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We study potentially observable consequences of spatiotemporal discreteness for the motion of massive

and massless particles. First we describe some simple models for the motion of a massive point particle in

a fixed causal set background. If the causal set is faithfully embeddable in Minkoswki spacetime, the

models give rise to particle motion in the continuum spacetime. At large scales, the microscopic swerves

induced by the underlying atomicity manifest themselves as a Lorentz invariant diffusion in energy-

momentum governed by a single phenomenological parameter, and we derive in full the corresponding

diffusion equation. Inspired by the simplicity of the result, we then derive the most general Lorentz

invariant diffusion equation for a massless particle, which turns out to contain two phenomenological

parameters describing, respectively, diffusion and drift in the particle’s energy. The particles do not leave

the light cone however: their worldlines continue to be null geodesics. Finally, we deduce bounds on the

drift and diffusion constants for photons from the blackbody nature of the spectrum of the cosmic

microwave background radiation.
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I. INTRODUCTION

The search for a theory of quantum gravity is not, as yet,
motivated by experimental results. We currently have no
unambiguously relevant quantum gravitational phenomena
to guide us in developing candidate theories, though it has
long been suggested that a nonzero value of the cosmo-
logical constant of order 10�120 could have a quantum
gravitational origin [1–4]. Outside of cosmology, black
hole thermodynamics is often mentioned as one example
of a realm where concepts of general relativity and quan-
tum mechanics must both come into play—but experimen-
tal black hole physics is out of our reach for now and even
if analogue models of black holes in condensed matter
systems could be tested this would only probe the semi-
classical regime and not full quantum gravity. The existing
approaches to quantum gravity have therefore been devel-
oped with the hope that the confrontation with experiment
can be postponed. At the present time, however, the grow-
ing number of different approaches means that the impor-
tance of testing ideas against observation, if at all possible,
is greater than ever.

Experimental verification of quantitative and unex-
pected predictions is of the utmost importance in the
development of a successful new theory. An example
pertinent to the current paper is if we were to find obser-
vational evidence that spacetime is fundamentally discrete,
then that would have a major impact on the direction of
quantum gravity research. What form might such evidence
take; what could be the Brownian motion of our age? To

answer that question requires the development of phe-
nomenology that draws on essential aspects of a discrete
theory of quantum gravity which turns out to be achievable
in the causal set approach.
Causal set theory is a discrete, Lorentz invariant ap-

proach to quantum gravity [5–7]. For reviews and further
references see, for example, [8–10]. It is a work in
progress: a quantum causal set dynamics still eludes us.
Without a quantum dynamics it seems at first sight pre-
mature to develop causal set phenomenology but the kine-
matics of causal set theory is so concrete that we are able to
make some progress in this direction.
A causal set is a locally finite partial order and is the

kinematical basis for the theory. One could state the central
hypothesis as that spacetime is a causal set, or, if one
wanted to hedge one’s bets while the foundations of quan-
tum theory are laid, that causal sets are the histories in a
sum-over-histories quantum theory of spacetime.
In detail, a causal set is a set C endowed with a binary

relation � satisfying:
(1) transitivity: if x � y and y � z, then x � z,

8 x; y; z 2 C;
(2) reflexivity: x � x, 8 x 2 C;
(3) acyclicity: if x � y and y � x, then x ¼ y, 8 x; y 2

C;
(4) local finiteness: 8 x; z 2 C the set fy j x � y � zg

of elements is finite.
Our observed continuum Lorentzian manifold, it is as-

sumed, arises as an approximation to an underlying causal
set. The partial order gives rise to the causal ordering of
events in the approximating continuum spacetime, and the
number of elements comprising a spacetime region gives*l.philpott06@imperial.ac.uk

PHYSICAL REVIEW D 79, 124047 (2009)

1550-7998=2009=79(12)=124047(13) 124047-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.124047


the volume of that region in fundamental units which we
take to be of order the Planck volume. The above rules of
correspondence give an essentially unique way to associate
a class of causal sets to a given continuum spacetime via a
process known as ‘‘sprinkling’’ defined as follows. Given a
Lorentzian manifold, ðM;gÞ, points are selected from M
randomly via a Poisson process in which the probability
measure is equal to the spacetime volume measure in some
fundamental units. The selected points are the elements of
a causal set once they have been endowed with the partial
order induced by the spacetime causal order. The number
of points chosen from any region of the manifold will be
approximately equal to the volume of the region (in fun-
damental units) up to Poisson fluctuations. For more details
on sprinklings see the reviews mentioned above; for a
proof of the Lorentz invariance of the process see [11].
We thus have a straightforward way to construct a causal
set that could be the discrete underpinning of a particular
continuum spacetime and, consequently, a starting point to
develop the phenomenology of discrete spacetime.

An obvious place to look for consequences of causal set
theory is in the behavior of particles. If the underlying
spacetime is a discrete structure rather than a continuous
manifold, free particles might no longer be able to follow
precise timelike geodesics. Intuitively, the underlying dis-
creteness could cause the particles to ‘‘swerve’’ and indeed
a model of particle behavior illustrating this was proposed
in [12]. There, a classical particle is modeled in the sim-
plest possible way, as a point with no internal structure.
The causal set, C, considered, is a sprinkling into
Minkowski spacetime and a particle trajectory consists of
a chain of elements where a chain is a totally ordered
subset of C. The trajectory is constructed iteratively, where
the trajectory’s past determines its future, but only a certain
proper time �f (the ‘‘forgetting time’’) into the past is

relevant. If the particle has reached an element en with
four-momentum pn, the next element enþ1 is chosen such
that

(i) enþ1 is in the causal future of en and within a proper
time �f,

(ii) the momentum change jpnþ1 � pnj is minimized.
Here the momentum pnþ1 is defined to be proportional to
the vector between en and enþ1 and on the mass shell.
Heuristically, the trajectory tries to stay as straight as
possible at each step. Indeed, an alternative way to define
the process is to specify that in a frame in which the last
two elements of the trajectory, en�1 and en, lie on the
vertical t-axis, the next element enþ1 is chosen to be the
one, within proper time �f to the future of en, such that the

vector from en to enþ1 is as close to vertical as possible.
In this simple model the discreteness of a causal set

results in random fluctuations in the momentum of a
particle.

One could object that this model is not intrinsic to the
causal set as it makes use of information in the continuum

manifold to define the momentum change. However, simi-
lar models can be defined with no reference to the contin-
uum. Two such models are proposed in Sec. II. One of our
main claims is that, whatever the microscopic model of
particle motion, if it is Lorentz invariant and gives rise to
small random fluctuations in the momentum of the particle
then it can be approximated by a continuum description as
a diffusion in momentum space. In Sec. III we support this
claim by giving the derivation of the diffusion equation for
massive particles introduced in [12]. We also derive the
particle diffusion equation in a more useful cosmic-time
form and without the original assumption of spatial
homogeneity.
In Sec. IV we explore the case of massless particles on a

causal set and obtain diffusion equations for the momen-
tum of massless particles in the continuum approximation.
Bounds are placed on the constants in the massless particle
diffusion equation in Sec. V by considering the effect of
momentum diffusion on the spectrum of the cosmic mi-
crowave background. We will use units in which
c ¼ h ¼ G ¼ 1—which we will refer to as ‘‘Planck
units.’’ Fundamental units are related to Planck units by
a, yet to be determined, factor of order 1. Boltzmann’s
constant is also set to one, kB ¼ 1.

II. INTRINSIC MODELS FOR MASSIVE
PARTICLES

As mentioned above, the original microscopic model in
[12] depended on information from the continuum
Minkowski spacetime whereas a better model ought to be
intrinsic to the causal set itself and rely only on the order
relation. Two slightly different intrinsic models will be
described in this section, to give an idea of the wealth of
possibilities available.
We first recall some causal set definitions. Let C be a

causal set.
(i) A link is an irreducible relation i.e. a pair of distinct

elements a, b such that a � b and there exists no
distinct c such that a � c � b.

(ii) A chain is a totally ordered subset ofC. An n chain is
a chain with n elements and its length is n� 1, the
number of links.

(iii) A longest chain between two elements is a chain
whose length is maximal amongst chains between
those end points. There may be more than one lon-
gest chain between two elements.

(iv) On a causal set the closest approximation we have to
a timelike geodesic between two elements is a lon-
gest chain. For two causal set elements a and b the
length of a longest chain between a and b will be
denoted dða; bÞ. For sprinklings into Minkowski
spacetime, in the asymptotic limit of large distances,
dða; bÞ � �T where T is the proper time between a
and b and � is a (dimension dependent) constant
[13].
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(v) There is a link between elements a and b iff
dða; bÞ ¼ 1.

(vi) A path is a chain consisting entirely of links i.e. a set
of elements a � b � c � d � . . . such that dða; bÞ ¼
1, dðb; cÞ ¼ 1, dðc; dÞ ¼ 1 . . . .

A. Model 1

If a dynamical rule for particle motion is to be intrinsic
to the causal set background it can no longer refer to a
forgetting time �f. This instead becomes a ‘‘forgetting

number,’’ an integer nf � 1. In Intrinsic Model 1 a particle

trajectory is a chain, . . . en�2 � en�1 � en . . . which is
determined by the following (Markov of order 2) process:

Given a partial particle trajectory . . . en�1; en the next
element enþ1 is chosen such that

(i) dðen; enþ1Þ ¼ nf,

(ii) dðen�1; enþ1Þ ¼ 2nf,
[see Fig. 1(a)]. These requirements do not guarantee the
existence of a unique such enþ1. However, there will al-
most surely be finitely many eligible elements and we
therefore construct the trajectory by choosing an element
uniformly at random from these.

The particle trajectory should swerve a little, but remain
approximately straight so long as nf is large, since, in that

case, the results of Brightwell and Gregory [13] show that
the expected position of enþ1 is close to the hyperboloid of
points proper distance nf=� from en and to the hyperbo-

loid of points proper distance 2nf=� from en�1.

In this model we can consider the trajectory as consist-
ing of just the elements . . . en�1; en; enþ1 . . . or of the
‘‘filled in chain’’ consisting of a (randomly chosen) longest
chain (of length nf) between en�1 and en, another longest

chain between en and enþ1 (also length nf) and so on. By

imposing dðen�1; enþ1Þ ¼ 2nf we have forced the chain of

length 2nf that we have between en�1 and enþ1 also to be a

longest chain. The trajectory is thus approximately geode-
sic over all fen�1:enþ1g segments. The trajectory consisting
of longest chains between en�1 and en, en and enþ1, and
enþ1 and enþ2 is not, however, necessarily a longest chain
between en�1 and enþ2.

Possible variations on this model include choosing, at
random, the forgetting number at each step so that the
mean is nf with some fixed variance.

B. Model 2

The trajectory is explicitly constructed as a path in this
model i.e. dðen; enþ1Þ ¼ 1 for all n. Given a partial particle
trajectory . . . en�nf ; . . . ; en�1 the next element en is chosen

such that
(i) dðen�1; enÞ ¼ 1,
(ii) dðen�nf ; enÞ þ . . .þ dðen�2; enÞ þ dðen�1; enÞ is

minimized,
[see Fig. 1(b)]. Note that this minimization does not nec-
essarily yield a unique en, in which case we construct the
trajectory by choosing an element uniformly at random
from those eligible. Also, if the past trajectory has length
less than nf the minimization is done over all elements

available.
Each element is linked to the previous i.e. dðen�1; enÞ ¼

1 so we know there exists a chain (our trajectory) of length
nf between en�nf and en. The maximal chain length,

dðen�nf ; enÞ, must therefore be greater than or equal to

nf. If we choose en to minimize dðen�nf ; enÞ we ask that

the trajectory be as close as possible to geodesic between
en�nf and en while fulfilling dðen�1; enÞ ¼ 1. Minimizing

the sum of the partial lengths distributes the geodesic
property along the path.

III. THE CONTINUUM APPROXIMATION FOR
MASSIVE PARTICLES

The models described above are intrinsic to a causal set
and as such could be used to define particle motion on any
causal set whatsoever. For phenomenology, however, the
models are only of interest when defined on a causal set
that arises by sprinkling into four-dimensional Minkowski
spacetime,M4, or some other physical spacetime such as a
Friedmann-Roberston-Walker (FRW) cosmology. It is the
central conjecture, or Hauptvermutung, of causal set theory
that a causal set that arises by sprinkling into M4, is well

(a) (b)

FIG. 1. A trajectory constructed using (a) model 1 and (b) model 2.
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approximated byM4 and that the associated embedding of
the causal set in M4 gives us a way to derive spacetime
physics from physics on the causal set. The
Hauptvermutung remains to be proved—though we have
quite a bit of evidence for it especially in the case of flat
spacetime (see, for example, [13,14])—and in the context
of the present work it is the central phenomenological
assumption.

With this assumption, the models of Sec. II defined on a
causal set which arises from sprinkling into M4 are also
models of particle motion in M4. To be completely ex-
plicit: in both models the particle’s motion on the causal
set—a chain—defines a piecewise linear trajectory in M4

in the following way. By assumption, the causal set arises
from sprinkling and so is embedded in M4 (in such a way
that the order on the elements respects the causal order on
the embedded positions and the number of elements in any
region is approximately the spacetime volume in funda-
mental units). Between two causal set elements in the chain
of the particle’s motion on the causal set, its spacetime
trajectory through M4 is a straight line and its four-
momentum is well defined by requiring it to be on the
mass shell, hyperbolic space H3.

The original swerves model can be similarly converted
into a model of piecewise linear particle worldlines in M4

and we can consider each of these spacetime models as
defining an evolution on a manifold of states. The manifold
of states for the particle is M4 �H3—its position in space
and its momentum—and the time parameter for the evolu-
tion is proper time. This evolution is effectively stochastic
because although knowledge of the causal set makes the
trajectory deterministic, we treat the causal set as un-
known, the analogue of the state of the water molecules
causing Brownian motion.

If we define nmacro to be the scale of macroscopic
physics measured in Planck units then we can demand a
separation of scales so that 1 � nf � nmacro. Indeed, the

Planck scale is so small that even if we want to choose the
scale of Large Hadron Collider physics as our ‘‘macro’’
scale (nmacro ¼ 1015) there is still plenty of room to choose
nf. The change in spacetime position which is bounded by

nf Planck units will then be small at each step as will the

change in momentum.
The dynamics is therefore a stochastic evolution on a

manifold of states and such systems are dealt with in
general in the formalism developed by Sorkin [15]. At
the macroscopic scale of many (nmacro=nf) steps the pro-

cess can be described approximately as a diffusion.
Although the models described above cannot be consid-

ered completely realistic (for example, the particles are
classical and zero size) we claim that provided the process
is Lorentz and translation invariant, it will always give rise
to the same diffusion equation, namely, the equation writ-
ten down in [12]. As promised there, we present below the
full derivation of this equation, supporting our claim that

the continuum model is universal and independent of the
discrete microscopic details. We derive the equation ini-
tially with the particle’s proper time playing the role of
independent variable; we then obtain the equivalent equa-
tion in terms of cosmic time, by expressing both in terms of
a conserved current in a certain space of eight dimensions.
This Lorentz-invariant process was first considered by
Dudley [16,17], though one of his diffusion equations
conflicts with ours. Without any imposition of Lorentz
invariance, a general formalism for describing diffusion
in Minkowski space was set up by Schay [18].

A. The diffusion equation for a massive particle

We use the general formalism of [15], which deals with
stochastic evolution on a manifold of states. The state
space, M, of the swerving particle of mass m is M ¼
M4 �H3, where H3 is the mass shell. The coordinates on
M4 are the usual Cartesians fx�g,� ¼ 0, 1, 2, 3 and indices
are raised and lowered with ���, the Minkowski metric.

The spatial coordinates on M4 will be written as fxig.
Cartesian coordinates in momentum space are p� and

whenever they are used it will be understood that p� lies

on the mass shell which is the hyperboloid in momentum
space defined by p�p

� þm2 ¼ 0. p0 ¼ E is the energy

and p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2 þ p2
3

q
is the norm of the three momen-

tum. The three coordinates onH3 will be written abstractly
as pa. We denote the coordinates on M collectively as
XA ¼ fx�; pag and in what follows capital letters A, B will
be used to indicate general indices onM; �, � are indices
on M4; i, j are spatial indices on M4; a, b are indices on
H3.
The metric on M is the product of the Minkowski

metric ��� on M4 and the Lobachevski metric gab on

H3. This is the unique Poincaré invariant metric (up to an
overall constant). The ‘‘density of states,’’ n, plays a role in
the formalism of [15], and by symmetry, it must be pro-
portional to the volume measure on M, so n / ffiffiffi

g
p

where

g ¼ detðgabÞ. The ‘‘entropy scalar,’’ s, is given by s ¼
lnðnÞ (Boltzmann’s constant has been set to 1) [19].
A process that undergoes stochastic evolution on a

manifold of states, M, in time parameter T, can be de-
scribed by a current, JA and a continuity equation [15]:

JA ¼ �@BðKAB�Þ þ vA�; (1)

@�

@T
¼ �@AJ

A: (2)

Here the probability density for the system is given by � ¼
�ðXA; TÞ, a scalar density on M. The coefficients KAB are
given by

KAB ¼ lim
�T!0þ

�
�XA�XB

2�T

�
; (3)

where h�i denotes expectation value in the process in which
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the particle starts at a definite point of M (page 146 of
[15]). KAB is a symmetric, positive semidefinite matrix
which transforms as the components of a tensor on M.
The coefficients vA are

vA ¼ lim
�T!0þ

�
�XA

�T

�
; (4)

and do not transform as a vector on M, but can be
combined with K and the entropy scalar s to form a true
vector uA,

uA ¼ vA � @BK
AB � KAB@Bs: (5)

The current and continuity equations can be reexpressed
in terms of the true vector uA:

@�

@T
¼ @A

�
KABn@B

�
�

n

�
� uA�

�
: (6)

To find the diffusion equation for our particle process,
therefore, we need to determine KAB and uA.

Requiring the equation to be Poincaré invariant is a very
stringent condition and proves to be sufficient for us to
determine KAB and uA, up to the choice of one constant
parameter. This means that the resulting equation is very
robust and independent of the details of the underlying
particle model so long as it is Poincaré invariant.

Consider the process referred to �, proper time along the
worldline of the particle. Then

K�� ¼ lim
��!0þ

�
�x��x�

2��

�
: (7)

�x� ¼ 1
mp

��� at every step of the process and so K�� ¼
1
2 lim��!0p

�p��� ¼ 0. Since KAB is positive definite, this

implies that K�A ¼ 0 and the only nonzero components
are Kab. The only Lorentz invariant tensor on H3 is pro-
portional to the metric, gab, and the coefficient is indepen-
dent of x� by translation invariance. So we have

KAB ¼ 0 0
0 kgab

� �
; (8)

where k > 0 is a constant.
Now consider

v� ¼ lim
��!0þ

�
�x�

��

�
; (9)

which, by the above is v� ¼ p�=m. The components of
the true vector u� are equal to v� because K�A ¼ 0. There
is no Lorentz invariant vector on H3 and so ua ¼ 0:

uA ¼ ðp�=m; 0Þ: (10)

We can now write down the proper time diffusion equation
from (1) and (2):

@��

@�
¼ k@a

�
gab

ffiffiffi
g

p
@b

�
��ffiffiffi
g

p
��

� 1

m
p�@���: (11)

If we define a scalar �� ¼ ��=
ffiffiffi
g

p
we obtain the equation

in Ref. [12]:

@ ��

@�
¼ kr2

H ��� 1

m
p�@� ��; (12)

where r2
H is the Laplacian on H3.

B. Diffusion in cosmic-time for massive particles

Given an initial distribution of particles, for instance
from an astronomical source, the above equation is not
very useful for predicting the results of observations. Even
if particles all leave the source at the same time with the
same momentum, the momentum variation induced by the
swerves will result in particles arriving after different
proper times and at different observatory times. The proper
time that elapses along the particles’ worldlines from
source to detector is not observable. To compare the
swerves model with experiment and observation it is nec-
essary to describe the evolution of the distribution in time
in the rest frame of our detector, which time we refer to as
cosmic-time.
A first step in this direction was to look at the non-

relativistic limit of the proper time diffusion equation,
when proper time and cosmic time are comparable. The
nonrelativistic limit in fact proves sufficient to place very
strong bounds on the value of the diffusion constant and
severely limit any observable effects (see [12,20]).
In the fully relativistic case, Dowker et al. wrote down

the diffusion equation in terms of cosmic time for the
special case of an initially spatially homogeneous distri-
bution [12]. We will now give the derivation of the cosmic-
time evolution equation for the general case of spatially
inhomogeneous distributions.
The conversion between proper time and cosmic time is

possible because both are good time parameters along all
possible particle worldlines, which are causal. If we visual-
ize our diffusion process as a collection of such worldlines
through spacetime and momentum space, both cosmic
time, t ¼ x0, in our chosen frame and proper time �
increase monotonically along each trajectory. Adding
proper time to our state space by assuming that the particle
starts at parameter � ¼ 0 and cosmic time t ¼ 0, the
process is represented by flowlines in M0 ¼ M4 �H3 �
R (see Fig. 2) and along each flowline, both � and t are
good time parameters. The proper time diffusion equation
we have found describes the evolution of the distribution
on constant � hypersurfaces in M0. What we want is to
obtain the diffusion equation for evolution of the distribu-
tion on constant t hypersurfaces integrated over all proper
times.
First we put t and � on an equal footing by considering

the larger spaceM0 and defining a new current component

J�ðt; xi; pa; �Þ ¼ ��: (13)
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If we denote coordinates on this extended space, M0 ¼
M� R, by X� ¼ fXA; �g then the continuity equation (2)
can be written

@�J
� ¼ 0: (14)

Using Eq. (1) (and still treating � as our time parameter)
we can express the t component of the current in terms of
J� (a.k.a. ��).

Jtðt; xi; pa; �Þ ¼ �@BðKtBJ�Þ þ vtJ� ¼ vtJ� ¼ �J�;

(15)

where � ¼ @t=@� is the usual relativistic gamma factor.
The remaining components of the current can now be
written in terms of Jt. The spatial components are

Jiðt; xi; pa; �Þ ¼ �@BðKiBJ�Þ þ viJ� ¼ viJ� ¼ pi

m

Jt

�
:

(16)

In the case of the p components the algebra is simpler if we
first note that we can express (1) in the form (cf. (6))

JA ¼ �KAB

�
n@B

�
�

n

��
þ �uA; (17)

and so

Jaðt; xi; pa; �Þ ¼ �kgabn@b

�
Jt

�n

�
¼ �kgab

ffiffiffi
g

p
@b

�
Jt

�
ffiffiffi
g

p
�
:

(18)

The metric gab that appears here is the Lobachevski metric
on H3.

Since � is unobservable we need to integrate J over �
and we denote the integrated current by �J. Integrating the t
component of the current over proper time from zero to
infinity, gives us the probability density on a hypersurface
of constant t:

�t ¼ �Jtðxi; pa; tÞ �
Z

Jtd�: (19)

The components of the new current can be written:

�J iðxi; pa; tÞ �
Z

Jid� ¼
Z piJt

m�
d� ¼ pi

m

�Jt

�
¼ pi

m

�t

�
;

(20)

�J aðxi; pa; tÞ �
Z

Jad� ¼ �kgabn@b

� �Jt

�n

�

¼ �kgabn@b

�
�t

�n

�
: (21)

If we integrate the continuity equation over � we obtain

½J�	10 þ @t �J
t þ @i �J

i þ @a �J
a ¼ 0: (22)

J�j�¼0 is zero for all t > 0 and J� tends to zero as � goes to
infinity for finite t. So for all t > 0 we have

@t �J
t þ @i �J

i þ @a �J
a ¼ 0 (23)

which gives the cosmic-time diffusion equation

@�t

@t
¼ � pi

m�
@i�t þ k@a

�
gab

ffiffiffi
g

p
@b

�
�t

�
ffiffiffi
g

p
��
: (24)

This is a powerful phenomenological model because it
depends on only one parameter, the diffusion constant k.
Data can therefore strongly constrain k.
We note that this solves a problem posed by Dudley [16].

We also point out that Dudley’s equation for the spatially
homogeneous distribution on page 267 of [16] is incon-
sistent with our Eq. (24). (Equation (3.60) of [18] also
differs from the 1þ 1 dimensional analog of (24).)

IV. MASSLESS PARTICLES

If an underlying spacetime discreteness results in diffu-
sion in momentum and spacetime for massive particles, it
is interesting to consider whether a similar diffusion occurs
for massless particles. For massive particles the concrete
models for particle dynamics on a causal set described
above motivated the derivation of the diffusion equation
(11). The case of massless particles on a causal set back-
ground is rather different. If we consider a sprinkling into
Minkowski spacetime, for any given element, p, there will
almost surely be no element sprinkled on the future light
cone of p. The analogue of the future light cone of p in a
sprinkling of Minkowski spacetime is the set of all ele-
ments preceded by and linked to p. The elements are
distributed, roughly, near the hyperboloid one Planck unit
of proper time to the future of p. Although the whole light
cone thus has a good causal set analogue [21], the easiest
analogue of a null ray is only a single link, making it hard
to see how to construct a discrete Markovian process that
would result in a close-to-null trajectory.

FIG. 2. Particle trajectories as flowlines in M0 ¼ M4 �H3 �
R (where we have suppressed two spatial dimensions).

LYDIA PHILPOTT, FAY DOWKER, AND RAFAEL D. SORKIN PHYSICAL REVIEW D 79, 124047 (2009)

124047-6



Modeling the propagation of massless point particles on
a causal set as an approximately local process is therefore
problematic. It is hoped that in the future, the study of
massless fields on a causal set will enable us to model
massless particle propagation as wave packets, say. In the
meantime, however, lack of knowledge of the exact nature
of massless particle propagation on the discrete level, does
not mean we cannot derive a diffusion equation to describe
the potential effect of discreteness on photons in the con-
tinuum approximation. We can arrive at a massless diffu-
sion equation in two ways: using the stochastic evolution
on a manifold of states procedure as for the massive
particle case, or simply taking a m ! 0 limit of the diffu-
sion equation for massive particles. It turns out that the
second method gives an incomplete result.

The state space in the massless case differs from the
massive case. For massive particles we had a probability
distribution on M4 �H3. For massless particles H3 be-
comes the light cone in momentum space defined by
p�p

� ¼ 0. This cone will be denoted H3
0. If we assume

that the photons under consideration are well described in a
geometrical optics approximation so they have definite
spacetime worldlines and momenta, our state space will
be [22] M4 �H3

0. Since proper time vanishes along a

lightlike worldline, it is no longer a suitable time parameter
for our diffusion process. We define, instead, an affine
time, �, along any photon worldline by

dx� ¼ p�d�:

Notice that the normalization of this affine parameter is not
arbitrary. It is fixed by its relation to the particle’s four-
momentum, or geometrically, to its de Broglie wavelength.
Under the latter interpretation, the affine parameter along a
photon worldline � measures the area swept out in space-
time by a vector connecting � to a neighboring null geo-
desic that trails it by one wavelength.

In the massive particle case we equated the density of
microstates, n, to the determinant of the metric on our state
space: n / ffiffiffi

g
p

. In the massless case, the metric induced on

H3
0 degenerates, but H

3
0 still possesses a Lorentz-invariant

measure of volume (unique up to a constant factor). The
four-dimensional volume element d4p of momentum
space, together with the masslessness constraint, p�p� ¼
0, lets us construct on H3

0 the invariant volume element

d4p	ðp�p�Þ ¼ d3p=2p0, i.e. n / 1=p0 in Cartesian coor-

dinates. It will be more useful, however, to work in polar
coordinates on H3

0: fp; 
;�g where p is the magnitude of

the three momentum and 
 and� are the usual polar angles
in momentum space. In these coordinates, the density of
states is n / p sin
. There is also a (unique up to a constant
factor) invariant vector field onH3

0 which is the momentum

itself, pa i.e. the vector with components ðp; 0; 0Þ in polar
coordinates. This is absent in the massive case, where the
momentum vector does not lie in the mass shell. Finally,
although there is no invariant metric on H3

0, there is an

invariant symmetric two-tensor, papb (unique up to a
constant factor).
We first consider the process in affine time, �. As with

the massless case, we begin with the current and continuity
equations (1) and (2), and determineKAB and uA. Using the
formulae (3) and (4) with T ¼ � we find

K�� ¼ lim
��!0þ

p�p��� ¼ 0: (25)

K is positive semidefinite so K�a ¼ 0, and finally Kab

must be Lorentz invariant and translation invariant so

KAB ¼ 0 0
0 k1p

apb

� �
; (26)

where k1 
 0 is a constant.
To determine uA we again look individually at the com-

ponents in spacetime and momentum space. As before, the
spacetime component u� ¼ v� by (5), and v� ¼ p� by
(4). In contrast to the massive case, there can be nonzero
components of uA in the momentum space directions be-
cause the momentum itself is an invariant vector. The
momentum direction components are thus given by ua ¼
k2p

a, where k2 is a constant. Working in polar coordinates
the ‘‘position’’ vector pa on the cone H3

0 is simply ðp; 0; 0Þ
where p2 ¼ p2

0. Thus uA ¼ ðp0; p1; p2; p3; k2p; 0; 0Þ on

M4 �H3
0.

Substituting the forms for KAB and uA into (6) we obtain
the massless particle affine time equation:

@��

@�
¼ @A

�
KABn@B

�
��

n

�
� uA��

�

¼ �p� @��

@x�
þ k1

@

@E

�
E3 @

@E

�
��

E

��
� k2

@

@E
ðE��Þ;

(27)

where we have replaced p by energy E ¼ p.
We see that the Lorentz invariance means that any

diffusion in photon momentum cannot change the direction
of the photon and so it always propagates on the light cone,
at the speed of light. However, the energy of the photon
does undergo a diffusion. Notice also that there are two
parameters, making this a less powerful phenomenological
model than the massive particle model which has a single
parameter. There is not only a diffusion term but an inde-
pendent drift term, arising from the existence of an invari-
ant vector on H3

0, and we will see that this leads to the

existence of power law equilibrium solutions. Note that
taking the m ! 0 limit of (11) would have resulted in (27)
with k2 ¼ 0 because there is no invariant vector in the
massive case. (As is familiar in another context, the case
of zero photon mass is thus, here also, a sort of singular
limit of the massive case.)

A. Cosmic-time process

Again, in order to make contact with observations, we
need to obtain the cosmic-time diffusion equation for
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massless particles, for which we use the same argument as
in the massive case. First we assume that � ¼ 0 at t ¼ 0.
Let

J�ðt; xi; pa; �Þ ¼ ��: (28)

We can then express the t component of the current J in
terms of J�, and the remaining components of the current
in terms of Jt.

Jtðt; xi; pa; �Þ ¼ pJ�; (29)

Jiðt; xi; pa; �Þ ¼ pi

p
Jt; (30)

Jaðt; xi; pa; �Þ ¼ �k1p
apbp sin
@b

�
Jt

p2 sin


�
þ Jt

p
k2p

a:

(31)

Ja is proportional to pa and in polar coordinates the vector
pa ¼ ðp; 0; 0Þ, so there is only one nonzero component of
Jp

a
in the radial (energy) direction:

Jpðt; xi; pa; �Þ ¼ �k1p
@Jt

@p
þ ð2k1 þ k2ÞJt: (32)

The affine time of flight is unobservable so we integrate
over it. Defining

�J tðt; xi; paÞ ¼
Z 1

0
Jtðt; xi; pa; �Þd�; (33)

we integrate the other current components over � to obtain

�J iðt; xi; paÞ ¼ pi

p
�Jt; (34)

�J pðt; xi; paÞ ¼ �k1p
@ �Jt

@p
þ ð2k1 þ k2Þ �Jt: (35)

Imposing the continuity equation gives us the massless
particle cosmic-time diffusion equation in terms of the
scalar density �Jt, which we rename �t:

@�t

@t
¼ �@iJ

i � @aJ
a

¼ �pi

E
@i�t � ðk1 þ k2Þ @�t

@E
þ k1E

@2�t

@E2
; (36)

where E ¼ p is the energy.
So, for a massless particle in a geometric optics approxi-

mation, we expect that an underlying discreteness can
induce fluctuations in the energy of the particle, but with-
out affecting the direction of propagation. The diffusion
governed by k1 causes a distribution of energies that is
initially sharply peaked to spread over time. The second
constant k2 results in an independent drift of the spectrum
to higher or lower energies depending on its sign.

It is interesting that negative values of k2 allow for power
law equilibrium solutions of (36). Set @��t ¼ 0. Then the

equilibrium distributions satisfy

� ðk1 þ k2Þ@�t

@E
þ k1E

@2�t

@E2
¼ 0: (37)

This has a power law solution

�t / Eð2k1þk2Þ=k1 : (38)

When the parameters are such that the exponent is less than
�2 (and so k2 must be negative because k1 is positive) then
this solution is normalizable if it is cut off at small energies.
We conjecture that if ð2k1 þ k2Þ=k1 <�2 any normalized
distribution will tend at late times to this power law equi-
librium solution at large energies. This is interesting be-
cause physical processes that result in power law
distributions across a wide energy range are few and far
between—the Fermi mechanism of statistical acceleration
of charged particles by random magnetic fields, proposed
as the source of high energy cosmic rays, is the only well-
known mechanism.
Placing bounds on the parameters k1 and k2 is the next

step.

V. BOUNDING THE CONSTANTS k1 AND k2

In developing a phenomenological model, one aims to
provide a model for currently unexplained observations or
suggest new observations that might be made to test a
theory. But before proposing new observations, one should
of course constrain one’s model as tightly as possible,
based on what is already known. Our model has two
parameters: a positive diffusion constant k1 and a ‘‘drift’’
constant k2, which may be either positive or negative. To
place the strongest bounds on the values of these parame-
ters, it seems sensible to look at photons that have been
travelling for a very long time and thus have had the
maximum possibility to experience any underlying dis-
creteness. The cosmic microwave background (CMB)
seems an ideal testing ground in this sense. Not only are
its photons the ‘‘oldest’’ we can observe, but its spectrum
has been determined with great precision. Most of the
photons in the CMB have been ‘‘free streaming’’ for
approximately 13:7� 109 years, or on the order of 1060

Planck times. When the universe became transparent at
recombination, they would have had a blackbody spectrum
with a temperature 3000 K (see, for example, [23]).
Current observations yield a temperature of 2:728�
0:004 K and measure the spectrum to be Planckian (black-
body) over the 2–21 cm�1 frequency range to within a
weighted root-mean-square (rms) deviation of only
50 ppm of the peak brightness [24]. Since our diffusion
would have distorted the energy distribution, the fact that
the CMB photons have travelled so far but remained so
perfectly thermal will allow us to constrain our parameters
very tightly.

LYDIA PHILPOTT, FAY DOWKER, AND RAFAEL D. SORKIN PHYSICAL REVIEW D 79, 124047 (2009)

124047-8



A. Simulations

Our derivation of the massless cosmic-time diffusion
equation assumed spacetime to be Minkowskian.
Therefore we will first consider a simplified model that
ignores the expansion of the universe, and consequently
assumes that, in the absence of diffusion, the temperature
of the CMB would remain constant from the surface of last
scattering to today. This will give us an order of magnitude
bound on the parameters. In Sec. VI the cosmic expansion
will be incorporated.

The initial Planckian spectrum, expressed as a number
density of photons per unit spatial volume per unit energy,
is

�ðE; t ¼ 0Þ ¼ 8�
E2

expðETÞ � 1
(39)

with a temperature T ¼ 2:728 K. According to our model,
this distribution evolves via the homogeneous massless
cosmic-time diffusion equation

@�

@t
¼ �ðk1 þ k2Þ@�t

@E
þ k1E

@2�t

@E2
: (40)

Using the MATLAB numerical pde solver pdepe, this
equation was integrated over a time interval equal to that
since the surface of last scattering.

Although only the 2–21 cm�1 region of the spectrum is
needed to compare with the reported rms deviation, these
evolutions were run over a larger range of frequencies to
capture more of the spectrum and allow the implementa-
tion of a boundary condition at E ¼ 0. What boundary
condition is appropriate? What happens to a photon as its
momentum approaches zero? Do photons leak away
through the tip of the null cone in momentum space?
Physically, the photon concept employed by our model
breaks down as the wavelength tends to infinity, because
the geometrical optics approximation fails. (Moreover, our
affine parameter � fails to be well defined physically, since
it reaches infinity in a finite time if E ! 0, and thus cannot
remain approximately constant over the photon wave
packet.) This suggests that the so-called ‘‘absorbing
boundary condition,’’ �ðEÞ ¼ 0, is appropriate at E ¼ 0,
and this is what was used in all our simulations. In fact, the
current is

J ¼ ð2k1 þ k2Þ�� k1E@�=@E; (41)

so (as long as @�=@E remains finite) any linear combina-
tion of � ¼ 0 with the ‘‘reflecting boundary condition,’’
J ¼ 0, is equivalent at E ¼ 0.

The evolved spectrum was converted from a number
density per unit volume per unit frequency to a spectral
radiance—energy per unit area per unit time per unit
frequency per steradian—as used in the analysis of the
COBE FIRAS data. This allows us to compare the devia-
tion from Planckian with the quoted 50 ppm of the peak
brightness.

A Planck spectrum was fit to the evolved spectral radi-
ance using the least squares method. By looking for the
best-fit Planck spectrum rather than comparing with the
initial 2.728 K spectrum, we allowed for the possibility that
the diffusion changes the temperature of the CMB in a way
that may be reconciled with observation. As it happens, we
found that the temperature of the best-fit Planck spectrum
was very close to the initial temperature in cases where the
deviation is within the allowed tolerance. For example, the
choice of parameters k1 ¼ 5� 10�97 and k2 ¼ 1� 10�96

gives a best-fit temperature of 2.7281 K, indistinguishable
from the current observed temperature of 2:728�
0:004 K. Finally the rms deviation between the fitted
Planckian spectrum and the evolved spectrum in the
2–21 cm�1 frequency range (energy range 4� 10�23 �
4� 10�22J) was calculated with all points weighted
equally. This result was compared to the allowed tolerance
of 50 ppm of the peak brightness. This process was re-
peated for a range of values of the parameters k1 and k2.

B. Results

We first place bounds on the diffusion and drift constants
separately, varying k1 with k2 ¼ 0 and varying k2 with
k1 ¼ 0.
When k1 ¼ 0 we can solve the equation exactly:

�ðE; tÞ ¼ �0ðE� k2tÞ (42)

so the spectrum just translates at a constant speed. For k2
negative, this is inconsistent with the boundary condition
� ¼ 0 at E ¼ 0. However, in this case one can implement
an absorbing boundary condition trivially: simply cut off
the translated distribution at E ¼ 0. This is what we did to
generate the solution plotted in Fig. 3(b).
One might be concerned that deviations within the al-

lowed tolerance would be so small as to approach the level
of the numerical errors in the simulations. The exact solu-
tion for k1 ¼ 0 provides us with a means of demonstrating
that this is not the case [25]. When we compare the exact
solution with the numerical solution for k1 ¼ 0 the errors
introduced by the numerical integration can be seen to be
several orders of magnitude smaller than the deviation
from Planckian. For example, if k2 ¼ 4� 10�96 the rms
deviation from the best-fit Planck spectrum is 5� 10�101

(5� 10�5 peak brightness) for both the exact and the
numerical solution. The rms deviation between the exact
and numerical solution is 4� 10�104. If k2 ¼ �4� 10�96

the rms deviation from the best-fit Planck spectrum is also
5� 10�101 (5� 10�5 peak brightness) while the deviation
between the exact and numerical solutions is again 4�
10�104. This also demonstrates that the � ¼ 0 boundary
condition we imposed on the numerical solution, although
inconsistent with the exact solution when k2 < 0, does not
introduce noticeable errors for the values of k1 that we are
concerned with.
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When k2 ¼ 0 with k1 > 0 we can only solve the equa-
tion numerically. The results for both cases are displayed in
Figs. 3(a) and 3(b). We see that the deviation from
Planckian increases approximately linearly with increasing
magnitude of the parameters. (Notice that Fig. 3(b) was
drawn from the exact solution, the graph taken from the
numerical solution is indistinguishable.) The simulations
suggest that for the deviation from Planckian of the CMB
to be within the allowed 5� 10�5 of the peak brightness
the diffusion constant k1 must be less than approximately
7� 10�97 if k2 ¼ 0, and the drift parameter k2 must fall
within the range �4� 10�96 < k2 < 4� 10�96 if k1 ¼ 0.
Converting to SI units we have the bounds:

k1 < 3� 10�44 kgm2 s�3; (43)

� 1� 10�43 < k2 < 1� 10�43 kgm2 s�3: (44)

Similar bounds apply when we let both k1 and k2 be
nonzero. The general situation is displayed in Fig. 4, from
which one can read off the values of k1 and k2 for which the
deviation from blackbody is less than 5� 10�5 of the peak
brightness when we allow both constants to vary.
In the units used here, the bounds on the parameters are

very small. However, we can get a handle on where these
numbers come from by rescaling the energy, setting E0 ¼
sE with s chosen so that sT ¼ 1 when T is the CMB
temperature. This means that s� 1032 in Planck units.
We rescale �0 ¼ �=s so the initial spectrum is

�0
0ðE0Þ ¼ 8�

1

s

E02

s2ðeE0=T0 � 1Þ ; (45)

where T0 ¼ sT ¼ 1. If k2 ¼ 0, then we can also rescale the
time, setting t0 ¼ sk1t to obtain the diffusion equation

@�0

@t0
¼ � @�0

@E0 þ E0 @
2�0

@E02 : (46)

If we now evolve �0 until it differs from �0
0 by 50 ppm and

take the value, t0f of t0 when this happens, t0f must, for

consistency with the data, be greater than or equal to sk1t
where t is the age of the universe, and so in Planck units
k1 � 10�6010�32t0f. We see that the order of magnitude

bound found abovewill result if t0f � 10�4, which is indeed

about the (rescaled) time at which one would have ex-
pected the deviation to reach 50 ppm. A similar order of
magnitude estimate follows from the geometric interpreta-
tion of our affine parameter � as an area, if one notes that
the product of the photon wavelength (� 1 cm) with the
Hubble radius is around 10321060 � 1092 in Planck units.

VI. EXPANDING UNIVERSE

In Sec. V we ignored the effect of the expansion of the
cosmos on the CMB and assumed that it remained at a
temperature of �2:7 K from the surface of last scattering
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to today. This is of course not the case. At the surface of
last scattering the CMB had a temperature of about 3000 K.
As the universe expanded the individual photons were
stretched along with the space, and correspondingly di-
luted, leaving us with the 2.7 K spectrum observed today.
We will now show that the expansion has essentially no
effect on our model in the sense that the distribution in the
expanding universe can be deduced easily from the non-
expanding one and that the bounds derived from the non-
expanding simulation change only slightly.

The redshifting effect of the expansion (but not the
dilution) can be added to the model by adding to v a vector
which has a single component in the E direction:

�vE ¼ dE

dt
¼ �E

_a

a
; (47)

where aðtÞ is the cosmic scale factor. This changes the
continuity equation (2) to

@�t

@t
¼ �@iJ

i � @aJ
a (48)

¼ �pi

E
@i�t � ðk1 þ k2Þ @�t

@E
þ k1E

@2�t

@E2
þ _a

a

@

@E
ð�EÞ:

(49)

A solution of this equation, for k1 ¼ k2 ¼ 0 is

�0ðE; tÞ ¼ 8�
a3

a30

E2

eðE=T0Þða=a0Þ � 1
; (50)

where a0 is the scale factor at time t0. If we multiply this

distribution by
a3
0

a3
, which dilutes the photons according to

the expansion, it becomes exactly the Planck distribution
for temperature T ¼ T0

a0
a .

If we define a new variable ~E ¼ a
a0
E and a new density

function ~�ð ~EÞ ¼ a0
a �ðEÞ (this being just the transformation

of a scalar density under a rescaling of coordinates: �dE ¼
~�d ~E) the distribution �0ðE; tÞ (50) becomes

~� 0ð ~E; tÞ ¼ 8�
~E2

expð ~E
T0
Þ � 1

(51)

which is constant in time.
We now transform our diffusion equation to the rescaled

quantities ~� and ~E.
Starting with (49), we have

LHS ¼
�
@

@t
þ _a ~E

a

@

@ ~E

�
ða~�Þ (52)

¼ _a ~�þa _~�þ _a ~E ~�0 (53)

RHS ¼ �ðk1 þ k2Þaða~�Þ0 þ k1a
2 ~E~�00 þ _að~� ~EÞ0 (54)

¼ �ðk1 þ k2Þa2 ~�0 þ k1a
2 ~E~�00 þ _a ~�þ _a ~E ~�0; (55)

where dot denotes time derivative and prime denotes de-
rivative with respect to ~E. This gives

@~�

@t
¼ �ðk1 þ k2Þa @~�

@ ~E
þ k1a ~E

@2 ~�

@ ~E2
: (56)

Choosing t0 such that dt0
dt ¼ a, we obtain

@~�

@t0
¼ �ðk1 þ k2Þ @

@ ~E
~�þ k1 ~E

@2

@ ~E2
~� (57)

which is the same as (40), the nonexpanding diffusion
equation.
That we can find expanding solutions from static ones is

due to the scale invariance of the null cone H3
0: its geo-

metrical structures are invariant under E ! ~E ¼ const�
E.

For a matter dominated FRW universe a� t2=3 i.e.

aðtÞ ¼ t2=3=t2=30 , where t0 is the current value of t (and

the current value of a is 1). We have dt0
dt ¼ a which inte-

grates to

t0 ¼ 3

5

t5=3

t2=30

þ const: (58)

If the range for t is 1060 then the range for t0 is 3=5 of this.
So the simulations we would need to do for the expanding
case are the same as for the nonexpanding case but for only
3=5 of the time. This does not affect the order of magnitude
of the bounds.

VII. DISCUSSION

The work presented here illustrates the familiar fact that
considerations of symmetry can bring forth a fairly unique
phenomenological model, even when relatively little is
known about the deeper reality the model is meant to
represent. Starting from the assumption of an underlying
spatiotemporal discreteness that nevertheless respects
Lorentz invariance in the continuum approximation, we
argued that particle momenta would be subject to stochas-
tic variations, and that if these variations were small, their
effects would be describable on large scales as a diffusion
in momentum space. The assumption of Lorentz symmetry
lends the resulting models their power (by limiting the
number of parameters), and it sets them apart from the
majority of quantum gravity phenomenological models,
which break Lorentz invariance.
For particles without internal degrees of freedom, we

have seen that even in the absence of a definite microscopic
theory, an effective diffusion model can be derived based
on the assumed invariance alone. One can also imagine
applying this idea more generally, including, for example,
the polarization of photons or neutrinos.
In the case of massive particles, if one of the explicit

microscopic models is fixed upon, then the diffusion
strength, k, will be a function of the forgetting time (num-
ber). This forgetting time sets the scale shorter than which
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the dynamics is nonlocal: at much larger scales the model
is effectively local. In more realistic, more quantal models,
the diffusion scale might also depend on such dimension-
less numbers as the ratio of the mass of the particle to the
Planck mass and properties of the particle’s wave packet.
The same possibilities exist for the massless case. Thus we
would expect the diffusion and drift parameters, k1 and k2,
to depend on some nonlocality scale in the underlying
physics, and they could also depend on features of the
wave packet associated with the photon, for example, the
ratio of the (peak) wavelength to the length of the packet.
In seeking an underlying model of photons, the Lorentz-
invariant, nonlocal D’Alembertian that has recently been
discovered for scalar field propagation on causal set back-
grounds [8,26] could be valuable. Using it to evolve a wave
packet of a massless scalar field, one could ask whether the
resulting propagation exhibited any momentum diffusion
or drift, and if so, what sets the scale of these phenomena.

The parameters of our model are constrained by the
blackbody character of the CMB radiation. Since most
observational astrophysics and cosmology relies on elec-
tromagnetic radiation, there are a host of other observa-
tions that could also be brought to bear, given that our
model entails a broadening of spectral lines as well as a
distance-dependent shift in energy. For example, if the

diffusion constant were set to zero, it would be easy to
work out how the drift would affect absorption spectra
from distant objects. It seems likely, however, that the
bounds set here will be among the most stringent.
The models discussed here describe free point particles.

Although we expect that composite objects would be less
affected by the underlying discreteness (for example, a
helium ion would swerve less than a proton) we cannot
make conclusive statements without a causal set model for
interacting particles.

ACKNOWLEDGMENTS

We thank Joe Henson for invaluable help with the ex-
panding case and Carlo Contaldi for useful discussions.
L. P. is supported by the Tertiary Education Commission of
NZ (TAD1939). F. D. is supported in part by Marie Curie
Research and Training Network ‘‘Random Geometry and
Random Matrices: From Quantum Gravity to
Econophysics’’ (MRTN-CT-2004-005616) and the Royal
Society Grant No. IJP - 2006/R2. Research at Perimeter
Institute for Theoretical Physics is supported in part by the
Government of Canada through NSERC and by the
Province of Ontario through MRI. This research was partly
supported by NSF Grant No. PHY-0404646.

[1] R. D. Sorkin, in Proceedings of the Ninth Italian
Conference on General Relativity and Gravitational
Physics, Capri, Italy, 1990, edited by R. Cianci, R. de
Ritis, M. Francaviglia, G. Marmo, C. Rubano, and P.
Scudellaro (World Scientific, Singapore, 1991), p. 68.

[2] R. D. Sorkin, in Relativity and Gravitation: Classical and
Quantum, Proceedings of the SILARG VII Conference,
Cocoyoc, Mexico, 1990, edited by J. C. D’Olivo, E.
Nahmad-Achar, M. Rosenbaum, M. P. Ryan, L. F.
Urrutia, and F. Zertuche (World Scientific, Singapore,
1991), p. 150.

[3] R. D. Sorkin, Int. J. Theor. Phys. 36, 2759 (1997).
[4] M. Ahmed, S. Dodelson, P. B. Greene, and R. Sorkin,

Phys. Rev. D 69, 103523 (2004).
[5] L. Bombelli, J.-H. Lee, D. Meyer, and R. Sorkin, Phys.

Rev. Lett. 59, 521 (1987).
[6] G. ’t Hooft, in Proceedings of the 1978 Cargese Summer

Institute on Recent Developments in Gravitation, edited by
M. Levy and S. Deser (Plenum, New York, 1979).

[7] J. Myrheim, CERN report, TH-2538, 1978.
[8] J. Henson, in Approaches to Quantum Gravity: Towards a

New Understanding of Space, Time and Matter, edited by
D. Oriti (Cambridge University Press, Cambridge,
England, 2009).

[9] F. Dowker, Contemp. Phys. 47, 1 (2006).
[10] R. D. Sorkin, in Lectures on Quantum Gravity,

Proceedings of the Valdivia Summer School, Valdivia,

Chile, 2002, edited by A. Gomberoff and D. Marolf
(Plenum, New York, 2005).

[11] L. Bombelli, J. Henson, and R.D. Sorkin, arXiv:gr-qc/
0605006.

[12] F. Dowker, J. Henson, and R.D. Sorkin, Mod. Phys. Lett.
A 19, 1829 (2004).

[13] G. Brightwell and R. Gregory, Phys. Rev. Lett. 66, 260
(1991).

[14] D. Meyer, Ph.D. thesis, Massachusetts Institute of
Technology, 1988, http://hdl.handle.net/1721.1/14328.

[15] R. Sorkin, Ann. Phys. (N.Y.) 168, 119 (1986).
[16] R. Dudley, Arkiv for Matematik 6, 241 (1965).
[17] R. Dudley, Arkiv for Matematik 6, 575 (1967).
[18] G. Schay, Ph.D. thesis, Princeton University, 1961.
[19] For present purposes the identification of n with a density

of microscopic states is unnecessary. What is relevant is
that a probability density proportional to n be in equilib-
rium (i.e. time independent).

[20] N. Kaloper and D. Mattingly, Phys. Rev. D 74, 106001
(2006).

[21] Strictly speaking, it would be more correct to identify the
‘‘light cone’’ with a ‘‘virtual boundary’’ separating the
future of p from the set of elements spacelike to it.

[22] More correctly this is the state space for a massless
particle of spin zero. For a true photon, the state space
would be enlarged so as to describe also the polarization.

[23] E.W. Kolb and M. S. Turner, The Early Universe

LYDIA PHILPOTT, FAY DOWKER, AND RAFAEL D. SORKIN PHYSICAL REVIEW D 79, 124047 (2009)

124047-12



(Addison-Wesley, Reading, MA, 1990).
[24] D. J. Fixsen et al., Astrophys. J. 473, 576 (1996).
[25] We can also note that solving our diffusion equation in

Mathematica using NDSolve yields the same results
as discussed here, suggesting the bounds we obtain are

robust, do not depend on the particular method of solving
the equation, and are not a consequence of numerical error
or a particular choice of integration step size.

[26] R. D. Sorkin, arXiv:gr-qc/0703099.

ENERGY-MOMENTUM DIFFUSION FROM SPACETIME . . . PHYSICAL REVIEW D 79, 124047 (2009)

124047-13


