
1�z � 3	

g ! �y� g2CA½z2 þ ð1� zÞ2	
� ! g� g2CA½ 4z

1�z þ 2ð1� zÞ	 g2CA½2z þ 2
1�z � 3	

� ! c yc y y2½1	 y2

c ! �yc y y2½2z	 y2
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be restricted to the so-called transverse momentum diffu-
sion coefficient ‘‘q̂.’’ Since only eikonal physics should
enter their calculation, we thus expect that OðgÞ correc-
tions will trivially preserve supersymmetry.

TheOðg2Þ corrections to Eq. (4) are expected to possess
a much more interesting and richer structure. For instance,
they will most certainly require dealing with the scale
dependence of the partonic constituents of the plasma,
which could ultimately lead to ‘‘saturation’’ effects [20]
at very high energies, upon summation of large logarithms

�s logðE=TÞ and �s logðq2?=T2Þ with q2? � E1=2T3=2. The

scale evolution of the constituents of the probe, which has
to be treated in the presence of the LPM effect, should also
enter at this order. Other interesting (though manifestly
supersymmetry-preserving) effects may include sensitivity
to nonperturbative g2T-scale magnetic physics, which we
believe contributes to q̂ atOðg2Þ. We leave to future work a
detailed analysis of these effects and of the question of
whether they preserve supersymmetry.

As for effects subleading in T=E at leading order on g,
we expect supersymmetry-breaking effects in � not to be

larger than �T5=2E�1=2 (relative to the �E2 natural size);

these could arise from various �T=E or �q2?=E
2 �

ðT=EÞ3=2 corrections to ingredients entering FðE; zÞ, such
as the eikonal vertices.

B. 2 ! 2 scattering at weak coupling

Ordinary 2 ! 2 collisions dominate self-energies in
nongauge models, which we will now discuss; their total
rate will also be found to preserve supersymmetry. We first
recall the general formula for the total collision rate:

�2 Im�ðp1Þ ¼
Z d3p2d

3p3d
3p4

ð2�Þ52E22E32E4

� �4ðp1 þ p2 � p3 � p4Þ
� X

s2s3s4

jM1s2!s3s4 j2nbðE2Þð1
 ncðE3ÞÞ

� ð1
 ndðE4ÞÞ: (5)

Here the particle labels are as defined in Fig. 2, the si labels
are the corresponding particle species and ni are the cor-
responding distribution functions.

Let us first assume, for a moment, that the distribution
functions can be omitted in the final state (‘‘Bose-
enhancement’’ and ‘‘Pauli-blocking’’) factors ð1
 niÞ,
which is justified for generic final state energies E3 � E4 �ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p � ffiffiffiffiffiffiffi
ET

p
. The integrand then depends only on the

sum
P

s3s4
jMj21s2!s3s4

. Such matrix elements summed over

final states turn out to obey supersymmetry identities, with
respect to the particle 1, for fixed identities of particle 2.
This is exemplified in Table II for a single-field
Wess-Zumino model with cubic superpotential and a gen-
eral proof will be given shortly. Therefore, contributions

to Eq. (5) from the region E3; E4 � T preserve
supersymmetry.
It is easy to convince oneself that for bounded ampli-

tudes jMj2, the regions E3 � T or E4 � T suffer from
�T=E phase-space suppressions, justifying the neglect of
the final state distributions in Eq. (5). However, s=t�
ET=T2 singularities in squared matrix elements when t &
T2 can overcome this suppression and a separate discussion
is required for the singular terms [21] (u ! 0 singularities
can be treated similarly). To establish the supersymmetry
of these contributions, for which the distribution function
nðE4Þ must be kept, we need another ingredient: the uni-
versality of the 1=t singularities. Indeed, the coefficient of
1=t at t ! 0, which is due to soft fermion exchange, is left
unchanged when the hard particle 1 is replaced by its
superpartner [e.g. if particles 1 and 3 are exchanged in
Fig. 2(a)]. This shows that the complete �T2E0 self-
energies in the Wess-Zumino model preserve supersym-
metry, up to �T3E�1 corrections.
This universality of soft couplings is reminiscent of that

which played a role for thermal masses in Sec. II, and can
in fact be analyzed using the same tools. Indeed, the region
E4 � T, t� T2 in Fig. 2 is characterized by soft fields
coupled to a hard line and is thus governed by the gradient
expansion of Fig. 1. This means that the �T2E0 contribu-
tion to Eq. (5) from soft fermion exchange is equivalently
captured by an imaginary part of the dimension-2 fermion
condensates in Eq. (2) at one loop in thermal perturbation
theory [22].
We now prove, as claimed, that the supersymmetry of

scattering amplitudes summed over final states holds in any
supersymmetric theory as a property of its vacuum
S matrix. Introducing the notation Pi1���in for projection

operators which perform the sum over complete super-

(a) (b) (c)

~T

E

1

2 4

3

FIG. 2. 2 ! 2 scattering processes in the Wess-Zumino model;
solid lines are fermions and dashed lines are scalars.

TABLE II. Left panel: scattering amplitudes jMj2 in the
Wess-Zumino model, with amplitudes related by crossing sym-
metry not shown. Right panel: amplitudes summed over final
states, for which supersymmetry is restored as a function of
particle 1 with particle 2 held fixed.

Process jMj2=4y2 Processes j �Mj2=4y2
c c ! c c 1 c c ! X, �c ! X 1

�� ! �� 1 c �c ! X, � �c ! X ½2þ u
t þ t

u	
�c ! �c �u=s c� ! X, �� ! X 1

c �� ! X, � �� ! X ½2þ u
t þ t

u	
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multiplets of scattering states with n particles (at fixed
momenta), this follows from considering the following
trace (over scattering states):

Tr ½SyP34Sðj2ih2j � ½Q; j1ih~1j	Þ	; (6)

with S the S matrix and ~1 denotes the superpartner of
particle 1. For any supersymmetry generator Q which

does not annihilate particle 1, the commutator ½Q; j1i�
h~1j	 / ðj1ih1j � j~1ih~1jÞ so Eq. (6) computes the difference:X

s3;s4

ðjM12!s3s4 j2 � jM~12!s3s4
j2Þ: (7)

For a massless particle 2 it is always possible to choose Q
so as to annihilate particle 2; such a Q commutes with
j2ih2j, with the S matrix as well as with the projectors
Pi1���in (by construction), showing that Eq. (6) [and thus

Eq. (7)] vanishes, being the trace of a commutator. Thus
the contributions to Eq. (5) from E3; E4 � T preserve
supersymmetry in any theory.

Combining the results of the preceding sections, we
have reached a simple conclusion: the full thermal self-
energies of gauge-neutral particles preserve supersymme-
try, at leading order in the coupling, up to corrections

suppressed by at least T5=2E�1=2. Although it seems con-
ceivable that the analysis of this section could be general-
ized to charged particles (for which it is made more
complicated by the stronger singularities M� 1=t asso-
ciated with gluon exchange [23] and by various sources of
infrared divergences which make these self-energies less
cleanly defined), here we will refrain from doing so: we are
content with a robust result for gauge-invariant self-
energies.

IV. SELF-ENERGIES AT STRONG COUPLING

Maldacena’s conjectured gauge/gravity correspondence
[25] renders possible, among other things, the calculation
of correlators of currents in certain strongly coupled large
Nc gauge theories. In theories which have a continuous
R symmetry, such as the SU(4) of N ¼ 4 super Yang-
Mills theory, ‘‘photons’’ and ‘‘photinos’’ can be introduced
by weakly gauging a U(1) subgroup of the R symmetry,
whose self-energies are then given by two two-point func-
tions of currents and of their superpartners.

In the case of the on-shell photon self-energy inN ¼ 4
SYM, it was argued by means of a WKB approximation
[26] (in the Appendix) that at high energy the calculation
localizes itself near the boundary of the anti–de Sitter
(AdS) space. Here we generalize this phenomenon to other
backgrounds, which leads to a (simplistic) effective theory
for high-energy photon/photino propagation in these theo-
ries, of which we can state two of its properties. First, it
only probes the underlying low-energy medium through
the expectation value of the energy-momentum tensor
(actually, only through one component / p�p	T

�	),

which determines the leading corrections to the metric at
large radii. Second, it preserves supersymmetry: the ab-
sorption rates and dispersion relations of a photon and of a
photino are identical.
We will be considering five-dimensional metrics of the

general form

ds2 ¼ R2
gðzÞdz2 þ h�	ðzÞdx�dx	

z2
; (8)

for which, near the boundary z ¼ 0, the metric approaches
that of AdS5 with radius R [for which gðzÞ ¼ 1 and
h�	ðzÞ ¼ 
�	]. The metric Eq. (8) should be sufficiently

general to cover any system invariant under space-time
translation that admits a gravity dual. For the AdS5 black
hole, relevant for N ¼ 4 SYM at finite temperature T,
�h00 ¼ 1� ð�TzÞ4, hij ¼ �ij, hi0 ¼ 0, and gðzÞ ¼
ð�h00Þ�1. At certain steps below, rotational invariance
will be assumed; these steps will be highlighted.

A. Bulk equations

The bulk dual of the spin-1 current which couples to the
photon is a five-dimensional gauge field, whose field
strength tensor obeys Maxwell’s equations:

0 ¼ z

GðzÞ@z
�
h	�GðzÞ
zgðzÞ Fz�

�
þ h	�h��@�F��; (9)

@�F�	 ¼ @�F�	 � @	F��; (10)

with GðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ detð�hðzÞÞp

. Here �, 	, �, and � are
space-time indices and � may cover all five coordinates.
We will restrict our attention to space-time momentum
eigenstates @� ¼ ip�. A closed equation for the transverse

electric field F0?, for 	 ¼? a component perpendicular to
p�, may be obtained by acting on the first equation with a

partial time derivative @0, and using the second equation.
Specifically, one uses relations such as @0Fz? ¼ @zF0?,
which follow from dropping perpendicular derivatives @?
in the latter. To fully exploit such simplifications, rotational
invariance must be assumed, so that upstairs derivatives
h?�@� also vanish. This yields the closed equation:

zh??
GðzÞ @z

�
h??GðzÞ
zgðzÞ @zF0?

�
¼ h�	p�p	F0?; (11)

in which no summation over ? indices is implied.
The bulk dual of the spin- 12 operator coupling to the

photino is a five-dimensional Dirac fermion with bulk mass
m ¼ 1

2 [27] (in units with R ¼ 1). It possesses as many

components as two four-dimensional Weyl spinors but it is
dual to only one such spinor, the symmetry between the
two Weyl components being broken by the sign of m. The
bulk Dirac equation reads

½ 6Dþm	c ¼ 0 � ½�ae�a ð@� þ 1
4!

ab
� �a�bÞ þm	c ; (12)

with �; a 2 0, 1, 2, 3, 4, and e�a the orthogonal basis.
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Under the assumption of rotational invariance, the term
involving the spin connection ! is proportional to �z and
can be removed by a z-dependent field rescaling. We
choose the rescaling

c ¼ z2ðdetð�hÞÞ�1=4e�m
R

z
dz

ffiffiffiffiffiffi
gðzÞ

p
=z ~c ;

which leads to the following equations for the Weyl com-

ponents of c L;R of ~c :

@zc L ¼
ffiffiffiffiffiffiffiffiffi
gðzÞ

q
p6 Rc R; (13a)�

1ffiffiffiffiffiffiffiffiffi
gðzÞp @z � 2m

z

�
c R ¼ p6 Lc L: (13b)

Here p6 L;R are the Weyl operators associated with the four-

dimensional metric h�	ðzÞ. With m ¼ þ 1
2 the component

relevant near the z ¼ 0 boundary is c L and we are calcu-
lating the self-energy of a left-handed photino. Equa-
tions (13) square to a closed equation for c L,

p6 R

�
1ffiffiffiffiffiffiffiffiffi
gðzÞp @z � 2m

z

�
1

p6 R

ffiffiffiffiffiffiffiffiffi
gðzÞp @zc L ¼ h�	p�p	c L:

(14)

B. WKB solution and supersymmetry

We are now in position to discuss the WKB approxima-
tion. By a change of variable y � yðzÞ, Maxwell’s equa-
tion (11) may be cast in a Schrödinger form with potential
proportional to the squared energy p2

0, provided

dy

dz
¼ 2zh??

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðzÞ

detð�hðzÞÞ

s
: (15)

For black holes (like the AdS5 black hole metric given
above) the function gðzÞ has a pole at a finite value of z (the
location of the horizon), while the function detð�hÞ van-
ishes there. In this limit y is mapped logarithmically to
infinity. The rescaled potential remains finite there, though,
and depends only on the energy E ¼ p0.

The qualitative features of the Schrödinger potential
entering the equation ½@2y � VðyÞ	F0? ¼ 0 are sketched

in Fig. 3. The shape of the potential depends on the
geometry but not on the energy, which only determines
its overall normalization. At large y the potential becomes
constant, while for y ! 0 the leading term becomes, for
on-shell and off-shell momenta, respectively,

VðyÞ !
8<
:

1
4y p

2; p2 � 0;

y
4p�p	

dh�	ðzÞ
dðz4Þ ¼ �y

�2T�	p�p	

2N2
c

; p2 ¼ 0:
(16)

Here we have used that the leading corrections to the
metric near the boundary are proportional to z4 and are
related to the expectation value of the stress-energy tensor
T�	; its trace part, if nonzero, does not contribute when

p2 ¼ 0. The normalization in Eq. (16) is appropriate to the
N ¼ 4 SYM theory.
At the horizon y ! 1 the solutions are oscillatory and

in-falling boundary conditions F0? / ei! must be imposed
for calculating retarded correlators [28], with ! ¼
p0�T=2 the natural frequency near the horizon. To obtain
correlators of currents, as described shortly, this solution
must be evolved to the AdS5 boundary z ¼ 0. For suffi-
ciently large energies compared to all intrinsic scales in
the metric a WKB approximation can be used. This is

applicable for y down to y� 1=p2 [respectively, y�
ðT4E2Þ�1=3] for p2 � 0 (respectively, p2 ¼ 0), at which
it breaks down due to the redshift factors [29]. These
scales are the intrinsic scales of the Schrödinger equations
with approximate potentials Eq. (16). The problem is
thus reduced to exactly solving those approximate equa-
tions, with large y behavior matching the WKB form

/ V�1=4ei
R

y
dy

ffiffiffi
V

p
.

The analysis is similar for the Dirac equation (14), with

the change of variable Eq. (15) replaced with dy
dz ¼

2z
ffiffiffiffiffiffiffiffiffi
gðzÞp

p6 RðzÞ=p6 Rðz ¼ 0Þ. For the on-shell component
c�

L of a left-handed photino in a rotationally invariant
background, the operator p6 R is nonsingular with eigen-

value Eð ffiffiffiffiffiffiffiffiffiffijh00jp þ
ffiffiffiffiffiffiffi
h33

p
Þ. Here h33 is the metric component

along the longitudinal direction. Like for Eq. (15), near the
boundary y� z2 and the horizon is mapped logarithmi-
cally to y ¼ 1, and the sameWKB approximation applies.
More significantly, one readily sees comparing Eqs. (11)
and (14) that the approximate potentials near the boundary
will be identical to the photon case, Eqs. (16).
Correlation functions are obtained by prescribing the

limiting values of the fields F0? and c L near the boundary
and evaluating boundary terms / @yF0? (see e.g. [26]), or

proportional to �c c � c R=z� 1
p6 R
@yc L [27]. In equations,

y

−V/p

0

Horizon
AdS

2
0

~1/T
~1/m

1/2

FIG. 3. Schematic features of the Schrödinger potential
VðyÞ=p2

0, when p2 ¼ 0. It approaches the universal linear be-

havior Eq. (16) near the boundary and tends to a constant at the
horizon y ! 1, with a transition regime that may depend on the
details of the theory and on possible intrinsic mass scales m.
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�� ¼ �N2
cT

2

8�2
lim
y!0

@yF0?ðyÞ
F0?ðyÞ ;

�~� ¼ �N2
cT

2

8�2
lim
y!0

@yc
�
L ðyÞ

c�
L ðyÞ

:

(17)

Here �~� � �u�u is the photino self-energy sandwiched

between on-shell polarization spinors u, whose real part
yields the thermal mass squared. The normalization of
Eq. (17) has been obtained by matching to the well-known
supersymmetry-preserving vacuum result, �� ¼ �~� ¼
�N2

cp
2=32�2 logðp2=�2Þ, p2 ¼ p2 � p2

0. On the light

cone, Schrödinger’s equation with the approximate
potential Eq. (16) is solved in terms of Bessel (Hankel)

functions F0?ðyÞ � c�
L � y1=2H1=3ð23 ~!y3=2Þ with ~!2 ¼

�2T�	p
�p	=2N2

c , yielding with Eq. (17) the result:

��ðpÞ ¼ �~�ðpÞ ¼
N2

c�ð23Þ
16�2�ð13Þ

ð31=3 � i35=6Þ ~!2=3 (18)

at large p0 ¼ p. The imaginary part of this result repro-
duces that given in [26] (see also [30]) in N ¼ 4 SYM
(employing that ~! ¼ p0T2�2=2 then). Corrections in T=E
to this result may be found by expanding the potential
Eq. (16) to higher orders near the boundary; for the AdS5
black hole this expansion proceeds in powers of y2 �
~!�4=3, so the first subleading corrections to� are� ~!�2=3.
We find it remarkable that photon self-energies at strong

coupling and high energies depend on only one property of
the plasma: its stress-energy tensor. On the gravity side
this may be understood as due to the universal, spin-
independent gravitational attraction towards the black
hole at large distances. An heuristic field-theoretic picture
of strongly coupled plasmas, based on the idea of parton
saturation, has been proposed recently [30] in which such a
universality also comes out naturally.

V. DEEPLY VIRTUAL CORRELATORS

Deeply virtual correlators, which for instance can be
related to sum rules for spectral functions (e.g., dilepton
production rates) or to their asymptotics, may be analyzed
by means of the OPE [31]. The OPE is a systematic means
of separating short-distance and long-distance physics,
allowing the thermal corrections to deeply virtual (short-
distance) correlators with E � T to be expressed in terms
of the expectation value of local operators. Thermal cor-
rections are thus suppressed by powers�E�� with the �’s
determined by the scaling dimensions of local operators
[32].

The difference between a correlator of operators and of
their superpartners is a supersymmetry variation (in agree-
ment with the fact that it vanishes in supersymmetry-
preserving vacua). For instance, for correlators of trans-
verse currents ��J

� and of their superpartners ��, one

schematically has

�1 � JðpÞ�2 � J � 1
2�

yðpÞ6�1p6 6�2� / �� _�
1 Q�ð�y

_�ðpÞ�2 � JÞ;
(19)

with p��
�
1;2 ¼ 0, �, _� spinor indices, and Q� a supersym-

metry transformation. As an operator equation, the OPE
must commute with the supersymmetries, so from the OPE
of the right-hand side of Eq. (19) one concludes that the
operators on its left-hand side must be supersymmetry
variations. This has a simple consequence: supersymmetry
violations of order E�2 or stronger, in the deeply virtual
region, can only be seen if there exists local gauge-
invariant fermionic operators of dimension 3

2 or less.

In a wide class of theories there is an accidental sym-
metry: such operators do not exist. These theories certainly
include all weakly coupled gauge theories containing no
U(1) vector multiplets and no gauge-singlet chiral super-
fields. In these theories, the only gauge-invariant
dimension-2 bosonic operators (such as Tr�� or Tr���)
do not correspond to any supersymmetry variations, and
thus cannot cause supersymmetry violations. The lowest
dimensional fermionic operators are dimension- 52 super-

currents, from which we conclude that thermal supersym-
metry breaking can only be seen through dimension-3
operators, �E�3.
When neutral chiral superfields or U(1) vector multiplets

are present, nonzero expectation values for D���� or
F����� auxiliary fields (which enter the supersymmetry
transformations of gauginos and fermionic matter fields,
respectively) could produce supersymmetry violations at
dimension 2. A similar possibility was observed for ther-
mal masses in Sec. II but, as we discussed there, we do not
view it as being specifically related to thermal effects.
Thus, we conclude that in weakly coupled theories, there
generically cannot be supersymmetry breaking (in deeply
virtual correlators) due to thermal effects below
dimension 3.
It is not possible to analyze general theories at finite

values of the coupling constants, because finite anomalous
dimensions can alter the power counting. Nevertheless, for
certain strongly coupled theories accessible to the AdS/
CFT correspondence, it is easy to be more quantitative. For
instance, it is known [34] that in N ¼ 4 SYM at large
’t Hooft coupling � � 1, only protected (chiral) operators

have finite dimensions � � �1=4 and that the lowest di-
mensional fermionic operator has dimension 2þ 1

2 ¼ 5
2 (it

is the supersymmetry variation of a dimension-2 primary
field). Similarly, the N ¼ 1 theory dual to IIB string
theory on AdS5 � T11 [35] is known to contain no fermi-
onic operator of dimension less than 2 [36]. Thus, in these
theories, supersymmetry violations (in the deeply virtual

regime) can only be seen at �E�3 or �E�ð5=2Þ levels,
respectively. A discussion of more general strongly
coupled theories will not be attempted here.
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VI. CONCLUSIONS

In this paper we have shown that supersymmetry is a
generic property of the effective theories which describe
high-energy correlators in supersymmetric theories, even
in the presence of an underlying medium. The correlators
studied include self-energies at high energies on the light
cone as well as far away from it (large virtuality).

For all correlators (except for the more tractable deeply
virtual correlators treated in Sec. V) our analysis has been
limited to the leading nontrivial order (and sometimes
NLO) at both weak and strong coupling. Without an under-
standing of the structure of higher order corrections, which
is presently lacking, it seems hard however to decide
whether our findings highlight general structural properties
of supersymmetric theories, or whether they are artifacts of
these extreme limits. We find nevertheless the presented
evidence to be suggestive.

We have found that thermal supersymmetry violations in
all correlators are suppressed by a power of the energy E�n

relative to the vacuum correlators, with n strictly greater
than 2. (Violations with n ¼ 2 were observed in Secs. II
and V due to nonvanishing D-term or F-term expectation
values, but we do not regard these effects as being of a
specifically thermal origin.) We find pleasing that such a
simple and uniform bound holds: this makes one wonder
whether it could be a consequence of some general prin-
ciple which would be valid independently of a perturbation
theory, though at present we have no concrete proposal to
make along these lines.
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APPENDIX: NEXT-TO-LEADING ORDER
CALCULATIONOF THECONDENSATES IN EQ. (3)

In this Appendix we evaluate the next-to-leading order
[OðgÞ] corrections to the condensates Eq. (2), as given in

Eq. (3). The corrections originate from the difference
between using bare and HTL-resummed propagators [10].
For the scalar condensate we use the fact that the scalar

HTL self-energy is simply a constant mass shift (see the
third reference of [10]). The calculation of ZS ¼ 2���
can be done in Euclidean space, where only the zero
Matsubara mode contributes to the OðgÞ correction:

�ZS ¼ 2T
Z
q

�
1

q2 þm21;S

� 1

q2

�
¼ �Tm1;S

2�
: (A1)

A quick way to evaluate the shift to the gluon condensate
is to use the fact that �m2

DdA=4 times the angular average
of Zg is precisely the HTL effective action [10], so hZgi ¼
�4h�HTLi=m2

DdA. Given the physical significance of this
effective action, it should be possible to evaluate it in
Euclidean space, where it reduces to a constant mass shift
�Euclidean
HTL ¼ �m2

DA4A4=2 for the zero Matsubara mode of
the temporal gauge field (see, for instance, Chapter 5 of the
review [37]), plus negligible corrections to the other
modes. Thus,

�Zg ¼ 2

dA
�hA4A4i ¼ 2T

Z
q

�
1

q2 þm2
D

� 1

q2

�
¼ �TmD

2�
;

(A2)

which reproduces Eq. (3) upon using mD ¼ m1;g

ffiffiffi
2

p
.

The only seemingly weak point of the preceding para-
graph is the appeal to Euclidean techniques. This can be
rigorously justified using the sum rules developed by
Aurenche, Gelis, and Zaraket [38]. In Appendix A of the
second reference of [38] (which appeared after the initial
submission of this paper), it is proved that such sum rules
always reduce expectation values localized on the light
cone in configuration space, such as Zg, to Matsubara

sums, which reduce in the classical approximation
[nBð!Þ ¼ T=!, which is justified for the NLO correction]
to the !E ¼ 0 contribution Eq. (A2). This proves the first
equality of Eq. (A2). Of course, it is also possible to verify
Eq. (A2) directly by numerically integrating the
Minkowski-signature operator Zg as defined in Eq. (2),

evaluated with HTL-resummed propagators (and with
bare propagators subtracted); we have also done this.
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