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An infinite family of new exact solutions of the vacuum Einstein equations is presented. The solutions

are static and axially symmetric and correspond to an infinite family of thin dust disks with a central inner

edge. The metric functions of all the solutions can be explicitly computed, and can be expressed in a

simple manner in terms of oblate spheroidal coordinates. The energy density of all the disks of the family

is positive everywhere and well behaved, so that the corresponding energy-momentum tensor is in full

agreement with all the energy conditions. Moreover, although the total mass of the disks is infinite, the

solutions are asymptotically flat and the Riemann tensor is regular everywhere, as it is shown by

computing the curvature scalars. Now, besides its importance as a new family of exact solutions of the

vacuum Einstein equations, the main importance of this family of solutions is that it can be easily

superposed with the Schwarzschild solution in order to describe thin disks surrounding a central black

hole. Accordingly, a detailed analysis of this superposition will be presented in a subsequent paper.
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I. INTRODUCTION

The observational data supporting the existence of black
holes at the nucleus of some galaxies is today so abundant,
with the strongest dynamical evidence coming from the
center of the Milky Way, that there is no doubt about the
relevance of the study of binary systems composed by a
thin disk surrounding a central black hole (see [1,2] for
recent reviews on the observational evidence).
Consequently, great deal of work has been developed in
the last years in order to obtain a better understanding of
the different aspects involved in the dynamics of these
systems. Now, due to the presence of a black hole, the
gravitational fields involved are so strong that the proper
theoretical framework to analytically study these configu-
rations is provided by the general theory of relativity.
Therefore, a strong effort has been dedicated to the obtain-
ing of exact solutions of the Einstein equations correspond-
ing to thin disklike sources with a central black hole (see
[3,4] for thorough surveys on the subject).

Stationary and axially symmetric solutions of the
Einstein vacuum equations are of obvious astrophysical
importance, as they describe the exterior of equilibrium
configurations of rotating bodies. Specifically, such space-
times are the best choice to attempt to describe the gravi-
tational fields of disks around black holes in an exact
analytical manner. So, through the years, examples of
solutions corresponding to black holes or to thin disklike
sources have been obtained by several different techniques.
However, due to the nonlinear character of the Einstein
equations, solutions corresponding to the superposition of

black holes and thin disks are not so easy to obtain and
therefore, until now, very few exact stationary solutions
have been obtained.
On the other hand, if we only consider static configura-

tions, the line element is characterized by two metric
functions only. In the vacuum case, the Einstein equations
imply that one of the metric functions satisfies the Laplace
equation, while the other one can be obtained by quad-
ratures. Furthermore, since the sources are infinitesimally
thin disks, the matter only enters in the form of boundary
conditions for the vacuum equations. Therefore, as a con-
sequence of the linearity of the Laplace equation, solutions
corresponding to the superposition of thin disks and black
holes can be, in principle, easily obtained.
However, if we consider thin disks that extend up to the

event horizon, the matter located near the black hole would
move with superluminal velocities, as it was shown by
Lemos and Letelier [5–7]. So, in order to prevent the
appearance of tachyonic matter, the thin disks must have
an inner edge with a radius larger than the photonic radius
of the black hole. Hence, the boundary value problem for
the Laplace equation is mathematically more complicated
and thus only very few exact solutions have been obtained.
Solutions of this kind were first studied by Lemos and
Letelier [6] by making a Kelvin transformation in order
to invert the Morgan and Morgan [8] family of finite thin
disks. Now, although the second metric function of this
solution cannot be analytically obtained, its main proper-
ties were extensively analyzed in a series of papers by
Semerák, Z̆ác̆ek, and Zellerin [9–15], by using numerical
computation when was needed.
It is then clear that the obtaining of exact solutions that

properly describe thin disklike sources with an inner edge
has a manifest relevance in the study of binary systems that
involve a central black hole. Indeed, as it was pointed out in
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[16], the main properties of these annular disks strongly
depend on their specific density profiles. Therefore, it is
worth having other solutions, in addition to those obtained
previously, in such a way that a detailed study of such
systems can be made. Furthermore, with explicitly inte-
grated solutions the analytical study of the geodesics can
be easily performed, allowing one to attain a clear under-
standing of their main dynamical aspects. Also, the static
solutions can be considered as the first step toward the
obtaining of the most realistic stationary solutions, which
can be obtained from the previous ones by means of well-
known methods of solution generation.

Now, apart from the Lemos and Letelier inverted disks,
only two other solutions for static thin disks with an inner
edge have been obtained, one with inverted isochrone disks
[17] and another for disks with a power-law density [16].
Also, a stationary superposition was obtained by Zellerin
and Semerák [18] by using the Belinskii-Zakahrov inverse-
scattering method, but the analysis of its properties is
complicated by the fact that the metric functions cannot
be analytically computed. Furthermore, this solution in-
volves an unphysical supporting surface between the black
hole horizon and the disk [19]. Finally, a general class of
stationary solutions was presented by Klein [20], by using
the Riemann-surface techniques, with which physically
acceptable black hole disk systems can in principle be
found (see also [21]).

In agreement with the above considerations, in this
paper we present an infinite family of new exact solutions
for static thin dust disks with a central inner edge. In order
to find these solutions we will introduce a coordinate
system naturally adapted to the geometry of the source,
in such a way that the boundary value problem for the
Laplace equation can be properly posed. These coordinates
also allow one to explicitly compute the metric functions of
all the solutions. The solutions thus obtained describe disks
whose energy densities are everywhere positive and well
behaved, in such a way that their energy-momentum ten-
sors are in full agreement with all the energy conditions.
Now, although the total mass of the disks is infinite, the
solutions are asymptotically flat and their Riemann tensors
are regular everywhere, as it is shown by computing the
curvature scalars.

The paper is organized as follows. First, in Sec. II, we
present the formulation of the Einstein equations for static
axially symmetric spacetimes with an infinitesimally thin
disk as a source. We also present the proper boundary
conditions and their relationship with the physical quanti-
ties characterizing the sources. Then, in Sec. III, we in-
troduce oblate spheroidal coordinates with the ranges
chosen in such a way that they are naturally adapted to
the geometry of a thin disk with a central inner edge. The
Einstein equations are then solved and the metric functions
of the whole family of solutions are explicitly computed
and the expressions obtained are simply written in terms of
the oblate spheroidal coordinates.

The analysis of the physical behavior of the solutions is
then presented in Sec. IV, where we analyze first the
asymptotic behavior of the solution of the Laplace equa-
tion, in order to determine their leading multipolar mo-
ments. After that, we study the behavior of the
corresponding energy densities and pressures, as well as
the corresponding mass densities, relativistic and
Newtonian, and we compute the total mass of the disks.
Finally, we analyze the behavior of the Riemann curvature
tensor by computing its invariants. We conclude, in Sec. V,
by summarizing our main results.

II. THE EINSTEIN EQUATIONS WITH THIN
DISKLIKE SOURCES

In order to formulate the Einstein equations for static
axially symmetric spacetimes with an infinitesimally thin
disk as a source, we first introduce coordinates xa ¼
ðt; ’; r; zÞ in which the metric tensor only depends on r
and z. We assume that these coordinates are quasicylin-
drical in the sense that the coordinate r vanishes on the axis
of symmetry and, for fixed z, increases monotonically to
infinity, while the coordinate z, for fixed r, increases
monotonically in the interval ð�1;1Þ. The azimuthal
angle ’ ranges in the interval ½0; 2�Þ, as usual [22]. We
also assume that there exists an infinitesimally thin disk,
located at the hypersurface z ¼ 0, so that the components
of the metric tensor are symmetrical functions of z and
their first z derivatives have a finite discontinuity at z ¼ 0.
With the above considerations, we have

gabðr;�zÞ ¼ gabðr; zÞ; (1)

so that, for z � 0,

gab;zðr;�zÞ ¼ �gab;zðr; zÞ: (2)

Hence, the metric tensor is continuous at z ¼ 0,

½gab� ¼ gabjz¼0þ � gabjz¼0� ¼ 0; (3)

while the discontinuities in the derivatives of the metric
tensor can be written as

�ab ¼ ½gab;z� ¼ 2gab;zjz¼0þ ; (4)

where the reflection symmetry with respect to z ¼ 0 has
been used. Therefore, using the distributional approach
[23–25] (or the junction conditions on the extrinsic curva-
ture of thin shells [26–28]), we can write the metric tensor
as

gab ¼ gþab�ðzÞ þ g�abf1� �ðzÞg; (5)

and thus the Ricci tensor reads

Rab ¼ Rþ
ab�ðzÞ þ R�

abf1� �ðzÞg þHab�ðzÞ; (6)

where �ðzÞ and �ðzÞ are, respectively, the Heaveside and
Dirac distributions with support on z ¼ 0. Here g�ab and

R�
ab are the metric tensors and the Ricci tensors of the z �
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0 and z � 0 regions, respectively, and

Hab ¼ 1

2
f�z

a�
z
b þ �z

b�
z
a � �c

c�
z
a�

z
b � gzz�abg; (7)

where all the quantities are evaluated at z ¼ 0þ.
In agreement with (6), the energy-momentum tensor

must be expressed as

Tab ¼ Tþ
ab�ðzÞ þ T�

abf1� �ðzÞg þQab�ðzÞ; (8)

where T�
ab are the energy-momentum tensors of the z � 0

and z � 0 regions, respectively, and Qab gives the part of
the energy-momentum tensor corresponding to the disklike
source. The ‘‘true’’ surface energy-momentum tensor of
the disk Sab can be obtained through the relation

Sab ¼
Z

Qab�ðzÞdsn ¼ ffiffiffiffiffiffiffi
gzz

p
Qab; (9)

where dsn ¼ ffiffiffiffiffiffiffi
gzz

p
dz is the ‘‘physical measure’’ of length

in the direction normal to the z ¼ 0 plane.
Accordingly, the Einstein equations, in geometrized

units such that c ¼ 8�G ¼ 1, are equivalent to the system
of equations

R�
ab �

1

2
gabR

� ¼ T�
ab; (10)

with the boundary conditions

Hab � 1

2
gabH ¼ Qab; (11)

where H ¼ gabHab and, again, all the quantities are eval-
uated at z ¼ 0þ. When the thin disk is the only source of
the gravitational field, i.e. T�

ab ¼ 0, Eq. (10) reduces to the
Einstein vacuum equations

R�
ab ¼ 0; (12)

for the z � 0 and z � 0 regions, respectively. Thus, in
order to obtain solutions with a thin disk as source, we
must solve the system (12) using the boundary conditions
(11) with the values of Qab that describe properly the
matter content of the disk.

Now, in order to obtain explicit forms for the vacuum
Einstein equations and the boundary conditions, we will
take the metric tensor as given by the Weyl line element,
which reads [29]

ds2 ¼ �e2�dt2 þ e�2�½r2d’2 þ e2�ðdr2 þ dz2Þ�; (13)

where � and � are continuous functions of r and z.
Furthermore, we will assume that � and � are even
functions of z,

�ðr;�zÞ ¼ �ðr; zÞ; (14a)

�ðr;�zÞ ¼ �ðr; zÞ; (14b)

so that their first z derivatives are odd functions of z,

�;zðr;�zÞ ¼ ��;zðr; zÞ; (15a)

�;zðr;�zÞ ¼ ��;zðr; zÞ; (15b)

which we shall require that do not vanish at z ¼ 0.
With the previous assumptions, the vacuum Einstein

equations (12) reduce to the system

ðr�;rÞ;r þ ðr�;zÞ;z ¼ 0; (16a)

�;r ¼ rð�2
;r ��2

;zÞ; (16b)

�;z ¼ 2r�;r�;z; (16c)

where (16a) is the usual Laplace equation for an axially
symmetric source in cylindrical coordinates. The integra-
bility condition for the overdetermined system (16b) and
(16c) is granted when � is a solution of (16a), and thus �
can be obtained by quadratures given a solution �. On the
other hand, Eq. (11) yields the boundary conditions

2e2ð���Þ½�;z � 2�;z� ¼ Qt
t; (17a)

2e2ð���Þ�;z ¼ Q’
’; (17b)

where all the quantities are evaluated at z ¼ 0þ.
In agreement with the above expressions, the consis-

tency of the Einstein equations implies that Sab must have
only two nonzero components. So, by using the orthonor-
mal tetrad

Va ¼ e���a
t ; (18a)

Wa ¼ e��a
’=r; (18b)

Xa ¼ e����a
r ; (18c)

Ya ¼ e����a
z ; (18d)

we can write the surface energy-momentum tensor Sab in
the canonical form

Sab ¼ �VaVb þ pWaWb; (19)

where � and p are, respectively, the energy density and the
azimuthal pressure of the disk. Now, using (19), it is easy to
see that the surface mass density of the disk reduces to

� ¼ �þ p; (20)

where � has been defined as

� ¼ 2

�
Sab � 1

2
gabS

�
VaVb; (21)

with S ¼ gabSab and, as before, the expression is evaluated
at z ¼ 0þ.
The energy-momentum tensor can also be interpreted as

the superposition of two counterrotating fluids that circu-
late in opposite directions. In order to do this, we cast Sab

as [30]

Sab ¼ �þVaþVbþ þ ��Va�Vb�; (22)

where
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�þ ¼ �� ¼ �� p

2
; (23)

are the energy densities of the two counterrotating fluids,
and we take the two fluids moving along geodesics with
equal but opposite velocities. So, the velocity vectors of the
two counterrotating fluids are given by [30]

Va� ¼ Va �UWaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�U2

p ; (24)

where

U2 ¼ p

�
; (25)

is the counterrotating tangential velocity.
As we can see from the expressions above, the most

general energy-momentum tensor compatible with the line
element (13) and the boundary conditions (11) corresponds
to a thin disklike source that has only nonzero energy
density and azimuthal pressure. In agreement with this,
instead of giving specific prescriptions for the energy
density and the azimuthal pressure, the Einstein equations
will be solved by requiring only that these two quantities
are different from zero at the surface of a disk with an inner
edge. Then, after a given solution will be obtained, it can be
used in order to obtain, from the boundary conditions, the
corresponding expressions for the energy density and the
azimuthal pressure. Therefore, the solution will correspond
to the most general static thin disk with an inner edge that
can be obtained by exactly solving the Einstein equations.

Now, in terms of the energy density and the azimuthal
pressure, the boundary conditions read

2e���½2�;z ��;z� ¼ �; (26a)

2e����;z ¼ p: (26b)

So, by using (16c), we can cast these conditions as

4e���½1� r�;r��;z ¼ �; (27a)

4e���r�;r�;z ¼ p: (27b)

Also, thanks to (20), we have that

4e����;z ¼ �; (28)

where, as before, all the quantities are evaluated at z ¼ 0þ.
Accordingly, in order to obtain a solution representing a
thin disk located at the hypersurface z ¼ 0, with a circular
central inner edge of radius a, we only need to impose that

�;zðr; 0þÞ ¼
�
0; 0 � r � a;
fðrÞ; r � a;

(29)

with fðrÞ being an arbitrary function. Then, only after we
find the most general solution, we will impose additional
conditions in order to have a physically reasonable
behavior.

In agreement with the above considerations, in order to
have an asymptotically flat spacetime, we will require that

lim
R!1�ðr; zÞ ¼ 0; (30a)

lim
R!1�ðr; zÞ ¼ 0; (30b)

where R2 ¼ r2 þ z2. Also, in order to have regularity at the
symmetry axis, we will require that

�ð0; zÞ<1; (31a)

�ð0; zÞ ¼ 0: (31b)

We will also require that

fðrÞ � 0; (32a)

0 � r�;r � 1; (32b)

in order that the mass density, the energy density and the
azimuthal pressure be positive everywhere.
On the other hand, from (23) and (25), we can see that

the energy densities of the two counterrotating fluids can
be written as

�� ¼ 2e���½1� 2r�;r��;z; (33)

while the counterrotating tangential velocity is given by

U2 ¼ r�;r

1� r�;r

: (34)

Consequently, in order to have a well behaved counter-
rotating model, we need to impose a stronger condition
than (32b). So, instead, we will require that

0 � 2r�;r � 1; (35)

in order that the energy density of the two counterrotating
fluids be positive everywhere, �� � 0, and that the coun-
terrotating tangential velocity be real and less than the
velocity of light, 0 � U2 � 1.

III. SOLUTION OF THE EINSTEIN EQUATIONS

In order to solve the Einstein vacuum equations, we must
first solve the boundary value problem for�. However, due
to the nature of the boundary conditions (29), it is conve-
nient to look for a different coordinate system naturally
adapted to the geometry of the source. Accordingly, we
introduce the oblate spheroidal coordinates, defined
through the relations

r2 ¼ a2ð1þ x2Þð1� y2Þ; (36a)

z ¼ axy; (36b)

so that

x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ z2 � a2Þ2 þ 4a2z2

p þ ðr2 þ z2 � a2Þ
2a2

; (37a)

y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ z2 � a2Þ2 þ 4a2z2

p � ðr2 þ z2 � a2Þ
2a2

: (37b)

This transformation involves a one-to-four correspondence

GUILLERMO A. GONZÁLEZ et al. PHYSICAL REVIEW D 79, 124048 (2009)

124048-4



of points in the ðr; zÞ plane to points in the ðx; yÞ plane.
Hence, in order to have a one-to-one correspondence that
spans the entire ðr; zÞ plane, we must properly restrict the
ranges of the oblate spheroidal coordinates ðx; yÞ.

There are four possible choices of the ranges of the ðx; yÞ
that lead to a one-to-one correspondence. We can take, as it
is commonly done, 0 � x <1 and �1 � y � 1, so that
the interval 0 � r � a with z ¼ 0þ is mapped into the
interval x ¼ 0, 0 � y � 1, whereas the interval 0 � r � a
with z ¼ 0� is mapped into the interval x ¼ 0, �1 � y �
0. That is, we have a cut line at the interval 0 � r � a.
Accordingly, since y changes sign on crossing this cut line,
but does not change in absolute value, this coordinate has a
finite discontinuity when x ¼ 0, while the coordinate x is
continuous everywhere. Hence, an even function of y is
continuous everywhere but has a discontinuous normal
derivative at x ¼ 0. The same behavior occurs if, instead,
the range of x is taken to be�1< x � 0. Therefore, either
one of these two choices of the ranges must be used to
describe a finite thin disk of radius r ¼ a located at z ¼ 0.

On the other hand, a different behavior can be obtained
if we take the ranges to be�1< x<1 and 0 � y � 1. In
this case the interval a � r <1 with z ¼ 0þ is mapped
into the interval y ¼ 0, 0 � x <1, whereas the interval
a � r <1 with z ¼ 0� is mapped into the interval y ¼ 0,
�1< x � 0. Then, the cut line will be at the interval a �
r <1. So, since x changes sign on crossing the cut line,
but does not change in absolute value, this coordinate has a
finite discontinuity when y ¼ 0, while the coordinate y is
continuous everywhere. Therefore, an even function of x is
continuous everywhere but has a discontinuous normal
derivative at y ¼ 0. The same behavior occurs if we take
the range of y to be �1 � y � 0. Accordingly, these two
choices of ranges are indicated in order to describe an
infinite disklike source, with a circular central inner edge
of radius a, located at z ¼ 0.

As a consequence, we will take the ranges of ðx; yÞ to be
�1< x<1 and 0 � y � 1. So, when x ¼ 0 we have
z ¼ 0 and 0 � r � a, whereas when y ¼ 0 we have z ¼ 0
and r � a. That is, the surface y ¼ 0 describes a thin disk
with an inner edge of radius a, while the surface x ¼ 0
describes the vacuum hole inside this edge. On the other
hand, the z axis is described by y ¼ 1 since, in this case, we
have r ¼ 0 and �1< z <1. Then, in order that �ðx; yÞ
be continuous everywhere, we will take it to be an even
function of x

�ð�x; yÞ ¼ �ðx; yÞ; (38)

so that

�;xð�x; yÞ ¼ ��;xðx; yÞ; (39)

and thus conditions (14a) and (15a) are trivially satisfied.
In the oblate spheroidal coordinates, the Weyl line ele-

ment (13) can be rewritten as

ds2 ¼ �e2�dt2 þ a2ð1þ x2Þð1� y2Þe�2�d’2

þ a2ðx2 þ y2Þe2ð���Þ
�

dx2

1þ x2
þ dy2

1� y2

�
; (40)

and the Einstein vacuum equations reduce to

½ð1þ x2Þ�;x�;x þ ½ð1� y2Þ�;y�;y ¼ 0; (41)

the Laplace equation in oblate spheroidal coordinates, and
the overdetermined system

�;x ¼ ð1� y2Þ½xð1þ x2Þ�2
;x � xð1� y2Þ�2

;y

� 2yð1þ x2Þ�;x�;y�=ðx2 þ y2Þ; (42a)

�;y ¼ ð1þ x2Þ½yð1þ x2Þ�2
;x � yð1� y2Þ�2

;y

þ 2xð1� y2Þ�;x�;y�=ðx2 þ y2Þ; (42b)

whose integrability condition is granted by Eq. (41).
On the other hand, by using (36a) and (36b), it is easy to

see that

�;zðr; 0Þ ¼
�
�;xð0; yÞ=ay; 0 � r � a;
�;yðx; 0Þ=ax; r � a:

(43)

Accordingly, due to the reflection symmetry of the solu-
tions, the conditions (29) are equivalent to

�;xð0; yÞ ¼ 0; (44a)

�;yðx; 0Þ ¼ FðxÞ; (44b)

with FðxÞ being an arbitrary even function of x. The
general solution of Eq. (41) with these boundary conditions
is given by [31]

�ðx; yÞ ¼ X1
n¼0

½A2nP2nðyÞ þ B2nQ2nðyÞ�p2nðxÞ; (45)

where A2n and B2n are constants, P2nðyÞ andQ2nðyÞ are the
Legendre polynomials and the Legendre functions of the
second kind, respectively, and p2nðxÞ ¼ i�2nP2nðixÞ.
Therefore, all the solutions of the Einstein vacuum equa-
tions for static spacetimes, with any axially symmetric
source such as the one considered here, are obtained by
taking for the metric function�ðx; yÞ any particular choice
of the above general solution, or expressions obtained from
these solutions by means of linear operations.
Now, in terms of the oblate spheroidal coordinates,

condition (30a) is written as

lim
x!1�ðx; yÞ ¼ 0; (46)

whereas condition (31a) reads

�ðx; 1Þ<1: (47)

Therefore, due to the behavior of the Legendre functions, it
is clear that it is not possible to fulfill these conditions with
any particular choice of the general solution (45).
However, by considering only the first term of the series,
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�0ðx; yÞ ¼ A0 þ B0Q0ðyÞ; (48)

we obtain a solution that is regular for all y � 1. Then, if
we take A0 ¼ 0, this solution can be written as

�0ðx; yÞ ¼ �

2
ln

�
1þ y

1� y

�
; (49)

where � is an arbitrary constant, so that a direct integration
of (42a) and (42b) gives

�0ðx; yÞ ¼ �2

2
ln

�
1� y2

x2 þ y2

�
; (50)

where the integration constant has been taken to be zero.
We can easily check that this solution is not asymptotically
flat nor regular at the symmetry axis. Nevertheless, by
using (26a) and (26b), we obtain for the energy density
and the azimuthal pressure the expressions

� ¼ ð4�=aÞx�2�1; (51a)

p ¼ 0; (51b)

and thus, if �> 0, the disk satisfies all the energy con-
ditions [32]. However, for any value of � � 1, the energy
density increases without limit, either at infinity or at the
inner edge of the disk. Alternatively, for � ¼ 1 the energy
density is everywhere constant. Therefore, in any case, the
total mass of the disk will be infinite.

On the other hand, although the previous solution has
not a physically acceptable behavior, we can use it as the
starting point to generate new solutions with a better
behavior. In order to do this, we consider the oblate sphe-
roidal coordinates not only as functions of the cylindrical
coordinates ðr; zÞ, but also parametrically dependent on the
radius a,

x ¼ xðr; z; aÞ; (52a)

y ¼ yðr; z; aÞ: (52b)

Then, by considering also the metric function� dependent
on a,

� ¼ �ðr; z; aÞ; (53)

we can obtain a family of new solutions by applying the
linear operation

�nþ1ðr; z; aÞ ¼ @�nðr; z; aÞ
@a

; (54)

where n is an integer, n � 0.
Thus, by starting with the ‘‘seed’’ solution �0ðx; yÞ, by

means of the previous procedure one generates a family of

new solutions that can be written in the simple form

�nðr; z; aÞ ¼ �nðx; yÞ ¼ �yFnðx; yÞ
anðx2 þ y2Þ2n�1

; (55)

for n � 1, where the Fnðx; yÞ are polynomial functions,
with highest degree 4n� 4, of which we present below the
first three only,

F1 ¼ 1;

F2 ¼ x4 þ 3x2ð1� y2Þ � y2;

F3 ¼ 3x6ð3� 5y2Þ þ 5x4ð6y4 � 11y2 þ 3Þ
� x2y2ð3y4 � 31y2 þ 30Þ � y4ðy2 � 3Þ:

The rest can be easily obtained by means of (54). It is easy
to see that

lim
x!1�nðx; yÞ ¼ 0; (56a)

�nðx; 1Þ<1; (56b)

in full agreement with conditions (30a) and (31a).
Now, in order to obtain the corresponding metric func-

tions �nðr; z; aÞ, we integrate

�nðr; z; aÞ ¼ �nðx; yÞ ¼
Z y

1
�;yðx; yÞdy; (57)

by taking �nðx; 1Þ ¼ 0 in order to grant regularity at the
axis. So, by using (55) in (42b), the solutions obtained can
be written in the simple form

�nðx; yÞ ¼ �2ð2n� 2Þ!ðy2 � 1ÞAnðx; yÞ
4na2nðx2 þ y2Þ4n ; (58)

for n � 1, where the Anðx; yÞ are polynomial functions, of
highest degree 8n� 2, of which we present here the first
three only,

A1 ¼ x4ð9y2 � 1Þ þ 2x2y2ðy2 þ 3Þ þ y4ðy2 � 1Þ;

A2 ¼ 2x12ð9y2 � 1Þ � 4x10ð51y4 � 41y2 þ 2Þ
þ x8ð735y6 � 1241y4 þ 419y2 � 9Þ
� x6y2ð132y6 � 1644y4 þ 1604y2 � 252Þ
þ x4y4ð84y6 � 384y4 þ 1266y2 � 630Þ
þ 4x2y6ð6y6 þ 6y4 � 39y2 þ 63Þ
þ 3y8ðy6 þ y4 þ y2 � 3Þ;
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A3 ¼ 3x16ð1225y6 � 1275y4 þ 315y2 � 9Þ � 24x14ð980y8 � 2095y6 þ 1205y4 � 189y2 þ 3Þ þ 2x12ð24 255y10
� 89 475y8 þ 98 472y6 � 36 316y4 þ 3473y2 � 25Þ � 12x10y2ð1835y10 � 16 665y8 þ 34 716y6 � 25 292y4

þ 6001y2 � 275Þ þ 6x8y4ð900y10 � 11 946y8 þ 50 563y6 � 69 397y4 þ 33 365y2 � 4125Þ þ 8x6y6ð125y10
þ 926y8 � 9079y6 þ 24 639y4 � 22 290y2 þ 5775Þ þ 6x4y8ð55y10 þ 29y8 þ 764y6 � 4808y4 þ 8469y2 � 4125Þ
þ 12x2y10ð5y10 þ 5y8 þ 80y4 � 301y2 þ 275Þ þ y12ð5y10 þ 5y8 þ 5y6 þ y4 þ 34y2 � 50Þ:

The rest can be obtained as the result of computing the
integral (57). We can easily check that

lim
x!1�nðx; yÞ ¼ 0; (59a)

�nðx; 1Þ ¼ 0; (59b)

in full agreement with conditions (30b) and (31b).

IV. BEHAVIOR OF THE SOLUTIONS

In order to analyze the physical behavior of the previ-
ously obtained family of solutions, in the first instance we
will consider the behavior of�nðr; z;aÞ for large values of
R, where R2 ¼ r2 þ z2. From (36a) and (36b) it is easy to
see that, when R ! 1, the spheroidal coordinates ðx; yÞ
behave as

x� R=a; (60a)

y� z=R: (60b)

Then, from the expressions for Fnðx; yÞ, it is easy to check
that

Fn �
�
x3n�3; n ¼ 1; 3; . . . ;
x3n�2; n ¼ 2; 4; . . . ;

(61)

so that

�n �
�
z=Rnþ2; n ¼ 1; 3; . . . ;
z=Rnþ1; n ¼ 2; 4; . . . :

(62)

Consequently,�1 and�2 behave as dipoles,�3 and�4 as
quadrupoles,�5 and�6 as octopoles, and so on. However,
although there is no monopole term in�n, the total mass of
the source is not zero, as we will show below.

In order to analyze the behavior of the corresponding
disklike sources, we will first compute their azimuthal
pressure. From (36a) and (36b) it follows that

�;rðr; 0Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

ax

�
�;xðx; 0Þ; r � a; (63)

and, by using (55), it is easy to prove that

�n;xðx; 0Þ ¼ 0: (64)

Then, (27b) yields

pn ¼ 0: (65)

That is, all the disks of the family have zero azimuthal
pressure. Furthermore, from (25) we can see that all the

disks have zero counterrotating tangential velocity,

U ¼ 0: (66)

Therefore, these disks can be considered as ‘‘truly static
disks’’ in the sense that we cannot obtain a counterrotating
interpretation for them.
On the other hand, by using Eqs. (20), (28), (55), and

(58), the surface energy density of the disks can be calcu-
lated to give

�nðxÞ ¼ 4�EnðxÞ
anþ1x2nþ1

exp

�
��2ð2n� 2Þ!BnðxÞ

22na2nx4n

�
; (67)

where x � 0. In this expression, the EnðxÞ are positive
definite polynomials of degree 2k, with k ¼ ðn� 1Þ=2
for odd n and k ¼ n=2 for even n, of which we will write
below the first three only,

E1ðxÞ ¼ 1;

E2ðxÞ ¼ x2 þ 3;

E3ðxÞ ¼ 3ðx2 þ 5Þ;
all of them, as well of the rest, easily computed from (55).
The BnðxÞ are positive definite polynomials of degree 4k,
with k ¼ ðn� 1Þ=2 for odd n and k ¼ n=2 for even n, the
first three of them given by

B1ðxÞ ¼ 1;

B2ðxÞ ¼ 2x4 þ 8x2 þ 9;

B3ðxÞ ¼ 27x4 þ 72x2 þ 50;

all of them, as well of the rest, easily computed from (58).
From the above expressions we can see that, by taking

�> 0, the energy density of the disks will be everywhere
positive,

�nðxÞ � 0: (68)

Therefore, since the azimuthal pressure is zero, we have an
infinite family of dust disks that satisfy all the energy
conditions. It is also easy to see that, for any value of n,

�nð0Þ ¼ 0; (69a)

lim
x!1�nðxÞ ¼ 0: (69b)

That is, the energy density of the disks is zero at their inner
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edge and vanishes at infinite. Moreover, since the azimu-
thal pressure is zero, the surface mass density of the disks
reduces to their energy density,

�nðxÞ ¼ �nðxÞ; (70)

and therefore, its behavior is the same as that of the energy
density.

Now, in order to show the behavior of the energy den-
sities, we plot the dimensionless surface energy densities
~�n ¼ a�n as functions of the dimensionless radial coordi-
nate ~r ¼ r=a. So, in Fig. 1, we plot ~�n as a function of ~r for
the first three disks of the family, with n ¼ 1, 2, and 3, for
different values of the parameter ~�n ¼ �=an. Then, for
each value of n, we take ~�n ¼ 0:5, 1, 1.5, 2, 2.5, 3, 3.5, and
4. The first curve on the left corresponds to ~�n ¼ 0:5, while
the last curve on the right corresponds to ~�n ¼ 4. As we
can see, in all the cases the surface energy density is
positive everywhere, having a maximum near the inner
edge of the disks, and then rapidly decreasing as ~r in-
creases. We can also see that, for a fixed value of n, as
the value of ~�n increases, the value of the maximum
diminishes and moves toward increasing values of ~r. The
same behavior is observed for a fixed value of ~�n and
increasing values of n.

Furthermore, since the gravitational potential in
Newtonian theory is given by the solution of the boundary
value problem for the Laplace equation, we can consider
the �nðr; z;aÞ as a family of Newtonian gravitational
potentials of thin disklike sources with an inner edge,
whose Newtonian mass densities are given by

�nðxÞ ¼ 4�n;zjz¼0þ ¼ 4�EnðxÞ
anþ1x2nþ1

; (71)

clearly diverging at the inner edge of the disks. That is, the
behavior of the surface mass densities in the general rela-
tivistic disk models is better than in the corresponding
Newtonian models. On the other hand, by using the
Komar formula [28,33], we obtain for the total mass of
the relativistic disks the expression

Mn ¼
Z 2�

0

Z 1

a
�ne

�n��nrdrd’; (72)

which, after using (28) and integrating over ’, reduces to

Mn ¼ 8�
Z 1

a
�n;zrdr; (73)

which, in turn, coincides with the total mass for the corre-
sponding Newtonian disks. Finally, by using (71), it is easy
to check that

Mn ! 1; (74)

for any value of n. That is, all the disks of the family have
an infinite mass, a naturally expected result due to the
strong divergence of the Newtonian densities at the inner
edge.

Now, since the obtained solutions are asymptotically flat
and regular at the symmetry axis, the infinite value of the
total mass of the disks is an indication of the presence of a
singularity at their inner edge. So, in order to have some
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FIG. 1. Surface energy density ~�n as a function of ~r for the first
three disks of the family, with ~�n ¼ 0:5, 1, 1.5, 2, 2.5, 3, 3.5, and
4. For each value of n, the first curve on the left corresponds to
~� ¼ 0:5, whereas the last curve on the right corresponds to ~� ¼
4.
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insight on the nature of this singularity, we will compute
the four Riemann tensor invariants [34]

K I ¼ RabcdRabcd;

K II ¼ Rab
klR

klcdRabcd;

K III ¼ �abklR
klcdRabcdffiffiffiffiffiffiffi�g

p ;

K IV ¼ �abklR
kl
mnR

mncdRabcdffiffiffiffiffiffiffi�g
p ;

for all the family of solutions. Here g ¼ detgab and �
abcd is

the Levi-Civita symbol. However, since for any Weyl
solution the last two invariants vanish identically, we
only need to compute the first two invariants,KI andKII.

By using the expressions (55) and (58) for �nðx; yÞ and
�nðx; yÞ, we can cast these two curvature invariants as

KIn ¼ � 16�2e4ð�n��nÞNInðx; yÞ
a6nþ4ðx2 þ y2Þ12n ; (75a)

KIIn ¼ 48�3e6ð�n��nÞNIInðx; yÞ
a8nþ6ðx2 þ y2Þ16n ; (75b)

where NInðx; yÞ and NIInðx; yÞ are polynomial functions, of
highest degree 24n� 6 and 32n� 9, respectively, which
vanish at the inner edge of the disks,

NInð0; 0Þ ¼ NIInð0; 0Þ ¼ 0: (76)

We do not write them here explicitly due to their long size.
Moreover, one can check that, in any neighborhood

around (0, 0), the difference between �nðx; yÞ and
�nðx; yÞ behaves as

�n ��n �� �2

a2nðx2 þ y2Þ2n ; (77)

so that

lim
ðx;yÞ!ð0;0Þ

e4ð�n��nÞ

ðx2 þ y2Þ12n ¼ 0; (78a)

lim
ðx;yÞ!ð0;0Þ

e6ð�n��nÞ

ðx2 þ y2Þ16n ¼ 0; (78b)

and the limits exist, whatever be the path chosen to ap-
proach the point (0, 0).

Then, as a consequence of the above expressions, we
have that

lim
ðx;yÞ!ð0;0Þ

KInðx; yÞ ¼ 0; (79a)

lim
ðx;yÞ!ð0;0Þ

KIInðx; yÞ ¼ 0; (79b)

and thus the Riemann tensor is regular at the inner edge of
the disks. However, as it is well known, there are an infinite
number of higher invariants constructed from derivatives
of the Riemann tensor, so that it is almost certain that some

of them will be singular at the inner edge. Therefore,
although the Riemann tensor is regular at the inner edge,
we cannot ensure that the spacetime will be regular there.
Indeed, the presence of this singularity at all the solutions
obtained so far describing thin annular disks has been
considered by some authors to be tightly connected with
the unphysical infinite thinness of the source [35].

V. CONCLUDING REMARKS

We here presented an infinite family of new exact solu-
tions of the Einstein vacuum equations for static and
axially symmetric spacetimes. The solutions describe an
infinite family of thin dust disks with a central inner edge.
Although the strange behavior of the Newtonian potentials
may suggest that the disks do not correspond to reasonable
astrophysical sources, their energy densities are every-
where positive and well behaved, in such a way that their
energy-momentum tensors are in full agreement with all
the energy conditions. Moreover, although the total mass of
the disks is infinite, the solutions are asymptotically flat
and their Riemann tensors are regular everywhere, as is
shown by computing the curvature scalars. However, as it
was previously pointed out, the infinite value of the total
mass of the disks is an indication of the presence of a
singularity at their inner edge, a singularity that may be a
consequence of considering infinitesimally thin disks as
sources.
On the other hand, since all the metric functions of the

solutions have been explicitly computed, these are the first
fully integrated exact solutions for such thin disk sources.
Moreover, the method used here to obtain these explicit
solutions may serve as a guideline to find more physical
solutions in future works. However, besides their impor-
tance as a new family of exact solutions of the Einstein
vacuum equations, the main importance of this family of
solutions is that it can be easily superposed with the
Schwarzschild solution in order to describe binary systems
consisting of a thin disk around a central black hole.
Indeed, the superposition of the first member of this family
with a Schwarzschild black hole has been already per-
formed, and was previously presented in [36]. In a subse-
quent paper, a detailed analysis of the corresponding
superposition for the full family will be presented [37].
Furthermore, the relative simplicity of these solutions

when expressed in terms of oblate spheroidal coordinates
makes very easy the study of different dynamical aspects,
like the motion of particles inside and outside the disks and
the stability of the orbits, a study that provides valuable
information about the structure and behavior of such gravi-
tational fields. So, although a complete analysis of these
dynamical aspects will be presented in another paper, it is
worth mentioning that, since �;r ¼ 0 at the disk surface,

there are not circular orbits on the disk and so a counter-
rotating interpretation is not possible. However, this situ-
ation changes when a black hole is at the center of the
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disks, as it will be shown in the paper concerning the
superposition of this family with the Schwarzschild solu-
tion (see [36] for the disk corresponding to the first member
of the family).
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(World Scientific, Singapore, 2002), p. 111.

[4] V. Karas, J.-M. Hure, and O. Semerák, Classical Quantum
Gravity 21, R1 (2004).

[5] J. P. S. Lemos and P. S. Letelier, Classical Quantum
Gravity 10, L75 (1993).

[6] J. P. S. Lemos and P. S. Letelier, Phys. Rev. D 49, 5135
(1994).

[7] J. P. S. Lemos and P. S. Letelier, Int. J. Mod. Phys. D 5, 53
(1996).

[8] T. Morgan and L. Morgan, Phys. Rev. 183, 1097 (1969).
[9] O. Semerák, T. Zellerin, and M. Z̆ác̆ek, Mon. Not. R.

Astron. Soc. 308, 691 (1999); 322, 207(E) (2001).
[10] O. Semerák, M. Z̆ác̆ek, and T. Zellerin, Mon. Not. R.

Astron. Soc. 308, 705 (1999).
[11] O. Semerák and M. Z̆ác̆ek, Publ. Astron. Soc. Jpn. 52,

1067 (2000).
[12] O. Semerák and M. Z̆ác̆ek, Classical Quantum Gravity 17,

1613 (2000).
[13] O. Semerák, Czech. J. Phys. 52, 11 (2002).
[14] M. Z̆ác̆ek and O. Semerák, Czech. J. Phys. 52, 19 (2002).
[15] O. Semerák, Classical Quantum Gravity 20, 1613 (2003).
[16] O. Semerák, Classical Quantum Gravity 21, 2203 (2004).
[17] C. Klein, Classical Quantum Gravity 14, 2267 (1997).
[18] T. Zellerin and O. Semerák, Classical Quantum Gravity

17, 5103 (2000).
[19] O. Semerák, Classical Quantum Gravity 19, 3829 (2002).
[20] C. Klein, Phys. Rev. D 68, 027501 (2003).
[21] C. Klein and O. Richter, Ernst Equation and Riemann

Surfaces: Analytical and Numerical Methods, Lect. Notes
Phys. Vol. 685 (Springer, Berlin, 2005).

[22] L. Morgan and T. Morgan, Phys. Rev. D 2, 2756 (1970).
[23] A. Papapetrou and A. Hamouni, Ann. Inst. Henri Poincaré
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GUILLERMO A. GONZÁLEZ et al. PHYSICAL REVIEW D 79, 124048 (2009)

124048-10


