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We investigate the scalar Green function for spherically symmetric spacetimes expressed as a

coordinate series expansion in the separation of the points. We calculate the series expansion of the

function Vðx; x0Þ appearing in the Hadamard parametrix of the scalar Green function to very high order.

This expansion is then used to investigate the convergence properties of the series and to estimate its

radius of convergence. Using the method of Padé approximants, we show that the series can be extended

beyond its radius of convergence to within a short distance of the normal neighborhood boundary.
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I. INTRODUCTION

Quasilocal (QL) series expansions—expansions in the
separation of two points x and x0—are a frequently used
tool for calculations of fields on curved spacetimes. Often,
as a final step in the calculation, the coincidence limit x0 !
x is taken. In these cases, the precise convergence proper-
ties of the series are of little interest. However, there are
cases where we would like the points to remain separated
[1–5]. In particular, we are motivated by the calculation of
the QL contribution to the scalar self-force [6,7] (for a
review, see [8,9]) on a scalar particle,

faQLðzð�ÞÞ ¼ lim
�!0

q2
Z ���

����
raGretðzð�Þ; zð�0ÞÞd�0; (1.1)

where zð�Þ describes the worldline of the particle. This
requires a quasilocal expansion of the retarded Green
function Gretðx; x0Þ, which is a solution of the scalar wave
equation with point source,

ðh� �RÞGretðx; x0Þ ¼ �4�
�4ðx� � x�0Þffiffiffiffiffiffiffi�g

p ; (1.2)

where � is the curvature coupling constant and R is the
Ricci scalar. As expression (1.1) requires the Green func-
tion for the points separated up to an amount �� along a
worldline, it begs the question, how large can the separa-
tion of the points be before the series expansion is no
longer a valid representation of the Green function?

To the authors’ knowledge, this question has not yet
been quantitatively answered. It is well known that the
Hadamard parametrix for the Green function (upon which

quasilocal calculations are based) is valid provided x and x0
lie within a normal neighborhood1 [10]. However, this
does not necessarily guarantee that a series representation
will be convergent everywhere within this normal neigh-
borhood. In fact, we will show that the series is only
convergent within a smaller region, the size of which is
given by the circle of convergence of the series. However,
this does not preclude the use of the quasilocal expansion
to calculate the Green function outside the circle of con-
vergence (but within the normal neighborhood). As we will
show, Padé resummation techniques, which have been
extremely successful in other areas [11,12], are also effec-
tive in extending the series beyond its circle of
convergence.
In this paper, we will focus, in particular, on calculating

the Green function for two spherically symmetric space-
times: Schwarzschild and Nariai. The Nariai spacetime
[13,14] arises naturally from efforts to consider a simpli-
fied version of Schwarzschild spacetime [1,15,16]. It re-
tains some of the key features of Schwarzschild spacetime
(such as the presence of an unstable photon orbit and a
similar effective radial potential which diminishes expo-
nentially on one side), but frequently yields more straight-
forward calculations. This makes it an ideal testing ground
for new methods which are later to be applied to the more
complicated Schwarzschild case. In the present work, we
will use the line element of the static region of the Nariai
spacetime (with cosmological constant � ¼ 1 and Ricci

*marc.casals@dcu.ie
†sam.dolan@ucd.ie
‡adrian.ottewill@ucd.ie
xbarry.wardell@ucd.ie

1More precisely, the Hadamard parametrix requires that x and
x0 lie within a causal domain—a convex normal neighborhood
with a causality condition attached. This effectively requires that
x and x0 be connected by a unique nonspacelike geodesic which
stays within the causal domain. However, as we expect the term
normal neighborhood to be more familiar to the reader, we will
use it throughout this paper, with implied assumptions of con-
vexity and a causality condition.
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scalar R ¼ 4) in the form

ds2 ¼ �ð1� �2Þdt2 þ ð1� �2Þ�1d�2 þ d�2
2;

d�2
2 ¼ d�2 þ sin2�d	2;

(1.3)

where � 2 ð�1;þ1Þ, t 2 ð�1;þ1Þ, � 2 ½0; ��, 	 2
½0; 2�Þ. In this form, it yields a wave equation with poten-
tial which is seen to closely resemble that of the
Schwarzschild metric,

ds2 ¼ �
�
1� 2M

r

�
dt2 þ

�
1� 2M

r

��1
dr2 þ r2d�2

2:

(1.4)

In Sec. II we use an adaptation of the Hadamard-WKB
method developed by Anderson and Hu [17] to efficiently
calculate the coordinate series expansion of Vðx; x0Þ to very
high order for both Nariai and Schwarzschild spacetimes.
In Sec. III we use convergence tests to determine the radius
of convergence of our series and show that, as expected, it
lies within the convex normal neighborhood. We also
estimate the local truncation error arising from truncating
the series at a specific order. Using the method of Padé
approximants, we show in Sec. IV how the domain of
validity of the coordinate series can be extended beyond
its radius of convergence to give an accurate representation
of Vðx; x0Þ to within a small distance of the edge of the
normal neighborhood.

II. HADAMARD-WKB CALCULATION OF THE
GREEN FUNCTION

For the present quasilocal calculation, we need to con-
sider the retarded Green function only for the points x and
x0 lying within a normal neighborhood. This allows us to
express the retarded Green function in the Hadamard para-
metrix [10,18],

Gretðx; x0Þ ¼ ��ðx; x0ÞfUðx; x0Þ�ð
ðx; x0ÞÞ
� Vðx; x0Þ�ð�
ðx; x0ÞÞg; (2.1)

where ��ðx; x0Þ is analogous to the Heaviside step function
(i.e. 1 when x0 is in the causal past of x, 0 otherwise),
�ð
ðx; x0ÞÞ is the standard Dirac delta function, Uðx; x0Þ
and Vðx; x0Þ are symmetric bi-scalars having the benefit
that they are regular for x0 ! x, and 
ðx; x0Þ is the Synge
[8,19,20] world function (i.e., half the square of the geo-
desic distance). The term involving Uðx; x0Þ is only non-
zero for null connected points, whereas the quasilocal self-
force calculation which motivates us requires the Green
function within the light-cone only. We will therefore only
concern ourselves here with the calculation of the function
Vðx; x0Þ.

The fact that x and x0 are close together suggests that an
expansion of Vðx; x0Þ in powers of the coordinate separa-
tion of the points,

Vðx; x0Þ ¼ X1
i;j;k¼0

vijkðrÞðt� t0Þ2iðcos�� 1Þjðr� r0Þk;

(2.2)

where � is the angular separation of the points, may give a
good representation of the function within the quasilocal
region. Note that, as a result of the spherical symmetry of
the spacetimes we will be considering, the expansion co-
efficients vijkðrÞ are only a function of the radial coordinate
r. Anderson and Hu [17] have developed a Hadamard-
WKB method for calculating these coefficients. They ap-
plied their method to the Schwarzschild case and subse-
quently found the coefficients to 14th order using the
MATHEMATICA computer algebra system [21]. In the

present work, we adapt their method to allow for space-
times of the Nariai form, (1.3). In particular, we consider a
class of spacetimes of the general form

ds2 ¼ �fðrÞdt2 þ f�1ðrÞdr2 þ gðrÞðd�2 þ sin2�d	2Þ;
(2.3)

where fðrÞ and gðrÞ are arbitrary functions of the radial
coordinate r, and previously Anderson and Hu had set
gðrÞ ¼ r2 but allowed the metric components grr and gtt
to be independent functions of r. The form of the Nariai
metric given in Eq. (1.3) falls into the class (2.3), with
fðrÞ ¼ 1� r2 and gðrÞ ¼ 1. For fðrÞ ¼ 1� 2M

r and

gðrÞ ¼ r2, this is the Schwarzschild metric of Eq. (1.4).
The method presented in this section differs from that of

Ref. [17] in the details of the WKB approach used, but
otherwise remains very similar. Our alternative WKB ap-
proach, based on that of Refs. [22,23], proves extremely
efficient when implemented in a computer algebra
package.
Following the prescription of Ref. [17], the Hadamard

parametrix for the real part of the Euclidean Green func-
tion (corresponding to the Euclidean metric arising from
the change of coordinate � ¼ it) is2

Re ½GEð�i�; ~x;�i�0; ~x0Þ�

¼ 1

2�

�
Uðx; x0Þ

ðx; x0Þ þ Vðx; x0Þ lnðj
ðx; x0ÞjÞ þWðx; x0Þ

�
;

(2.4)

where Uðx; x0Þ, Vðx; x0Þ, and Wðx; x0Þ are real-valued sym-
metric bi-scalars.
Additionally, for the points x and x0 separated farther

apart in the time direction than in other directions,


ðx; x0Þ ¼ �1
2fðrÞðt� t0Þ2 þO½ðx� x0Þ3� (2.5)

so the logarithmic part of Eq. (2.4) is given by

2Note that this definition of the Green function differs from
that of Ref. [17] by a factor of 4� and the definition of Vðx; x0Þ
differs by a further factor of 2.
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1

�
Vðx; x0Þ lnð�� �0Þ: (2.6)

Therefore, in order to find Vðx; x0Þ, it is sufficient to find the
coefficient of the logarithmic part of the Euclidean Green
function. We do so by considering the fact that the
Euclidean Green function also has the exact expression
for the spacetimes of the form given in Eq. (2.3):

GEð�i�;x;�i�0; x0Þ ¼ 1

�

Z 1

0
d!cos½!ð�� �0Þ�X1

l¼0

ð2lþ 1Þ

�Plðcos�ÞC!lp!lðr<Þq!lðr>Þ;
(2.7)

where p!l and q!l are solutions (normalized by C!l) to the
homogeneous radial equation for the scalar wave equation
in the curved background (2.3) (and where r<, r> are the
smaller/larger of r and r0, respectively), along with the fact
that Z 1

�
d! cos½!ð�� �0Þ� 1

!2nþ1

¼ ð�1Þnþ1

ð2nÞ! ð�� �0Þ2n logð�� �0Þ þ � � �

¼ �1

ð2nÞ! ðt� t0Þ2n logð�� �0Þ þ � � � ; (2.8)

where � is a low frequency cutoff justified by the fact that
we will only need the logð�� �0Þ term from the integral.
We can therefore find Vðx; x0Þ as an expansion in powers of
the time separation of the points by expressing the sum,

X1
l¼0

ð2lþ 1ÞPlðcos�ÞC!lp!lðr<Þq!lðr>Þ; (2.9)

of Eq. (2.7) as an expansion in inverse powers of!. This is
achieved using a WKB-like method based on that of
Refs. [22,23]. Given the form (2.7) for the Euclidean
Green function, the radial functions SðrÞ ¼ p!lðrÞ and
SðrÞ ¼ q!lðrÞ must both satisfy the homogeneous wave
equation

f
d2S

dr2
þ 1

g

d

dr
ðfgÞdS

dr
�
�
!2

f
þ lðlþ1Þ

g
þm2

fieldþ�R

�
S¼ 0

(2.10)

wheremfield is the scalar field mass and � is the coupling to
the scalar curvature R. Next, given the Wronskian WðrÞ ¼
C!lðp!lq

0
!l � q!lp

0
!lÞ, its derivative is

W 0 ¼ C!lðp!lq
00
!l � q!lp

00
!lÞ ¼ � 1

fg
ðfgÞ0W (2.11)

and the Wronskian condition is therefore

C!lðp!lq
0
!l � q!lp

0
!lÞ ¼ � 1

fg
: (2.12)

We now explicitly assume that r > r0 and define the func-
tion

Bðr; r0Þ ¼ C!lp!lðr0Þq!lðrÞ: (2.13)

Since the sum of Eq. (2.9) [and hence Bðr; r0Þ] is only
needed as an expansion in powers of ðr� r0Þ, we expand
Bðr; r0Þ about r0 ¼ r and [using Eq. (2.10) to replace sec-
ond order and higher derivatives of Bðr; r0Þ with expres-
sions involving Bðr; r0Þ and @r0Bðr; r0Þ] find that

Bðr; r0Þ ¼ ðrÞ þ�ðrÞðr0 � rÞ þ
��
2ð�þ�2Þ
ðfgÞ2

�
ðrÞ

� ½lnðfgÞ�0�ðrÞ
� ðr0 � rÞ2

2
þ �� � ðfor r> r0Þ

(2.14)

where

ðrÞ � ½Bðr; r0Þ�r0!r� ¼ C!lp!lðrÞq!lðrÞ;
�ðrÞ � ½@r0Bðr; r0Þ�r0!r� ¼ C!lp

0
!lðrÞq!lðrÞ

(2.15)

and

�ðrÞ � �1
4fgþ ðm2

field þ �RÞfg2; (2.16)

�2ðrÞ � !2g2 þ fgðlþ 1
2Þ2: (2.17)

It will therefore suffice to calculate ðrÞ and �ðrÞ.
Furthermore, using Eq. (2.12) we can relate �ðrÞ to the
derivative of ðrÞ,

�ðrÞ ¼ 0ðrÞ
2

þ 1

2fðrÞgðrÞ ; (2.18)

so it will, in fact, suffice to find ðrÞ and its derivative
0ðrÞ.
Using Eqs. (2.10) and (2.12), it is immediate to see that

ðrÞ must satisfy the nonlinear differential equation

fg
d

dr

�
fg

d
ffiffiffiffi


p
dr

�
� ð�þ �2Þ ffiffiffiffi


p þ 1

43=2
¼ 0: (2.19)

The short distance behavior of the Green function is
determined by the high-! and/or high-l behavior of the
integrand of Eq. (2.7), so we seek to express ðrÞ as an
expansion in inverse powers of �. To keep track of this
expansion we may replace � in Eq. (2.19) by �=�, where �
is a formal expansion parameter which we eventually set to
1. Then, to balance at leading order we require

ð�=�Þ2 ffiffiffiffi


p � 1

43=2
) � �

2�
: (2.20)

We now write

ðrÞ ¼ �0ðrÞ þ �21ðrÞ þ . . . ; (2.21)

where 0ðrÞ � 1=ð2�ðrÞÞ, insert this form for ðrÞ in
Eq. (2.19), and solve formally order by order in � to find
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a recursion relation for the nðrÞ. On doing so and using
Eq. (2.17) to eliminate ðlþ 1

2Þ2 in favor of !2 and �2, we

find that we can write

nðrÞ ¼
X2n
m¼0

An;mðrÞ!2m

�2nþ2mþ1
; (2.22)

so, for example,

1ðrÞ ¼ A1;0ðrÞ
�3

þ A1;1ðrÞ!2

�5
þ A1;2ðrÞ!4

�7
; (2.23)

2ðrÞ ¼ A2;0ðrÞ
�5

þ A2;1ðrÞ!2

�7
þ A2;2ðrÞ!4

�9

þ A2;3ðrÞ!6

�11
þ A2;4ðrÞ!8

�13
: (2.24)

The recursion relations for nðrÞ may then be reexpressed
to allow us to recursively solve for the An;mðrÞ. Such a

recursive calculation is ideally suited to implementation in
a computer algebra system. Even on a computer, this
recursive calculation becomes very long as n becomes
large and, in fact, dominates the time required to calculate
the series expansion of Vðx; x0Þ as a whole. For this reason,
we have made available an example implementation in
MATHEMATICA, including precalculated results for several

spacetimes of interest [24]. This code calculates analytic
results for An;mðrÞ on a moderate Linux workstation up to

order n� 25, corresponding to a separation jx� x0j50, in
Schwarzschild and Nariai spacetimes in the order of 1 h of
CPU time.

We also note at this point that knowledge of the An;mðrÞ
(and their r derivative, which is straightforward to calcu-
late) are all that is required to find the series expansion of
0ðrÞ and hence �ðrÞ. This can be seen by differentiating
Eqs. (2.21) and (2.22) with respect to r to get

0ðrÞ ¼ �0
0 þ �20

1 þ . . . ; (2.25)

with

0
nðrÞ ¼

X2n
m¼0

�
A0
n;mðrÞ!2m

�2nþ2mþ1
�

�
nþmþ 1

2

�
2��0An;mðrÞ
�2nþ2mþ3

�

¼ X2nþ1

m¼0

�
A0
n;mðrÞ �

�
nþmþ 1

2

�
An;mðrÞ ðfgÞ

0

fg

�
�
nþm� 1

2

�
An;m�1ðrÞ

�
ðg2Þ0 � ðfgÞ0

fg
g2
��

� !2m

�2nþ2mþ1
(2.26)

where we have used Eq. (2.17) to write 2��0 ¼
�2ðfgÞ0=ðfgÞ þ!2ððg2Þ0 � g2ðfgÞ0=ðfgÞÞ, and we use the
convention An;�1 ¼ An;2mþ1 ¼ 0.
With the An;mðrÞ and their first derivatives calculated, we

are faced with the sum over l in Eq. (2.9), where Eqs. (2.22)
and (2.26) yield sums of the form

X1
l¼0

2

�
lþ 1

2

�
Plðcos�ÞDn;mðrÞ!2m

�2nþ2mþ1
; (2.27)

with

Dn;m ¼
8<
:
An;mðrÞ for nðrÞ
A0
n;mðrÞ �

�
nþmþ 1

2

�
An;mðrÞ ðfgÞ0fg �

�
nþm� 1

2

�
An;m�1ðrÞ

�
ðg2Þ0 � ðfgÞ0

fg g2
�

for 0
nðrÞ: (2.28)

Since we are considering the points x and x0 to be close
together, we can treat � as a small quantity and expand the
Legendre polynomial in a Taylor series about � ¼ 0, or,
more conveniently, in powers of ðcos�� 1Þ about ðcos��
1Þ ¼ 0. It is straightforward to express each term in this
series as a polynomial in even powers of ðlþ 1

2Þ:
Plðcos�Þ ¼ 2F1ð�l; lþ 1;1; ð1� cos�Þ=2Þ

¼ Xl
p¼0

ððlþ 1
2Þ2�ð1� 1

2Þ2Þ � � � ððlþ 1
2Þ2�ðp� 1

2Þ2Þ
2pðp!Þ2

�ðcos�� 1Þp: (2.29)

The calculation of the sum in Eq. (2.7) therefore reduces to
the calculation of sums of the form

2Dn;mðrÞ
X1
l¼0

ðlþ 1
2Þ2pþ1!2m

�2nþ2mþ1
: (2.30)

For fixed ! and large l the summand behaves as l2ðp�n�mÞ,
and so only converges if p < nþm. If p � nþm, we

first split the summand as

ðlþ 1
2Þ2pþ1!2m

�2mþ2nþ1
¼ ðlþ 1

2Þ2ðp�m�nÞ!2m

ðfgÞmþnþ1=2

�
�
1þ !2g=f

ðlþ 1
2Þ2

��m�n�1=2
(2.31)

¼ ðlþ 1
2Þ2ðp�m�nÞ!2m

ðfgÞmþnþ1=2

� Xp�m�n

k¼0

ð�1Þkðmþ nþ 1=2Þk
k!

�
�
!2g=f

ðlþ 1
2Þ2

�
k þ

��
1þ !2g=f

ðlþ 1
2Þ2

��m�n�1=2

� Xp�m�n

k¼0

ð�1Þkðmþ nþ 1=2Þk
k!

�
!2g=f

ðlþ 1
2Þ2

�
k
��

(2.32)

where ð�Þk ¼ �ð�þ kÞ=�ð�Þ is the Pochhammer symbol
and the sum corresponds to the first ðp� n�mÞ terms in

the expansion of ð1þ xÞ�n�m�1=2 about x �
ð!2g=fÞ=ðlþ 1

2Þ2 ¼ 0. The terms outside the square brack-

ets correspond to positive powers of ! and so contribute to
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the light-cone singularity, not the tail term Vðx; x0Þ with
which we are concerned in this paper. By contrast, the term
in square brackets behaves as ðlþ 1

2Þ�2 and so converges as

l ! 1 and will contribute to the tail term. We denote this
term, with its prefactor, as�ðlþ 1

2Þ2pþ1!2m

�2mþ2nþ1

�
reg

¼ !2ðp�nÞ

fpþ1=2g2ðnþmÞ�pþ1=2
xmþn�p

�
�
ð1þ xÞ�m�n�1=2

� Xp�m�n

k¼0

ð�1Þkðmþ nþ 1=2Þk
k!

xk
�

(2.33)

and adopt the understanding that the sum vanishes if p <
mþ n.

To proceed further, we use the Sommerfeld-Watson
formula [25],

X1
l¼0

F

�
lþ 1

2

�
¼ Re

�
1

i

Z
�
dzFðzÞ tanð�zÞ

�

¼
Z 1

0
Fð�Þd�

� Re

�
i
Z 1

0

2

1þ e2��
Fði�Þd�

�
(2.34)

which is valid provided we can rotate the contour of
integration for FðzÞ tanð�zÞ from just above the real axis

to the positive imaginary axis. Defining z �
ðf=gÞ1=2�=! ¼ 1=

ffiffiffi
x

p
, where � � ðlþ 1=2Þ, the sum

(2.30) can then be written as the contour integral

!2ðp�nÞþ1

fpþ1g2ðmþnÞ�p

�Z 1

0
dz

�
z2pþ1

ð1þ z2Þmþnþ1=2

�
reg

þ ð�1ÞpRe
�Z 1

0

2dz

1þ e2�z!
ffiffiffiffiffiffi
g=f

p z2pþ1

ð1� z2Þmþnþ1=2

��
:

(2.35)

Note that there is no need to include the regularization
terms in the second integral as their contribution is mani-
festly imaginary and so will not contribute to the final
answer.

For p <mþ n the first integral in Eq. (2.35) may be
performed immediately as

Z 1

0
dz

z2pþ1

ð1þ z2Þmþnþ1=2
¼ p!

2ðmþ n� p� 1=2Þpþ1

:

(2.36)

For p � mþ n, we use the regularized integrand arising
from Eq. (2.33) and temporarily introduce an ultraviolet
cutoff 1=�2 to get

Z 1

�
dxxmþn�p�3=2

�
ð1þ xÞ�m�n�1=2

� Xp�m�n

k¼0

ð�1Þkðmþ nþ 1=2Þk
k!

xk
�
: (2.37)

Integrating by parts p�m� nþ 1 times, the regulariza-
tion subtraction terms ensure that the boundary term goes
to zero in the limit � ! 0 and we are left with

ð�1Þp�m�nþ1
ðmþ nþ 1=2Þp�m�nþ1

ð1=2Þp�m�nþ1

�
Z 1

�
dxx�1=2ð1þ xÞ�p�3=2

¼ ð�1Þp�m�nþ1�p!

�ðmþ nþ 1=2Þ�ðp�m� nþ 3=2Þ ; (2.38)

where the last equality reflects the fact that after these
integrations by parts are completed, the remaining integral
is finite in the limit � ! 0.
The second integral in Eq. (2.35) is understood as a

contour integral as illustrated in Fig. 1. The integrand is
understood to be defined on the complex plane cut from
z ¼ �1 to 1 and additionally possesses singularities at z ¼
�1 and z ¼ 1. To handle these in a fashion consistent with
the Watson-Sommerfeld prescription, we consider the con-
tour in 3 parts: C1 running just below the cut from 0 to 1�
�, C2 a semicircle of radius � about z ¼ 1, and C3 running
along the real axis from z ¼ 1þ � to 1.
The integrand along C3 is manifestly imaginary and so

gives zero contribution. Writing the integrand as

GðzÞ
ð1� zÞmþnþ1=2

(2.39)

where

GðzÞ ¼ z2pþ1

ð1þ e2�z!
ffiffiffiffiffiffi
g=f

p
Þð1þ zÞmþnþ1=2

; (2.40)

FIG. 1. The second integral in Eq. (2.35) has a pole at z ¼ 1,
so we split it into three parts: (1) an integral from 0 to 1� �,
(2) an arc of radius � about z ¼ 1, and (3) an integral from z ¼
1þ � to 1.

PADÉ APPROXIMANTS OF THE GREEN FUNCTION IN . . . PHYSICAL REVIEW D 79, 124044 (2009)

124044-5



it is straightforward to see that

Re
Z
C2

GðzÞ
ð1� zÞmþnþ1=2

dz ¼ �X1
k¼0

ð�1Þk
k!

GðkÞð1Þ

� �k�m�nþ1=2

k�m� nþ 1
2

; (2.41)

while integrating by parts mþ n times,Z
C1

GðzÞ
ð1� zÞmþnþ1=2

dz

¼ Xmþn�1

k¼0

ð�1Þk
k!

GðkÞð1Þ �
k�m�nþ1=2 � 1

k�m� nþ 1
2

þ
Z 1��

0

dz

ð1� zÞmþnþ1=2

�
GðzÞ � Xmþn�1

k¼0

ð�1Þk
k!

�GðkÞð1Þð1� zÞk
�
: (2.42)

Adding the contributions from these components, it is clear
that the � ! 0 divergences cancel and we are left with

� Xmþn�1

k¼0

ð�1Þk
k!

GðkÞð1Þ
k�m� nþ 1

2

þ
Z 1

0

dz

ð1� zÞmþnþ1=2

�
�
GðzÞ � Xmþn�1

k¼0

ð�1Þk
k!

GðkÞð1Þð1� zÞk
�
; (2.43)

where the subtraction terms in the integrand ensure that the
integral here is well defined.

While we can take this analysis further [26], for our
current purpose we note that we only need the expansion of
Eq. (2.43) in terms of inverse powers of! as! ! 1. From
Eq. (2.40), it is immediately apparent that the terms in the
sum in (2.43) are exponentially small and so may be
ignored for our purposes here. Indeed we may simulta-
neously increase the upper limit on the two sums in Eq.
(2.43) without changing the result. Increasing it by 1 (or
more), the integrand increases from z ¼ 0, peaks, and then
decreases to 0 at z ¼ 1, with the peak approaching z ¼ 0 as
! ! 1. Standard techniques from statistical mechanics
then dictate that the ! ! 1 asymptotic form of the inte-
gral follows from expanding the integrand, aside from the
‘‘Planck factor,’’ about z ¼ 0 and extending the upper limit
to1. Again, in doing so the contribution from the summa-
tion within the integrand gives an exponentially small
contribution so that the powers of! are determined simply
by

Z 1

0

dz

ð1þ e2�z!
ffiffiffiffiffiffi
g=f

p
Þ
Seriesz¼0

�
z2pþ1

ð1� z2Þmþnþ1=2

�
:

(2.44)

where Seriesz¼0½� � �� denotes the series expansion about
z ¼ 0. The coefficients in the series are known analytically,
so to expand in inverse powers of ! we only need to

compute integrals of the form

Z 1

0

z2N�1

1þ e2�z!
ffiffiffiffiffiffi
g=f

p dz (2.45)

which have the exact solutions [27]

ð1� 21�2NÞ fN

gN!2N

jB2Nj
4N

; (2.46)

where BN is the Nth Bernoulli number. This expression
allows us to calculate the integrals very quickly.
Applying this method for summation over l, Eq. (2.7)

takes the form required by Eq. (2.8), so we now have the
logarithmic part of the Euclidean Green function and there-
fore Vðx; x0Þ as the required power series in ðt� t0Þ,
ðcos�� 1Þ, and ðr� r0Þ. Because of the length of the
expressions involved, we have made available online [24]
a MATHEMATICA code implementing this algorithm, along
with precalculated results for several spacetimes of interest
including Schwarzschild, Nariai, and Reissner-Nordström.

III. CONVERGENCE OF THE SERIES

We have expressed Vðx; x0Þ as a power series in the
separation of the points. This series will, in general, not
be convergent for all point separations—the maximum
point separation for which the series remains convergent
will be given by its radius of convergence. In this section,
we explore the radius of convergence of the series in the
Nariai and Schwarzschild spacetimes and use this as an
estimate on the region of validity of our series.
For simplicity, we will consider points separated only in

the time direction so we will have a power series in ðt� t0Þ,

Vðx; x0Þ ¼ X1
n¼0

vnðrÞðt� t0Þ2n (3.1)

where vnðrÞ is a real function of the radial coordinate r
only. We will also consider cases where the points are
separated by a fixed amount in the spatial directions, or
where the separation in other directions can be reexpressed
in terms of a time separation, resulting in a similar power
series in ðt� t0Þ, but with the coefficients vnðrÞ being
different. This will give us sufficient insight without re-
quiring overly complicated convergence tests.
In the next section, we review some tests that will prove

useful. In Secs. III B and III C we present the results of
applying those tests in Nariai and Schwarzschild space-
times, respectively.

A. Tests for estimating the radius of convergence

1. Convergence tests

For the power series (3.1), there are two convergence
tests which will be useful for estimating the radius of
convergence. The first of these, the ratio test, gives an
estimate of the radius of convergence, �tRC,
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�tRC ¼ lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�������� vn

vnþ1

��������
s

: (3.2)

Although, strictly speaking, the large n limit must be taken,
in practice we can calculated enough terms in the series to
get a good estimate of the limit by simply looking at the
last two terms. The ratio test runs into difficulties, however,
when one of the terms in the series is zero. Unfortunately,
this occurs frequently for many cases of interest. It is
possible to avoid this issue somewhat by considering non-
adjacent terms in the series, i.e. by comparing terms of
order n and nþm,

�tRC ¼ lim
n!1

�������� vn

vnþm

��������1=2m

: (3.3)

Using the ratio test in this way gives better estimates of the
radius of convergence, although the results are still some-
what lacking.

To get around this difficulty, we also use a second test,
the root test,

�tRC ¼ limsup
n!1

�������� 1

vn

��������1=2n

; (3.4)

which is well suited to power series. This gives us another
estimate of the radius of convergence. Again, in practice
the last calculated term in the series will give a good
estimate of the limit.

It may appear that only the (better behaved) root test is
necessary for estimating the radius of convergence of the
series. However, extra insight can be gained from including
both tests. This is because for the power series (3.1), the
ratio test typically gives values increasing in n while the
root test gives values decreasing in n, effectively giving
lower and upper bounds on the radius of convergence.

2. Normal neighborhood

The Hadamard parametrix for the retarded Green func-
tion, (2.1), is only guaranteed to be valid provided x and x0
are within a normal neighborhood (see footnote 1). This
arises from the fact that the Hadamard parametrix involves
Synge’s world function 
ðx; x0Þ, which is only defined for
the points x and x0 separated by a unique geodesic. It is
therefore plausible that the radius of convergence of our
series could exactly correspond to the normal neighbor-
hood size tNN. This turns out to not be the case, although it
is still helpful to give consideration to tNN, as it should
place an upper bound on the radius of convergence of the
series.

The normal neighborhood size will be given by the
minimum time separation of the spacetime points such
that they are connected by two geodesics. For typical cases
of interest for self-force calculations, there will be a parti-
cle following a timelike geodesic, so tNN will be given by
the minimum time taken by a null geodesic intersecting the
particle’s worldline twice. In typical black hole space-

times, this geodesic will orbit the black hole once before
reintersecting the particle’s worldline.
Another case of interest is that of the points x and x0 at

constant spatial positions, separated by a constant angle
�	. Initially, (i.e. when t ¼ t0), the points will be sepa-
rated only by spacelike geodesics. After sufficient time has
passed for a null geodesic to travel between the points
(going through an angle �	), they will be connected first
by a null geodesic and subsequently by a sequence of
unique timelike geodesics. Since the geodesics are unique,
tNN will not be given by this first null geodesic time.
Rather, tNN will be given by the time taken by the second
null geodesic (passing through an angle 2���	). This
subtle, but important, distinction will be clearly evident
when we study specific cases in the next sections.

3. Relative truncation error

Knowledge of the radius of convergence alone does not
give information about the accuracy of the series represen-
tation of Vðx; x0Þ. The series is necessarily truncated after a
finite number of terms, introducing a truncation error. As
was done previously in Refs. [6,28], the local fractional
truncation error can be estimated by the ratio between the
highest order term in the expansion [Oð��nÞ, say] and the
sum of all the terms up to that order,

� � vnðt� t0Þ2nP
n
i¼0 viðt� t0Þ2i : (3.5)

References [6,28] considered only the first two terms in the
series when producing these estimates. Since we now have
a vastly larger number of terms available, it is worthwhile
to consider these again to determine the accuracy of the
high order series.

B. Nariai spacetime

1. Normal neighborhood

Allowing only the time separation of the points to
change, we consider two cases of interest for the Nariai
spacetime:
(1) The static particle which has a normal neighborhood

determined by the minimum coordinate time taken
by a null geodesic circling the origin (� ¼ 0) before
returning. This is the time taken by a null geodesic,
starting at � ¼ �1 and returning to �0 ¼ �1, while
passing through an angle �	 ¼ 2�.

(2) Points at fixed radius, �1, separated by an angle, say
�=2. In this case, there is a null geodesic which goes
through an angle �	 ¼ �=2 when traveling be-
tween the points. However, there will not yet be
any other (nonspacelike) geodesic connecting
them, so this will not give tNN. Instead, it is the
next null geodesic, which goes through �	 ¼
3�=2, that gives the normal neighborhood
boundary.
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In both cases, the coordinate time taken by the null geodesic to travel between the points is given by [1]

tNN ¼ 2tanh�1ð�1Þ þ ln

�1� �1sech
2ð�	=2Þ þ tanhð�	=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1sech
2ð�	=2Þ

q
1þ �1sech

2ð�	=2Þ � tanhð�	=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1sech
2ð�	=2Þ

q �
: (3.6)

2. Results

For the Nariai spacetime, the ratio test suffers from
difficulties arising from zeros of the terms in the series.
This is because the ith term of the series [of order ðt� t0Þ2i]
has 2i roots in �. In other words, the higher order the terms
considered, the more likely one of the coefficients is to be
near a zero, and not give a useful estimate of the radius of
convergence. We have therefore compared nonadjacent
terms to avoid this issue as much as possible, by choosing
m ¼ n=2 in Eq. (3.3). Fortunately, the root test is much less
affected by such issues and can be used without any
adjustments.

In Fig. 2, we fix the radial position of the points at � ¼
�0 ¼ 1=2 (left panels) and � ¼ �0 ¼ 1=99 (right panels)

and plot the results of applying the root test (blue dots) and
ratio test (brown squares) for (1) static particles (top pan-
els) and (2) points at fixed spatial points separated by an
angle � ¼ �=2 (bottom panels) as a function of the maxi-
mum order nmax of the terms of the series considered,
vnmax

ðt� t0Þ2nmax . It seems in both cases that the plot is

limiting towards a constant value for the radius of con-
vergence. In case (1), we see that this gives a radius of
convergence that is considerably smaller than the normal
neighborhood size (purple dashed line). For case (2), we
again see that the values from the convergence tests are
limiting towards a value for the radius of convergence.
However, as discussed in Sec. III A 2, it is not the first
null geodesic (lower dashed purple line), but the second
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FIG. 2 (color online). Radius of convergence as a function of the number of terms in the series for the Nariai spacetime with
curvature coupling � ¼ 1=6. The limit as n ! 1 will give the actual radius of convergence, but it appears that just using the terms up
to n ¼ 30 is giving a good estimate of this limit. The radius of convergence is estimated by the root test (blue dots) and ratio test
(brown squares) and is compared against the normal neighborhood size (purple dashed line) calculated from considerations on null
geodesics (see Secs. III A 2 and III B 1). Note that plots for the ratio test were omitted in cases where it did not give meaningful results.
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null geodesic (upper dashed purple line) that determines
the normal neighborhood and places an upper bound on the
radius of convergence of the series.

In Fig. 3 we use the root test (blue dots) and ratio test
(brown line)3 to investigate how the radius of convergence
of the series varies as a function of the radial position of the
points, �1. Again, we look at both cases (1) (left panel) and
(2) (right panel). As a reference, we compare to the normal
neighborhood size (purple dashed line). We find that,
regardless of the radial position of the points, the radius
of convergence of the series is well within the normal
neighborhood, by an almost constant amount. As before,
in case (2) of the points separated by an angle, we find that
it is the second, not the first, null geodesic that gives the
normal neighborhood size.

With knowledge of the radius of convergence of the
series established, it is also important to estimate the
accuracy of the series within that radius. To that end, we
plot in Fig. 4 the relative truncation error, (3.5), as a
function of the time separation of the points at a fixed
radius, � ¼ �0 ¼ 1=2. We find that the 60th order series
is extremely accurate to within a short distance of the
radius of convergence of the series.

C. Schwarzschild spacetime

1. Normal neighborhood

For a fixed spatial point at radius r1 in the Schwarzschild
spacetime, we would like to find the null geodesic that
intersects it twice in the shortest time. This geodesic will
orbit the black hole once before returning to r1. Clearly, the
coordinate time tNN for this orbit can only depend on r1.
The periapsis radius rp will be reached halfway through

the orbit. For the radially inward half of this motion, the
geodesic equations can be rearranged to give

� ¼
Z �

0
d	 ¼ �

Z rp

r1

dr

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r2p
ð1� 2M

rp
Þ � 1

r2
ð1� 2M

r Þ
q ;

(3.7)

tNN
2

¼
Z tNN=2

0
dt

¼ �
Z rp

r1

dr

ð1� 2M
r Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2p

r2
ð1� 2M

r Þð1� 2M
rp
Þ�1

r :

(3.8)

For a given point r1, we numerically solve the first of these
to find the periapsis radius rp and then solve the second to

give the normal neighborhood size tNN.

2. Results

The ratio test proves more stable for Schwarzschild
spacetime than it was for Nariai spacetime. The series
coefficients still have a large number of roots in r, but

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8
t R

C

0

nmax 30

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

t R
C

2

nmax 30

FIG. 3 (color online). Estimates of the domain of validity (i.e. the radius of convergence) of the series expansion of Vðx; x0Þ as a
function of radial position in Nariai spacetime. The root test on O½ðt� t0Þ60� series is given as blue dots, the ratio test is given by the
brown line (see footnote 3), and the normal neighborhood estimate from null geodesics is given by dashed purple lines. The left plot is
for case (1), the static particle, and the right plot is for case (2), points separated by an angle of �=2. In both cases, the series is clearly
divergent before the normal neighborhood boundary. This boundary is sometimes given by the second, rather than the first null
geodesic, as can be seen in the plot on the right. In particular, this is the case for the points separated by an angle � ¼ �=2 since they
are initially separated by only spacelike geodesics (see Sec. III B 1).

3Note that the ‘‘blips’’ in the ratio test are an artifact of the
zeros of the series coefficients used and are not to be taken to
have any physical meaning. In fact, the blips occur at different
times when considering the series at different orders, so they
should be ignored altogether. The ratio test plots should therefore
only be fully trusted away from the blips. Near the blips, it is
clear that one could interpolate an approximate value; however,
we have not done so here as the plot is to be taken only as an
indication of the radius of convergence.
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most are within r ¼ 6M and therefore do not have an effect
for the physically interesting radii r � 6M.

Figure 5 shows that the radius of convergence �tRC
given by the root test is a decreasing function of the order
of the term used, while that given by the ratio test is
increasing. This effectively gives upper and lower bounds
on the radius of convergence of the series. There is some
‘‘noise’’ in the ratio test plot at lower radii (where that test
fails to give meaningful results), but we simply ignore this
and omit the ratio test in this case. For the root test, the
terms up to order ðt� t0Þ52 were used, while for the ratio
test, adjacent terms in the series up to order ðt� t0Þ52 were
compared.

In Fig. 6 we apply the root (blue dots) and ratio (brown
line—see footnote 3) tests for the case of a static particle at
a range of radii in Schwarzschild spacetime. Using the root
test as an upper bound and the ratio test as a lower bound, it
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FIG. 4 (color online). Relative truncation error in Nariai spacetime arising from truncating the series expansion for Vðx; x0Þ at order
jx� x0j60 (i.e. nmax ¼ 30) for case (1) the static particle (left panel) and case (2) points separated by an angle �=2 (right panel). In both
cases, the radial points are fixed at � ¼ �0 ¼ 1=2. The series is extremely accurate until we get close to the radius of convergence (see
Fig. 2).
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FIG. 6 (color online). Radius of convergence as a function of
radial position for a static point in Schwarzschild spacetime. The
root test (blue dots), the ratio test (brown line—see footnote 3),
and the first null geodesic (purple dashed line) are shown.
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FIG. 5 (color online). Radius of convergence as a function of the number of terms considered for the Schwarzschild spacetime. The
root test (blue dots), the ratio test (brown squares—see footnote 3), and the first null geodesic (purple dashed line) are given. Left
panel: Static particle at r1 ¼ 100M. Right panel: Static particle at r1 ¼ 10M. The radius of convergence is given by the limit as the
number of terms nmax ! 1. It is apparent that the plots are asymptoting to a value near, but slightly lower than, the normal
neighborhood size. Note that curves for the ratio test were omitted in cases where it did not give meaningful results.
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is clear that the radius of convergence is near, but likely
slightly lower than, the normal neighborhood size (purple
dashed line). In this case, for the root test, the term of order
ðt� t0Þ52 was used, while for the ratio test, terms of order
ðt� t0Þ52 and ðt� t0Þ26 were compared.

In Figs. 7 and 8, we repeat this for the case of the points
separated on a circular timelike geodesic. The results are
very similar to the static particle case and show the same
features.

IV. EXTENDING THE DOMAIN OF SERIES USING
PADÉ APPROXIMANTS

In the previous section it was shown that the circle of
convergence of the series expansion of Vðx; x0Þ is smaller
than the size of the normal neighborhood. This is not
totally unexpected. We would expect the normal neighbor-

hood size to place an upper limit on the radius of conver-
gence, but we cannot necessarily expect the radius of
convergence to be exactly the normal neighborhood size.
However, since the Hadamard parametrix for the Green
function is valid everywhere within the normal neighbor-
hood, it is reasonable to hope that it would be possible to
find an alternative series representation for Vðx; x0Þ which
is valid in the region outside the circle of convergence of
the original series, while remaining within the normal
neighborhood.
The radius of convergence found in the previous section

locates the distance (in the complex plane) to the closest
singularity of Vðx; x0Þ. However, that singularity could lie
anywhere on the (complex) circle of convergence and will
not necessarily be on the real line. In fact, given that the
Green function is clearly not singular at the (real-valued)
radius of convergence, it is clear that the singularity of
Vðx; x0Þ does not lie on the real line.
There are several techniques which can be employed to

extend a series beyond its radius of convergence. Provided
the circle of convergence does not constitute a natural
boundary of the function, the method of analytic continu-
ation can be used to find another series representation for
Vðx; x0Þ valid outside the circle of convergence of the
original series [29,30]. This could then be applied itera-
tively to find series representations covering the entire
range of interest of Vðx; x0Þ. Although this method of
analytic continuation should be capable of extending the
series expansion of Vðx; x0Þ, there is an alternative method,
the method of Padé approximants, which yields impressive
results with little effort.
The method of Padé approximants [31,32] is frequently

used to extend the series representation of a function
beyond the radius of convergence of the series. It has
been employed in the context of general relativity data
analysis with considerable success [11,12]. It is based on
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FIG. 8 (color online). Radius of convergence as a function of
radial position for points separated along a circular geodesic in
Schwarzschild spacetime. The root test (blue dots), the ratio test
(brown line—see footnote 3), and the first null geodesic (purple
dashed line) are shown.
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FIG. 7 (color online). Radius of convergence as a function of the number of terms considered for points separated along a circular
geodesic in Schwarzschild spacetime. The root test (blue dots), the ratio test (brown squares—see footnote 3), and the first null
geodesic (purple dashed line) are shown. Note that curves for the ratio test were omitted in cases where it did not give meaningful
results.
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the idea of expressing the original series as a rational
function [i.e. a ratio of two polynomials Vðx; x0Þ ¼
Rðx; x0Þ=Sðx; x0Þ] and is closely related to the continued
fraction representation of a function [31]. This captures
the functional form of the singularities of the function on
the circle of convergence of the original series.

The Padé approximant PN
Mðt� t0Þ is defined as

PN
Mðt� t0Þ �

PN
n¼0 Anðt� t0ÞnP
M
n¼0 Bnðt� t0Þn (4.1)

where B0 ¼ 1 and the other ðMþ N þ 1Þ terms are found
by comparing to the first ðMþ N þ 1Þ terms of the original
power series. The choice ofM and N is arbitrary, provided
Mþ N � nmax where nmax is the highest order term that
has been computed for the original series. There are, how-
ever, choices for M and N which give the best results. In
particular, the diagonal, PN

N , and subdiagonal, PN
Nþ1, Padé

approximants yield optimal results.

A. Nariai spacetime

The Green function in Nariai spacetime is known to be
given exactly by a quasinormal mode sum [1,33] at suffi-
ciently late times [ðt� t0Þ> 2�?]. We can therefore use
the Green function calculated from a quasinormal mode
sum to determine the effectiveness of the Padé resumma-
tion. Figure 9 compares the Green function calculated from
a quasinormal mode sum4 with both the original Taylor
series representation and the Padé resummed series for
Vðx; x0Þ for a range of cases. We use the Padé approximant
P30
30, computed from the 60th order Taylor series. In each

case, the Taylor series representation (blue dashed line)
diverges near its radius of convergence, long before the
normal neighborhood boundary is reached. The Padé re-
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FIG. 9 (color online). Comparison of the Padé approximant and Taylor series for �ð�
ðx; x0ÞÞVðx; x0Þ with the ‘‘exact’’ Green
function from the quasinormal mode sum in Nariai spacetime with curvature coupling � ¼ 1=8 and � ¼ 1=6. The Padé approximated
Vðx; x0Þ (red solid line) is in excellent agreement with the quasinormal mode Green function (black dots) up to the normal
neighborhood boundary, tNN 	 6:569 93 (top panels) and tNN 	 4:9956 (bottom panels). The Taylor series (blue dashed line) diverges
outside the radius of convergence of the series.

4There are some caveats with how the quasinormal Green
function was used. The fundamental mode (n ¼ 0) Green func-
tion was used and a singularity time offset applied as described in
Ref. [1]. In the case where two singularities are present, two sets
of fundamental mode Green functions were used, each shifted by
an appropriate singularity time offset and matched at an inter-
mediate point.
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summed series (red line), however, remains valid much
further and closely matches the quasinormal mode Green
function (black dots) up to the point where the normal
neighborhood boundary is reached.

As was shown in Refs. [1,34], the Green function in
Nariai spacetime is singular whenever the points are sepa-
rated by a null geodesic. Furthermore, in Ref. [1] we have
derived the functional form of these singularities and
shown that they follow a fourfold pattern: �ð
Þ, 1=�
,
��ð
Þ, �1=�
, depending on the number of caustics the
null geodesic has passed through (this was also previously
shown by Ori [35]). Within the normal neighborhood
[where the Hadamard parametrix, (2.1), is valid], the
�ð
Þ singularities (i.e. at exactly the null geodesic times)
will be given by the term involving Uðx; x0Þ. However, at
times other than the exact null geodesic times, the Green
function will be given fully by Vðx; x0Þ. For this reason, we
expect Vðx; x0Þ to reflect the singularities of the Green
function near the normal neighborhood boundary.

The Padé approximant attempts to model this singularity
of the function Vðx; x0Þ (which occurs at the null geodesic
time) by representing it as a rational function, i.e. a ratio of
two power series. By its nature, this will only faithfully
reproduce singularities of integer order. In the Nariai case,
however, the asymptotic form of the singularities is known
exactly near the singularity times tc [1]. In cases where the
points are separated by an angle � 2 ð0; �Þ (i.e. away from
a caustic), the singularities are expected to have a 1=ðt�
t0 � tcÞ behavior, and it is reasonable to expect the Padé
approximant to reproduce the singularity well. When the
points are not separated in the angular direction (i.e. at a

caustic), however, the singularities behave like 1=ðt� t0 �
tcÞ3=2 and we cannot reasonably expect the Padé approx-
imant to accurately reflect this singularity without includ-
ing a large number of terms in the denominator.

Given knowledge of the functional form of the singu-
larity, however, it is possible to improve the accuracy of the
Padé approximant further. For a singularity of the form
1=SðtÞ, we first multiply the Taylor series by SðtÞ. The
result should then have either no singularity, or have a
singularity which can be reasonably represented by a
power series. The Padé approximant of this new series is
then calculated and the result is divided by SðtÞ to give an
improved Padé approximant. This yields an approximant
which includes the exact form of the singularity and more
closely matches the exact Green function near the singu-
larity. In Fig. 10, we illustrate the improvement with an
example case. We consider a static point in Nariai space-
time and compute the error in the Padé approximant rela-
tive to the quasinormal mode Green function (with
overtone number n � 8). The regular Padé approximant
(blue dashed line) is compared against the improved Padé
approximant (solid red line). The relative error remains
small closer to the singularity for the improved Padé
approximant case than for the standard Padé approximant.

Note that the error for early times arises from the failure of
the quasinormal mode sum to converge and does not reflect
error in the series approximations.

B. Schwarzschild spacetime

For the Schwarzschild case, there is no quasinormal
mode sum with which to compare the Padé approximated
series.5 However, given the success in the Nariai case, we
remain optimistic that Padé approximation will be success-
ful for Schwarzschild spacetime. In an effort to estimate
the effectiveness of the Padé approximant, we compare in
Fig. 11 the series expression for Vðx; x0Þ with two different
Padé resummations, P24

26 and P26
26. The Padé approximant

extends the validity beyond the radius of convergence of
the series, but is less successful at reaching the normal
neighborhood boundary (t� t0 ¼ tNN 	 46:2471M) than
in the Nariai case.
The failure of the Padé approximant to reach the normal

neighborhood boundary can be understood by the presence
of extraneous singularities in the Padé approximant. The
zeros of the denominator, Sðt� t0Þ ¼ 0, give rise to singu-
larities which occur at times earlier than the null geodesic
time. It is possible that this problem could be reduced to a
certain extent using the knowledge of the functional form
of the singularities to compute an improved Padé approx-
imant (as was successful in the Nariai case). However, to
the authors’ knowledge, the structure of the singularities in
Schwarzschild spacetime is not yet known.While it may be
possible to adapt the work of Ref. [1] to find the asymptotic
form of the singularities in Schwarzschild spacetime, with-
out knowledge of the exact Green function, we would not
be able to determine whether an improved Padé approx-
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FIG. 10 (color online). Relative error in improved vs regular
Padé approximant. The relative error in the improved Padé
approximant (red solid line) remains small closer to the singu-
larity than the regular Padé approximant (blue dashed line).

5A quasinormal mode sum could be computed for the
Schwarzschild case, but would be augmented by a branch-cut
integral [1]. This calculation is in progress but has yet to be
completed.
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imant would truly give an improvement. We therefore
leave such considerations for later work.

C. Convergence of the Padé sequence

The use of Padé approximants has shown remarkable
success in improving the accuracy and domain of the series
representation of Vðx; x0Þ. However, this improvement has
not been quantified. There is no general way to determine
whether the Padé approximant is truly approximating the
correct function Vðx; x0Þ or the domain in which it is valid
[32]. In this subsection, we nonetheless attempt to gain
some insight into the validity of the Padé approximants.

The first issue to consider is the presence of extraneous
poles in the Padé approximants. In Sec. IVA, the Padé

approximant was unable to exactly represent the 1=ðt�
t0 � tcÞ3=2 singularity at tc 	 6:12 and instead represented
it by three (real-valued) simple poles (at t� t0 	 6:522,
6.854, and 9.488). This leads to the Padé approximant
being a poor representation of the function near the poles.
As was shown in Fig. 10, having exact knowledge of the
singularity allows the calculation of an improved Padé
approximant without extraneous singularities.6

With extraneous poles dealt with, we consider the con-
vergence of the Padé sequence of diagonal and subdiagonal
Padé approximants,

P ¼ fP0
0; P

0
1; P

1
1; P

1
2; P

2
2; P

2
3; P

3
3; � � �g; (4.2)

with PN being the Nth element of the sequence. The
convergence of the Padé approximant sequence is deter-

mined by the behavior of the denominators, SN for large N
[31]. Provided Sðx; x0ÞN is not small, the Padé sequence
will converge quickly toward the actual value of Vðx; x0Þ.
When the first root of the denominator is at the null
geodesic time (i.e. the normal neighborhood boundary),
we can, therefore, be optimistic that the Padé sequence will
remain convergent until this root is reached, and the Padé
approximants will accurately represent the function.
To highlight the improvements made by using Padé

approximants over regular Taylor series, we introduce the
Taylor sequence (i.e. the sequence of partial sums of the
series), T ¼ fT0; T1; T2; � � �g, with the Nth element,

TN ¼ XN=2

n¼0

vnðt� t0Þ2n: (4.3)

The two sequences PN and TN require approximately the
same number of terms in the original Taylor series, so a
direct comparison of their convergence will illustrate the
improved convergence of the Padé approximants.
In Fig. 12, we plot the Padé sequence (blue line) and

Taylor sequence (purple dashed line) for the case of static
points at � ¼ 1=2 in the Nariai spacetime, with � ¼ 1=8.
For early times (e.g. ðt� t0Þ ¼ 2), it is clear that both Padé
and Taylor sequences converge very quickly. At somewhat
later times [e.g. ðt� t0Þ ¼ 3:3], both sequences appear to
remain convergent, but the Padé sequence is clearly con-
verging much faster than the Taylor sequence. Outside the
radius of convergence of the Taylor series [e.g. ðt� t0Þ ¼
5, 6.3], the Padé sequence is slower to converge, but
appears to still do so.
In Fig. 13, we again plot the Padé sequence, this time for

the case of static points at r ¼ 10M in the Schwarzschild
spacetime. As in the Nariai case, for early times [e.g. ðt�
t0Þ ¼ 10M], both Padé and Taylor sequences are converg-
ing very quickly. At slightly later times [e.g. ðt� t0Þ ¼
20M, 27M] the convergence of the Padé sequence is better
than the Taylor sequence. Outside the radius of conver-
gence of the Taylor series, the Padé sequence is slower to
converge, but appears to still do so. Unfortunately, the
convergence of the series is slower in the Schwarzschild
case than in the Nariai case. This is an indication that using
more terms may yield a better result.7

V. CONCLUSIONS

In this paper we have presented an adaptation of the
Hadamard-WKB method of Anderson and Hu [17] to the
Nariai spacetime. We have also demonstrated the use of an
alternative WKB method [22,23], which allows very high
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FIG. 11 (color online). Comparison of the Padé approximant
to the Taylor series for Schwarzschild spacetime in the case of a
static particle at r ¼ 10M. The Padé approximants P26

26 (solid red

line) and P24
26 (dotted brown line) are likely to represent Vðx; x0Þ

more accurately near the normal neighborhood boundary (at t�
t0 	 46:2471M) than the regular Taylor series (dashed blue line).

6The improved Padé approximant has zeros in its denominator
at t� t0 	 2:64, 6.51, and 8.73. The apparently extraneous
singularity within the normal neighborhood (at t� t0 	 2:64)
does not cause any difficulty, as the numerator also goes to zero
at this point.

7In the Nariai case (with � ¼ 1=8), the Taylor series for
Vðx; x0Þ starts at order ðt� t0Þ0 and has been calculated to order
ðt� t0Þ60, while for the Schwarzschild case it starts at ðt� t0Þ4
and has been calculated to order ðt� t0Þ52. Since the Nariai
series has several extra orders, it is reasonable to expect it to
be a better approximation than the Schwarzschild series.
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order terms in the Taylor series to be calculated efficiently
(on a computer) for Schwarzschild, Nariai, and other
spherically symmetric spacetimes. This allowed the series
expansion of Vðx; x0Þ (appearing in the Hadamard para-
metrix of the Green function) to be computed to signifi-
cantly higher order than was done previously in
Refs. [17,21]. These high order expansions facilitated an
investigation of the convergence properties of the series.
We also demonstrated the remarkable effectiveness of Padé
resummation for improving the domain and convergence
of a Taylor series.

This paper serves a dual purpose:
(1) To discuss the calculation of the quasilocal Green

function in Nariai spacetime, as required by Ref. [1].
(2) To investigate the potential for applying the same

techniques in the Schwarzschild spacetime, with the
goal of computing an accurate quasilocal Green
function for use in a matched expansion calculation
of the self-force.

We have found that, using Padé approximants, it is
possible compute the quasilocal Green function in Nariai
spacetime to high accuracy to within a short distance of the

normal neighborhood boundary. Even without the use of
Padé approximants, the Taylor approximated series gives
good accuracy within a large part of the quasilocal region.
This gives confidence in their use for matched expansion
calculations in Ref. [1].
With regard to the Schwarzschild case, we find that the

quasilocal calculation of the Green function is in good
standing and should be usable in matched expansion cal-
culations once techniques for computing the ‘‘distant past’’
Green function have been fully developed. Both Padé and
Taylor sequences remain convergent within a large part of
the normal neighborhood. The use of Padé approximants is
not quite as successful as for the Nariai case, but we remain
optimistic that knowledge of the structure of the singular-
ities in Schwarzschild spacetime may allow for the use of
improved Padé approximants as discussed in Sec. IVB.
The orders of the series calculated for Nariai (60th) and

Schwarzschild (52nd) spacetimes were the maximum pos-
sible within a reasonable time (� 1 day on a modern Linux
desktop). Although these series are of a considerably high
order, one may still wonder whether they are sufficiently
high for matched expansion calculations. It is clear from
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FIG. 12 (color online). Convergence of the Taylor and Padé sequences for the case of static points at � ¼ 1=2 in the Nariai
spacetime, with � ¼ 1=8. Within the radius of convergence of the Taylor series, both Padé (blue solid line) and Taylor (purple dashed
line) sequences converge to the exact Green function (black dotted line) as calculated from a quasinormal mode sum with n � 6. The
Padé sequence converges faster, particularly at later times. Outside the radius of convergence of the Taylor series [in this case, ðt�
t0Þ 	 4], only the Padé sequence is convergent.
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Sec. IVC that the higher order terms only have a signifi-
cant contribution near the radius of convergence (for the
Taylor series) or normal neighborhood boundary (for the
Padé approximant). As the Hadamard parametrix is only
valid within the normal neighborhood, we consider the fact
that the Padé approximant is accurate to within a short
distance of the normal neighborhood boundary to be con-
firmation that the series has been calculated to sufficiently
high order (in particular, for the Nariai case). Additionally,
within the matching region used in Ref. [1] for Nariai
spacetime, we clearly have computed a sufficient number
of coefficients to give the Green function to high accuracy.
We can be optimistic that this is also the case for
Schwarzschild spacetime: the quasilocal series is accurate
long after the time when the quasinormal mode sum is
expected to be convergent (t� t0 ¼ 2r
 	 12:77M, for the
case of a static particle at r ¼ 10M considered here).

Our analysis has remained focused primarily on the case
of one-dimensional series. This was done for reasons of

simplicity and clarity. For multidimensional series, one
could reexpress each of the coordinates in terms of a single
parameter, as was done in Sec. III for the case of a circular
geodesic in Schwarzschild spacetime. Alternatively, one
could employ the generalization of Padé resummation to
double (and higher dimensional) power series, as devel-
oped by Chisholm [36,37].
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