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Black branes are studied in Einstein-Gauss-Bonnet gravity. Evaporation drives black branes toward one

of two singularities depending on the sign of �, the Gauss-Bonnet coupling. For positive � and

sufficiently large ratio
ffiffiffiffi
�

p
=L, where L=2� is the radius of compactification, black branes avoid the

Gregory-Laflamme (GL) instability before reaching a critical state. No black branes with the radius of

horizon smaller than the critical value can exist. Approaching the critical state branes have a nonzero

Hawking temperature. For negative � all black branes encounter the GL instability. No black branes may

exist outside of the interval of the critical values 0 � �< 3, where � ¼ 1� 8�=r2h and rh is the radius of

horizon of the black brane. The first order phase transition line of GL transitions ends in a second order

phase transition point at � ¼ 0.
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I. INTRODUCTION

Gravity in higher dimensions has been in the forefront of
research for a considerable time. Most of the studies start
with the conventional Einstein action generalized toD> 4
dimensions. In the low energy limit quantum theories of
gravity like string theory yield additional higher order
curvature correction terms to the Einstein action [1].
Some higher order curvature terms when taken in isolation
and quantized can potentially lead to problematic high
energy behavior, such as the presence of negative norm
states. The simplest term avoiding these problems is the
Gauss-Bonnet (GB) term. In this paper we analyze the
critical behavior of a class of classical solutions to
Einstein gravity, augmented by the GB term. Such a term
arises in the gravity action in string theory when correc-
tions to zero slope limit are calculated [2,3]. For simplicity,
we restrict our discussion to five space-time dimensions,
but as we will point out later the results can be simply
generalized to higher dimensions.

A D ¼ 4 Schwarzschild black hole can be trivially
extended to a black string (D ¼ 5) or black brane (D>
5). Solutions become more complicated if higher deriva-
tive terms are added to the Einstein action, such as the GB
term. Though asymptotically Minkowski black hole solu-
tions have been found inD � 5 theories [3], no exact black
string (brane) solutions are known in Einstein-Gauss-
Bonnet (EGB) gravity. Yet the investigations of black
strings (branes) is more important because with compact
extra dimensions all but the lightest static objects must be
black strings (branes).

Two alternative techniques have been used to investigate
black brane solutions. Kobayashi and Tanaka [4] solved the
five-dimensional Einstein equations modified by the
Lanczos tensor (variation of the Gauss-Bonnet term) nu-
merically. Using an expansion around the event horizon
they also found an exact lower bound for the black string

mass Mc �
ffiffiffiffi
�

p
, where � is the coupling constant of the

GB term. ForM<Mc the solutions do not have a horizon,
they represent naked singularities.
In a subsequent work [5], following [4], we used a series

expansion in � to investigate black strings in D> 5 EGB
theory. We found that in every dimension, D � 5, a lower
bound, similar to that in D ¼ 5, exists for the mass of the
black string. We also investigated the thermodynamics of
the black string but the fifth order expansion employed in
our paper was insufficient to get a definitive answer for the
thermal behavior of the system when the mass of the black
string approached the lower limit.
In this paper we also use improved numerical and ex-

pansion methods to investigate black string solutions in-
cluding the neighborhood of critical points, �crit ¼ 0 and
3, where the dimensionless GB coupling is defined as

� ¼ 1� 8
�

r2h
: (1)

In (1) rh denotes the radius of the horizon. � ¼ 0 deter-
mines the critical radius. The critical radius has a one-to-
one relationship with the critical mass, which is determined
by the condition �> 0.
In Sec. II we will discuss the uniform black string, which

should have a higher entropy than a black hole, when the
mass is large enough. In fact, for sufficiently high mass it is
the only static state of the system. We will use a horizon
expansion to elucidate the nature of two critical points� ¼
0 and 3. We will concentrate on D ¼ 5 but, except for
numerical details, D � 6 theories are not different. Then
we will use numerical calculations to investigate the prop-
erties of black string at large distances from the horizon.
We discuss their thermodynamics and calculate their
entropy.
In Sec. III we will investigate the extension of the

Gregory-Laflamme instability [6] and the notion of the
nonuniform black string, which is the preferred state if

PHYSICAL REVIEW D 79, 124046 (2009)

1550-7998=2009=79(12)=124046(9) 124046-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.124046


the radius of horizon goes under a critical multiple of the
radius of compactification [7–9]. We will also plot the
phase diagram of black strings in the �� rh plane.

Section IV. summarizes our results. We will also discuss
the possible directions for the continuation of this research.

II. UNIFORM BLACK STRING

In this section we will discuss the extension of a four-
dimensional solution toD. If we assume that the metric gab
is an asymptotically flat solution of the four-dimensional
Einstein equation then the trivial extension of this metric,
obtained by defining gai ¼ 0 and gii ¼ 1, satisfies the D
dimensional Einstein equation. Here, and in what follows,
D � i � 5. We tacitly assume that the coordinates, labeled
by i, are compactified on circles, in which space we will
maintain a ðS1ÞD�4 symmetry throughout this paper.
However, the trivially extended metric is not the solution
of the Einstein-Gauss-Bonnet equation

Gab � Rab � 1

2
gabRþ �Lab ¼ 0; (2)

where � is the coupling, the Lanczos tensor is

Lab ¼ � 1

2
gabðR2 � 4RabRab þ KÞ þ 2RRab � 4RacR

c
b

� 2RacdeR
cde
b þ 4RacdbR

cd; (3)

and K is the Kretschmann scalar

K ¼ RabcdR
abcd: (4)

In an appropriate coordinate system, the metric compo-
nents of uniform black brane solutions depend only on a

radial coordinate. Nonuniform black branes and the
Gregory-Laflamme instability will be discussed later. The
metric of nonuniform black branes is a periodic function of
the compactified coordinate w as well.

A. Horizon expansion and scaling near critical points

Throughout this paper we will use dimensionless coor-
dinates, scaled by the radius of the horizon rh of the
uniform black string. In particular, we choose the horizon
variable � defined by

� ¼ r� rh
rh

; (5)

to replace the radial coordinate r. When the GB coupling �
is also rescaled, by the introduction of the parameter� [see
Eq. (1)], then all reference to the radius of the horizon is
eliminated from the equations of motion. The only parame-
ter remaining in the equations of motion is �. True values
of physical quantities are restored by multiplying by a
power of rh, required by their dimensions.
Defining the metric of a uniform string, made dimen-

sionless by factoring out r2h, as

ds2 ¼ �fð�Þdt2 þ gð�Þ
fð�Þd�

2 þ ð�þ 1Þ2d�2 þ hð�Þdw2;

(6)

we can solve the equations of motion in a power series of �
(horizon expansion). The series coefficients depend only
on �. Displaying three leading orders only, the expansions
have the following form:

fð�Þ ¼ f1

�
��

��þ ffiffiffiffi
�

p þ 15� 7ffiffiffi
�

p
4ð3� �Þ �2 ��55�3 � 76�5=2 þ 61�2 � 416�3=2 þ 135�� 84

ffiffiffiffi
�

p þ 147

72ð�� 3Þ2�3=2
�3 þ � � �

�

gð�Þ ¼
ffiffiffiffi
�

p þ 1

2
þ 7� 8�þ �2

4ð3� �Þ ffiffiffiffi
�

p �þ ð1þ ffiffiffiffi
�

p Þð�147þ 231
ffiffiffiffi
�

p � 261�þ 161�3=2 þ 47�2 � 35�5=2 þ �3 þ 3�7=2Þ
72ð�� 3Þ2�3=2

�2

þ � � �

hð�Þ ¼ h0

�
1� 4ð ffiffiffiffi

�
p � 1Þ
�� 3

�þ 2ð�2 þ 4�3=2 � 16�þ 4
ffiffiffiffi
�

p þ 7Þ
ð�� 3Þ2 ffiffiffiffi

�
p �2 þ � � �

�
: (7)

The two constants, f1 and h0, are not determined by the
horizon expansion alone. They depend on � only. They
must be introduced in fð�Þ and hð�Þ to assure that the
metric components are asymptotically Minkowski. They
are determined in the process of numerical integration of
the equations of motion.

The expansion coefficients have two singular points:
� ¼ 0 and� ¼ 3. Note that for�< 0�> 1. The physical
domain is 0 � �< 3. The expansion coefficients are com-
plex for �< 0 and there are singularities outside the
horizon for � � 3. Questions have been raised whether

negative values of � are admissible [10]. Nevertheless, for
completeness we will also investigate that region, as well.
Near the singular points the convergence radius of the
expansion shrinks to zero. The leading singular terms of
the expansion coefficients at these two points (subscript k
implies the coefficient of �k) are the following:

fk � �3=2�k and ð3� �Þ1�k;

gk � �1=2�k and ð3� �Þ�k;

hk � �3=2�k and ð3� �Þ�k:

(8)
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Since the expansion coefficients become complex at
�< 0 the solution does not exist for negative �, contra-
dicting the assumption of the existence of a horizon or/and
a regular expansion around the horizon [4]. This result can,
however, be the result of a poor choice of the coordinates.
Therefore, we also calculate scalars, like the Ricci scalar
(R) and the Kretschmann scalar (K), at the horizon. Being
scalars, they must be independent of the scaling factors f1
or h0 which can be gauged away by rescaling the coordi-
nates t or w. Indeed, we obtain

R ¼ �2
1þ ffiffiffiffi

�
p � 3�þ �3=2

ð3� �Þð1þ ffiffiffiffi
�

p Þ ;

K ¼ 4
69þ 2

ffiffiffiffi
�

p � 13�� 12�3=2 � �2 þ 2�5=2 þ �3

ð3� �Þ2ð1þ ffiffiffiffi
�

p Þ2 :

(9)

We can draw several conclusions from (9). First of all, R
and K are nonanalytic at � ¼ 0 and 3, ruling out mere
coordinate singularities. Furthermore, both of these con-
stants become complex for �< 0, therefore no uniform
black string solution with regular horizon can exist in that

region. �< 0 implies rh <
ffiffiffiffiffiffi
8�

p
and, as we will see later,

rh, though not quite proportional, but is a regular and
bounded function of the Arnowitt-Deser-Misner (ADM)
mass. Thus, the �> 0 bound imposes a lower limit on the
mass of the black string.

Furthermore, while all curvature invariants are finite at
� ¼ 0 they are infinite at � ¼ 3. This points to the possi-
bility of the existence of a critical solution at � ¼ 0 but not
at � ¼ 3. We will discuss the � ¼ 0 critical solution in the
following section.

B. The critical string

To investigate the critical solution we start with a re-
arrangement of the horizon expansion series. Keeping only
the leading singular terms in every order of � we are led to
functions of a scaling variable y ¼ �=�. Thus, one can
define alternative expansions in series of scaling functions
�iðyÞ, �iðyÞ, and �iðyÞ. The scaling expansion is defined as

fð�Þ ¼ �

�
1þ �ffiffiffiffi

�
p ½�1ðyÞ þ

ffiffiffiffi
�

p
�2ðyÞ þ � � ��

�
; (10)

with similar expressions for gð�Þ and hð�Þ in terms of
series of scaling functions, �iðyÞ and �iðyÞ. Substituting
(10) into (2) we obtain differential equations for the scaling
functions defined in (10). The equation for �1 is

½6y3ð2y�1 � 1Þ þ 6y5�0
1��00

1 þ 27y4ð�0
1Þ2

þ 6y2ð12y�1 � 5Þ�0
1 þ 2ð18y2�2

1 � 12y�1 � 7yÞ ¼ 0;

(11)

while �1 and �1 can be simply expressed by �1 as �1 ¼
2�1 þ y�0

1 and �1 ¼ 4�1=3. Though we could not find
the solution of (11) in analytic form the general behavior of

�1 can be analyzed fairly easily. Its power series in y is
provided by the most singular terms of horizon expansion
(7). Analyzing an 80th order series expansion we were able
to ascertain that �1 has a singularity inside the horizon of
the form

�1 �
�
yþ 3

7

�
3=2

: (12)

Equation (12) suggests that the metric becomes singular
inside the horizon, at � ¼ �3�=7 and cannot be continued
to smaller values of �. Note that this singularity moves to
� ¼ 0 at � ¼ 0. We will indeed see below that the critical
solution is singular at � ¼ 0 and cannot be continued to
� < 0. There is no impediment, however, to continue�1 to
positive values. In fact the analysis of Eq. (11) shows that
the asymptotic behavior of �1 is

�1 ’ � 2

3

ffiffiffi
7

3

s
y�1=2 þOðy�1Þ: (13)

Numerical integration of Eq. (11) shows that for a function
with the series expansion implied by (7) the positive sign
should be chosen in (13). Now in the � ! 0 limit the first
terms of (10) become

fð�Þ ¼ �

�
1þ �ffiffiffiffi

�
p

�
2

3

ffiffiffi
7

3

s ffiffiffiffi
�

�

s
þ � � �

��

¼ �

�
1þ ffiffiffiffi

�
p 2

3

ffiffiffi
7

3

s
þ � � �

�
: (14)

The � ! 0 limit of higher order expansion terms leads to
higher powers of �, including all half-integer powers. This
can be ascertained by repeating the horizon expansion (7)

with half-integer powers included (starting from �3=2).
This leads to the following expansion of the critical black
string (� ¼ 0) solution:

fð�Þ ¼ f1

�
�þ 2

3

ffiffiffi
7

3

s
�3=2 � 67

90
�2 � 22 853

6750
ffiffiffiffiffiffi
21

p �5=2

þ 250 322

893 025
�3 þ � � �

�
;

gð�Þ ¼ 1

2
þ

ffiffiffi
7

3

s ffiffiffiffi
�

p þ 91

90
�� 8993

2600
ffiffiffiffiffiffi
21

p �3=2

� 1 055 977

1 190 700
�2 þ � � � ;

hð�Þ ¼ h0

�
1� 4

3
�þ 8

9

ffiffiffi
7

3

s
�3=2 þ 46

35
�2 þ � � �

�
:

(15)

If one attempts an expansion with half-integer powers of �
for general � then either all the half-integer powers vanish
or � ¼ 0. Conversely, no horizon expansion with integer
powers exists for the critical black string.
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The value of scalars R and K can also be calculated at
� ¼ 0 using (15). One obtains R ¼ �2=3 and K ¼ 92=3,
precisely the values obtained from the � ¼ 0 limit of (9).
In fact, one can show that all scalars are finite in the critical
state. Correction to scalars, when one moves away from the
horizon are ofOð ffiffiffiffi

�
p Þ. Further evidence for the fact that the

critical string is the limit of noncritical strings when� ! 0
comes from numerical integration of the equations of
motion, to be discussed later.

The � ¼ 0 surface cannot really be called a horizon, just
the limit of horizons when � ! 0. While it is an infinite
redshift null surface, the metric cannot be continued inside
the � ¼ 0 surface. We believe that there is no way to
facilitate such a continuation. Strictly speaking, though
this is a string solution, it is not ‘‘black.’’ It is however a
limiting solution of a series of black string solutions in
every quantity that we investigated. At all �> 0 the hori-
zon is completely regular and there is always a region
inside the horizon, � >�3�=7, where the solution can
be continued without any impediment.

Timelike geodesics can be continued to the horizon both
in the �> 0 and � ¼ 0 cases. A test particle reaches the
horizon in finite proper time �. However, while in the �>
0 case the test particle passes through the horizon into a
region from which it cannot escape anymore, for � ¼ 0
geodesics have a pathological behavior. Choosing a geo-
desic for a particle falling toward the horizon, _�ð�Þ< 0,
and the time scale such that �ð0Þ ¼ 0 the radial coordinate
turns complex for � > 0. Therefore, the role of the critical
solution as a valid state of black strings is questionable.
This question will be discussed later in more detail, follow-
ing the discussion of numerical integration of the equations
of motion and of the Gregory-Laflamme instability.

C. Numerical integration of the equations of motion

We build on the results of the previous sections to obtain
the metric functions at arbitrary � > 0. Before starting the
numerical integration from the horizon we calculate the
value of the metric functions and their derivatives from the
horizon expansion at � ¼ �> 0. This step is necessary
because � ¼ 0 is a singular point of the differential equa-
tions. � is chosen to be small enough so that the last terms
of the 30th order horizon expansions are smaller than
10�10. Then we integrate the equations numerically from
� ¼ � using metric (6). The step size 	 in the numerical
integration is chosen such that 	 < 0:01�.

Expansions (7) contain undetermined constants f1 and
h0. In an initial run these constants are chosen to be 1.
Then, though the calculated metric functions tend to a
finite value as � ! 1, their asymptotic limit is not 1.
Fitting a form

fð�Þ ¼ af þ
bf
�

þ cf

�2
þ � � � ; (16)

to fð�Þ and a similar form to hð�Þwe define f1 ¼ 1=af and

h0 ¼ 1=ah to get, after a second round of numerical inte-
grations, metric functions that are asymptotically 1, which
corresponds to Minkowski space.

D. Thermodynamics

The numerical form of the metric functions allows us to
investigate the thermodynamic properties of the black
string. The first law of thermodynamics states that [8,9]

dS ¼ dM

T
� 
dL

T
; (17)

where M is the ADM mass, T is the Hawking temperature
of the black string, 
 is the tension, and L is circumference
of the compact string.
The surface gravity on the horizon k is related to the

Hawking temperature as follows [11–13]:

T ¼ k

2�
: (18)

Using (6) and (7) we obtain

k ¼ 1

rh

f0ð0Þ
2

ffiffiffiffiffiffiffiffiffi
gð0Þp ; (19)

where we restored the correct dimension of the surface
gravity by reinstating a factor of r�1

h . As we pointed out

earlier f0ð0Þ and gð0Þ are determined in the process of
numerical integration. They are functions of � only.
Combining (18) and (19) we can write the Hawking tem-
perature as

T ¼ 1

4�rh
FTð�Þ: (20)

Form factor FTð�Þ, normalized to FTð1Þ ¼ 1, is calculated
in the process of our numerical integration procedure. It is
a smooth function of � between � ¼ 0 and � ¼ 3. It tends
to a finite value at � ¼ 0. That limit, along with the limits
of the other two form factors defined below, agrees with the

0.5 1.0 1.5 2.0 2.5 3.0

1.5

2.0

2.5

3.0

Fi

FIG. 1 (color online). The plot of the scaling functions FTð�Þ
(solid line), FMð�Þ (dotted line), and F�ð�Þ (dashed line) as a
function of � between the two critical points 0 and 3.
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values obtained from the critical string at � ¼ 0. FTð�Þ !
1 in the limit � ! 3 implying that T ! 1 as � ! 3. FT

and the other two form factors are plotted in Fig. 1.
The ADMmass and the tension are expressed simply by

the long range components of fðrÞ and hðrÞ [9]. Namely,
after renormalizing fð�Þ and hð�Þ so that fð1Þ ¼ 1,
hð1Þ ¼ 1 and defining the leading Oð��1Þ asymptotic
coefficients as f�1 and h�1, then

M ¼ Lrh
4G5

ð2f�1 � h�1Þ ¼ Lrh
2G5

FMð�Þ; (21)

� ¼ rh
4G5

ðf�1 � 2h�1Þ ¼ rh
4G5

F�ð�Þ; (22)

where FMð�Þ and F�ð�Þ are two additional form factors
depending on � only. They are both bounded on the
interval 0 � � � 3. These form factors also converge
smoothly to the corresponding values for the critical string
at � ¼ 0. They are plotted in Fig. 1. along with FTð�Þ. All
three of the form factors are normalized to 1 at � ¼ 1
(vanishing GB coupling). The three form factors are not
independent from each other. The integrability condition

@T�1

@L
þ @ð�T�1Þ

@M
¼ 0 (23)

relates them. Equation (23) implies

ð1��Þð2FM�F�ÞF0
TþFTð�FMþF�þð1��ÞF0

�Þ¼0:

(24)

The calculated values of the form factors satisfy (24) to
Oð10�4Þ, except near � ¼ 3, where the rapid variation of
FT makes the evaluation of the numerical derivative
difficult.

We can also calculate the entropy. We have

S ¼
Z dM

T
þ 8��

G
qðLÞ; (25)

where qðLÞ is independent of M. Equation (25) can be
rewritten by changing variables as

S ¼ 8L��

G

Z FM þ 2ð1� �ÞF0
M

ð1� �Þ2FT

d�þ 8��

G
qðLÞ: (26)

The function qðLÞ, a yet undetermined arbitrary function of
L, can be fixed if we take the derivative of (26) with respect
to L and use the integrability condition (24). Setting the
lower bound of the integration at � ¼ 0 we obtain the final
form of the entropy for �> 0 as

S ¼ 8L��

G

�Z 1�8�=r2
h

0

FMð�Þ þ 2ð1� �ÞF0
Mð�Þ

ð1� �Þ2FTð�Þ
d�

þ 2FMð0Þ � F�ð0Þ
FTð0Þ

�
: (27)

An overall constant was fixed in (27) so that S ¼ 0 for L ¼

0. From our numerical integration we obtain ½2FMð0Þ �
F�ð0Þ�=FTð0Þ ¼ 2:056 14.
For completeness we write down an equivalent expres-

sion for �< 0. Considering that FT diverges around the
critical point � ¼ 3 the integral over � is convergent at
that point, so we can write

S ¼ � 8L��

G

Z 3

1�8�=r2
h

FMð�Þ þ 2ð1� �ÞF0
Mð�Þ

ð1� �Þ2FTð�Þ
d�;

(28)

implying that the entropy vanishes at the critical point � ¼
3.
The limit of S when � ! 0 can be calculated if we

change the integration variable in (27) to rh. Then we
obtain

S ¼ 2L�

G

�Z rhffiffiffiffiffi
8�

p
FMð�ðr0hÞÞ þ r0h@FMð�ðr0hÞÞ=@r0h

FTð�ðr0hÞÞ
r0hdr

0
h

þ 4�
2FMð0Þ � F�ð0Þ

FTð0Þ
�
: (29)

Since �ðr0hÞ ¼ 1� 8�=r02h and the form factors are equal

to unity at � ¼ 1, at that point (29) reduces to

S0 ¼ 2L�

G

�Z rh

0
r0hdr

0
h

�
¼ L�r2h

G
; (30)

which is the expression for the entropy of a black string in
Einstein gravity. The entropy can be represented in the
form

S ¼ L�r2h
G

sð�Þ (31)

at all 0 � �< 3. The function sð�Þ obtained from numeri-
cal integration is plotted in Fig. 2. Note that sð1Þ ¼ 1 and
sð3Þ ¼ 0.

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5
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FIG. 2 (color online). Plot of function sð�Þ.
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III. GREGORY-LAFLAMME INSTABILITYAND
NONUNIFORM BLACK STRINGS

A simple picture of the life of a black string

We will investigate what happens to black strings as
Hawking radiation reduces their mass. Consider the
ADM mass as a function of rh and � (21). M is a mono-
tonic function of rh, because for the whole physical range
of �

@M

@rh
¼ L

2G5

ðFM þ 2ð1� �ÞF0
MÞ> 0: (32)

With decreasing rh � decreases if �> 0 and increases if
�< 0. Typical trajectories of black strings in the
ð�; 2�rh=LÞ plane are shown in Fig. 3. According to (1)

if �> 0 rh �
ffiffiffiffiffiffi
8�

p
. When rh hits the value

ffiffiffiffiffiffi
8�

p
the

singular point � ¼ 0 is reached. In the critical state the
black string has a finite Hawking temperature, but it cannot
decay and stay in the black string state anymore. We will
return to the discussion of its further fate later.

If �< 0 � increases with decreasing rh. Eventually, it

will hit the critical value � ¼ 3, where rh ¼
ffiffiffiffiffiffiffiffiffiffiffi�4�

p
.

However, the Hawking temperature diverges at � ¼ 3, so
approaching this point the black string will completely
evaporate.

Before turning to the investigation of instability we
briefly discuss the fate of black branes in D> 5 EGB
theories. We will use the notation �� ¼ �=r2h. The coeffi-

cients of the horizon expansion depend on �� only. Their
singularity structure in � is the same as that at D ¼ 5,
except � has a more complicated expression

� ¼ 1� 48 ��2 � 1152
D� 4

ðD� 2Þ2 ��3:

� has a single zero for �> 0, which zero varies with D

from a minimum of �� ¼ 0:1233 atD ¼ 6 to �� ¼ 0:1443 at
D ¼ 1. For negative � we have �> 0 though � is not a
monotonic function of ��. Still, just like for D ¼ 5 the
horizon expansion coefficients are singular at �� ¼ �1=4.
Thus, aside for small numerical changes the fate of black
branes is the same as that of black strings. They are driven
to the critical state � ¼ 0 if �> 0 and to �� ¼ �1=4 if
�< 0.

B. Gregory-Laflamme instability

In the absence of the GB interaction term (� ¼ 0),
uniform black strings become unstable if 2�rh=L < 
 ’
0:876 [6]. At this point a nonuniform mode becomes
marginally tachyonic, a zero mode. As it was shown by
Gubser [8], Harmark and Obers, Kol, Piran, and Sorkin [9]
this point corresponds to a first order transition to a stable
nonuniform black string state. Such a state is associated
with a periodic dependence of the metric function on the
compactified coordinates, in our case w. It is fair to assume
that such an instability also affects the EGB theory when
� � 0. Therefore, the simplistic picture about the life of a
black string which we depicted in the previous section may
be misleading. The black string may hit an instability line
before it reaches either of the singular points (� ¼ 0 or 3).
Therefore, we performed a stability analysis of EGB black
strings using our numerical approximation to the metric
components of the uniform string solution.
Following Refs. [8,9] we perturbed the metric with a

periodic function with wave number 
 of the compact
coordinate w. Considering the rescaling of coordinates
with rh 
 can be identified with 
 ¼ 2�rh=L. Applying
the Landau-Ginzburg theory of phase transitions to the
Einstein black string it was found [8,9] that at the
Gregory-Laflamme point [6] 
 ’ 0:876 the system under-
goes a first order phase transition to a nonuniform state
with a finite nonuniformity. It is quite reasonable to expect
that a first order transition exists at nonzero values of the
GB coupling, as well.
We consider the following static perturbation of metric

(6) [8,9]

ds2 ¼ �e2Afð�Þdt2 þ e2B
gð�Þ
fð�Þd�

2 þ ð�þ 1Þ2e2Cd�2

þ e2Hhð�Þdw2; (33)

where the exponents A, B, C, andH are functions of both �
and w. Though in (33) we gauged away a possible non-
diagonal term still the gauge has not been fixed completely.
A perturbation analysis is applied to (33), assuming a small
deviation from the uniform string. It is also assumed that
the smallest possible wavelength 
 dominates the pertur-
bation. Higher order corrections, along with higher har-
monics can be considered in a systematic perturbation
analysis that we leave to future work. Accordingly, we
use the following ansatz for the perturbed metric

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

2 rh L

FIG. 3 (color online). Phase diagram of black strings. The
solid line represents the first order transition line at 2�rh=L ¼

ð�Þ as a function of � between the two critical points 0 and 3.
The dotted, dash-dotted, and dashed lines represent time-lines of
black strings at different values of �.
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A ¼ 1þ �að�Þ cosð
wÞ: (34)

We also introduce amplitudes bð�Þ, cð�Þ, and hð�Þ for the
perturbative form of coefficients B, C, and H.
Linearization of the equations of motion in � leads to a
set of equations for the amplitudes a, b, c, and h. These
equations still have a substantial gauge freedom. As we
prefer to work with a single amplitude, we use the Kol-
Sorkin gauge [9] to eliminate b, c, and h, using the gauge
freedom.

Making the final gauge choice cð�Þ ¼ �að�Þ=2, Grw ¼
0 can be solved for bð�Þ. Here and in what follows we use
the notation G� for the components of the equation of

motion. In the next step Grr ¼ 0 and G�� ¼ 0 are used to
eliminate hð�Þ and its derivatives. Then Gtt ¼ 0 and
Gww ¼ 0 provide identical second order differential equa-
tions of the form

Wð�Þa00 þ Xð�Þa0 þ ½Yð�Þ þ 
2Zð�Þ�a ¼ 0 (35)

for að�Þ.
The coefficients W, X, Y, and Z are extremely compli-

cated functions of the metric components f, g, h and their
derivatives [14]. An important feature of W is its propor-
tionality to f. Consequently W vanishes on the horizon
making (35) singular at � ¼ 0. The ratios X=W � ��1,
Z=W � 1, and Y=W � ��3 when � ! 1. Thus, (35) is a
Schrodinger-like equation, with �
2 as a bound state
eigenvalue. Our aim is to determine the single eigenvalue
of the equation for every choice of �, which is the only
parameter entering (35).

Because of the singularity at the horizon we cannot
integrate (35) starting from the horizon. However, we
generated a 30th order Taylor series of a around � ¼ 0,
using the known series expansion coefficients of the metric
components of the uniform black string ðf; g; hÞ. This
allows us to calculate a and a0 at � ¼ �, which is the
same quantity which has also been used at the numerical
integration of the equations of motion for the uniform
black string.

We use the shooting method, starting from � ¼ � to find
the eigenvalue. At each � the coefficients of (35) are
calculated using the stored values of functions f, g, and
h and their derivatives. We determine 
 at a large number
of values of � between the two singular points, 0 and 3.
The solid line of Fig. 3. represents the eigenvalue 
 ¼
2�rh=L as a function of �. While at � ¼ 0 
 reaches a
finite value 
c, it diverges at � ¼ 3. This implies that for
�< 0 black branes must undergo a Gregory-Laflamme
transition before reaching the critical value and evaporate
completely. The limit of 
 as calculated from � � 0
solutions agrees with 
 calculated from the critical
solution.

The time-lines of black strings are depicted by dash-
dotted, dotted, and dashed lines in Fig. 3. These time-lines
depend on � only. At fixed � different black strings may
start their life at different points but they follow the same

line. If

rð�;LÞ ¼ 2�
ffiffiffiffiffiffi
8�

p
L

> 
c ¼ 2:2868; (36)

then black strings completely avoid the instability transi-
tion before reaching the critical state (dash-dotted line in
Fig. 2). However, if rð�;LÞ< 
c then every black string
undergoes an instability transition and turns into a nonuni-
form black string before it could reach the critical line. The
trajectory of black strings at such a value of � is repre-
sented by the dotted line. Note that rð�; LÞ is completely
determined by the geometry of space and the GB coupling.
Furthermore, if �< 0 then �> 1 and the time-line ap-
proaches � ¼ 3 (dashed line). Finally, if � ¼ 0 then black
strings follow the thin vertical dashed line at � ¼ 1.

C. Nonuniform black strings near � ¼ 0

In contrast to uniform black strings nonuniform black
strings require the solution of a two-variable problem.
Therefore, it is quite a bit more complicated to investigate
the fate of nonuniform black strings. However, we can
substantially simplify matters if we restrict ourselves to
sufficiently small values of �. Though we cannot quite
follow nonuniform black strings through the region of
instability, we assume that if �> 0 they eventually also
approach the� ¼ 0 line in the plot of Fig. 2. Of course, it is
quite possible that nonuniform black strings also undergo
an instability transition, before they could reach the critical
state. Still the following calculations, pertaining to the
behavior of nonuniform stings near � ¼ 0, certainly apply
to a neighborhood of the critical point � ¼ 0, 2�rh=L ’

c.
The simplest way to proceed is to investigate the horizon

expansion (33) with w-dependent coefficients. We write
the following ansatz for the metric:

ds2 ¼ �
�
�þ a2

2
�2 þ � � �

�
dt2

þ b0ðwÞ þ b1ðwÞ�þ � � �
�þ a2

2 �
2 þ � � � dr2 þ ð�þ 1Þ2ðc0ðwÞ

þ c1ðwÞ�þ � � �Þd�2 þ ð1þ h1ðwÞ�þ � � �Þdw2:

(37)

Note that the w dependence can be gauged away from gtt
and from the zeroth order contribution to gww. Expanding
the equations of motion in �, the lowest order contribution
to Grw implies that the periodic function b0ðwÞ is indepen-
dent of w. In the next step one can solve the lowest order
contributions toG�� ¼ 0 andGww ¼ 0 equations for b1ðwÞ
and h1ðwÞ. Then the lowest order contributions to equa-
tions Grr ¼ 0 and Gww ¼ 0 are identical. They are second
order equations for c1ðwÞ, containing c0ðwÞ and its second
derivative. Solving the resulting equations for c1ðwÞ the
discriminant of the equation must be positive for a real
solution. This discriminant has the form
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d ¼ 16½c0ðwÞ�4 þ ð1� �Þ2½c00ðwÞ�4 � 8ð1� �Þ½c0ðwÞ�3
	 ½2þ c000 ðwÞ� � ð1� �Þ2c0ðwÞ½c00ðwÞ�2½2þ 3c000 ðwÞ�
þ 2ð1� �Þ½c0ðwÞ�2f4½c00ðwÞ�2
þ ð1� �Þc000 ðwÞ½2þ c000 ðwÞ�g: (38)

Now we know that for uniform black strings c0ðwÞ ¼ 1 and
for a small nonuniformity c0ðwÞ must have the form

c0ðwÞ ’ 1þ � cosð
wÞ: (39)

Then expanding d in � and� and keeping the leading order
contributions only, we obtain

d ’ 4½4�þ ð4þ 
2Þ� cosð
wÞ�: (40)

Equation (40) implies that the discriminant is positive for
all w only if

� <
4�

4þ 
2
: (41)

First of all (41) implies that � ! 0 when we approach the
critical state � ¼ 0. This makes our approximation of
expanding d in � correct for small �. Secondly, this
implies that the nonuniform black string becomes a uni-
form black string again at the critical line. Thirdly, this
implies the line of first order Gregory-Laflamme transition
to the nonuniform state ends in a second order transition
point at � ¼ 0. This is a well-known feature of first order
transitions.

IV. CONCLUSIONS

We have studied uniform and nonuniform black strings
in D ¼ 5 EGB gravity. We paid particular attention to the
singularities at the end points of range R, 0 � �< 3,
where � is defined in (1). No black string solutions exist
outside R. In particular, we found a critical solution at � ¼
0 which, in contrast to solutions at �> 0, has a horizon
expansion that includes half-integer powers of the radial
horizon variable � (5). Not only the metric components but
all scalars, including the Ricci scalar and the Kretschmann
scalar, are also singular (though finite) at � ¼ 0 (9).

At �> 0 the metric components are singular inside the
horizon, at � ¼ �3�=7 (12). It is always possible to
continue the metric to a region inside the horizon.
Introducing Eddington-Finkelstein coordinates

u ¼ t�
Z

d�

ffiffiffiffiffiffiffiffiffiffi
gð�Þp
fð�Þ

the metric takes the form

ds2 ¼ �fð�Þdu2 þ 2
ffiffiffiffiffiffiffiffiffiffi
gð�Þ

q
dud�þ ð�þ 1Þ2d�2

þ hð�Þdw2;

regular everywhere including a neighborhood of the hori-
zon [15]. The singularity at �3�=y moves to the horizon

when � ! 0. We have not been able to construct a metric
inside this singular point. We have also been unable to
continue the critical metric, with� ¼ 0, inside the horizon.
Since Kruskal coordinates usually represent the maximal
nonsingular extension of the space-time, we define the
Kruskal coordinates for the critical string such that the
coefficient of dUdV is �1. They can be obtained in a
asymptotic expansion from the Eddington-Finkelstein co-
ordinates u and

v ¼ tþ
Z

d�

ffiffiffiffiffiffiffiffiffiffi
gð�Þp
fð�Þ :

We find

ds2 ¼ �dUdV þ ð�þ 1Þ2d�2 þ h½��dw2;

where � has the following expression by the Kruskal
coordinates U and V:

� ¼ �UVð1þ c
ffiffiffiffiffiffiffiffi
UV

p þ � � �Þ;
where c is a nonvanishing constant. It is obvious that we
cannot cross the lightlike surfaces U ¼ 0 or V ¼ 0, which
represent the horizon. However, we have shown that a
geodesic of a massive probe falling toward the horizon
reaches it in finite proper time (at � ¼ 0), but it cannot pass
the horizon because its radial coordinate turns complex at
� > 0 even though the curvature invariants are regular
there. The meaning of this is unclear to us at this time.
Either there is a different choice of coordinates in which
the space-time may be extended through the horizon, but
they are not the Kruskal coordinates and we have not been
able to find them, or the critical solution is pathological and
should be excluded by a censorship principle.
We used numerical techniques to calculate the solutions

for the whole range R. We calculated the ADM mass,
tension, Hawking temperature, and entropy. These quanti-
ties are represented by form factors, depending on � only,
measuring the deviation from the � ¼ 0 (� ¼ 1), Einstein
gravity solutions. These form factors are defined in (20)–
(22) and (31). They are plotted in Figs. 1 and 2. While the
Hawking temperature tends to a finite value at � ¼ 0, it
diverges at � ¼ 3. The ADM mass and tension are modi-
fied only by a finite amount compared to pure Einstein
gravity and bounded from above and below over the whole
range R. We gave a closed expression for the entropy in
terms of an integral over the form factors, which was
evaluated. The entropy is a monotonically decreasing func-
tion of �, vanishing in the limit � ¼ 3. This is not surpris-
ing in view of the divergence of the Hawking temperature.
We paid particular attention to the time-line of black

strings decaying via Hawking radiation. We found that
every black string follows a trajectory in the (�, 
 ¼
2�rh=L) plane, approaching (depending on the sign of
�) one of the singular lines in the ð�� rhÞ plane. This is
depicted in Fig. 3. However, some of the black strings,

depending on whether 2�
ffiffiffiffiffiffi
8�

p
=L > 
c ¼ 2:2868, will en-
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counter a line of first order singularities, which is the
extension of the famed Gregory-Laflamme singularity.
This line is the solid line shown in the phase diagram of
Fig. 3. Under this line only nonuniform black strings are
stable. As we commented before, nonuniform black strings
may become unstable at a subsequent phase transition line.

Finally, we showed, by investigating nonuniform string
solutions near the horizon that the amplitude of nonuni-
formity vanishes near the � ¼ 0 line. This implies that
nonuniform strings become uniform once again as they
reach the � ¼ 0 line. As a corollary, we concluded that the
line of first order phase transitions ends in a second order
transition point at � ¼ 0.

There are two unresolved problems concerning the fate
of black strings. If �> 0 they are driven toward the critical
state at � ¼ 0. That state, however is very problematic.
Though gtt has a linear zero and all scalars are finite at that
zero, test particles that reach the � ¼ 0 point in finite time
have nowhere to go, because �ð�Þ becomes complex as a
function of proper time.

As finding solutions for black holes in compactified
spaces is even more difficult than finding black string
solutions, we have no way of comparing the entropy and
relative stability of these solutions. This is one of the
reasons why we are not able to answer what happens
with black strings that reach the end of their lives at the
� ¼ 0 line. Since the limit of their Hawking temperature is

Tc ¼ FTð0Þ 1

4�
ffiffiffiffiffiffi
8�

p ’ 0:85
1

4�
ffiffiffiffiffiffi
8�

p ; (42)

not zero, as a study based on 1=� expansions led us to
believe earlier, so they are certainly not frozen at that point.
Their ADM mass is (21)

Mc ¼ FMð0Þ
ffiffiffiffiffiffi
8�

p
L

2G
’ 1:23

ffiffiffiffiffiffi
8�

p
L

2G
: (43)

They cannot go into a black string state with a smaller
ADM mass, however, because such black string states do
not exist. It seems that the only possibility is that some
other, yet undiscovered, type of higher entropy static or
possibly dynamic state exists, into which the black string
can morph. Another possible solution, at least forD � 6, is
that the inclusion of higher order Lovelock terms would
cure this anomaly. The fate of black stings at and beyond
� ¼ 0 is one of the most important questions we would
like to investigate in the future. Other questions include a
possible numerical study of black holes in compactified
spaces.
This work used a Kaluza-Klein type compactification. It

would be more difficult, but perhaps more interesting to
repeat this work in a Randall-Sundrum type anti–de Sitter
space.
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