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Accurate modeling of gravitational wave emission by extreme-mass ratio inspirals is essential for their

detection by the LISA mission. A leading perturbative approach involves the calculation of the self-force

acting upon the smaller orbital body. In this work, we present the first application of the Poisson-

Wiseman-Anderson method of ‘‘matched expansions’’ to compute the self-force acting on a point particle

moving in a curved spacetime. The method employs two expansions for the Green function, which are,

respectively, valid in the ‘‘quasilocal’’ and ‘‘distant past’’ regimes, and which may be matched together

within the normal neighborhood. We perform our calculation in a static region of the spherically

symmetric Nariai spacetime (dS2 � S2), in which scalar-field perturbations are governed by a radial

equation with a Pöschl-Teller potential (frequently used as an approximation to the Schwarzschild radial

potential) whose solutions are known in closed form. The key new ingredients in our study are (i) very

high order quasilocal expansions and (ii) expansion of the distant past Green function in quasinormal

modes. In combination, these tools enable a detailed study of the properties of the scalar-field Green

function. We demonstrate that the Green function is singular whenever x and x0 are connected by a null

geodesic, and apply asymptotic methods to determine the structure of the Green function near the null

wave front. We show that the singular part of the Green function undergoes a transition each time the null

wave front passes through a caustic point, following a repeating fourfold sequence �ð�Þ, 1=��, ��ð�Þ,
�1=��, etc., where � is Synge’s world function. The matched-expansion method provides insight into

the nonlocal properties of the self-force. We show that the self-force generated by the segment of the

worldline lying outside the normal neighborhood is not negligible. We apply the matched-expansion

method to compute the scalar self-force acting on a static particle on the Nariai spacetime, and validate

against an alternative method, obtaining agreement to six decimal places. We conclude with a discussion

of the implications for wave propagation and self-force calculations. On black hole spacetimes, any

expansion of the Green function in quasinormal modes must be augmented by a branch-cut integral.

Nevertheless, we expect the Green function in Schwarzschild spacetime to inherit certain key features,

such as a fourfold singular structure manifesting itself through the asymptotic behavior of quasinormal

modes. In this way, the Nariai spacetime provides a fertile testing ground for developing insight into the

nonlocal part of the self-force on black hole spacetimes.
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I. INTRODUCTION

The last decade has seen a surge of interest in the nascent
field of gravitational wave astronomy. Gravitational
waves—propagating ripples in spacetime—are generated
by some of the most violent processes in the known uni-
verse, such as supernovae, black hole mergers, and galaxy
collisions. These powerful processes are hidden from the
view of ‘‘traditional’’ electromagnetic-wave telescopes
behind shrouds of dust and radiation. On the other hand,
gravitational waves are not strongly absorbed or scattered

by intervening matter, and they carry information about the
dynamics at the heart of such processes. The prospects
seem good for direct detection of gravitational waves in
the near future. A number of ground-based detectors (such
as LIGO [1], VIRGO [2], and GEO600 [3]) are now in the
data collection phase.
Gravitational wave astronomy will enter a new era with

the launch of the first space-based observatory: the Laser
Interferometer Space Antenna (LISA) [4]. It is hoped that
this joint NASA/ESA mission, presently in the design and
planning phase, will be launched within a decade. It will be
preceded by a pathfinder mission, due for launch in 2010
[5].
Black hole binary systems are a key target for gravita-

tional wave observatories worldwide. Data analysis meth-
ods such as matched filtering may be applied to separate a
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weak gravitational wave signal from a noisy background
[6]. An essential prerequisite for detection via matched
filtering is an accurate template for the gravitational
wave emission from black hole binaries. Breakthroughs
in numerical relativity in the last five years have led to a
rapid advance in the modeling of comparable-mass bi-
naries, where the partners are of similar mass. Progress
in numerical relativity continues apace.

A key target for the LISA mission is the so-called
extreme mass ratio inspiral: a compact binary in which
one partner (mass M) is significantly more massive than
the other (mass m). Mass ratios of � � m=M * 10�8 are
possible, for example, for a solar-mass black hole orbiting
a supermassive black hole [7]. Mass ratios of up tom=M *
1=10 have been studied by numerical relativists [8];
smaller ratios are presently beyond the scope of numerical
relativity due to the existence of two distinct and dissimilar
length scales in the system. Perturbative approaches seem
more likely to succeed in the extreme-mass regime.

The smaller compact mass m distorts the curvature of
the spacetime in which it is moving. Hence, rather than
following a geodesic of the background spacetime gener-
ated by the larger mass M, the smaller mass follows a
geodesic of the total spacetime [9]. However, if the mass
ratio is extreme, the deviation of the smaller body’s motion
from the background geodesic will be (locally) small. The
deviation may be interpreted as arising from a self-force,
created by the smaller mass m interacting with its own
gravitational field. To leading order, the self-force accel-
eration is proportional tom. With knowledge of the leading
term in the self-force, one may model the evolution of the
orbit and subsequent inspiral of the smaller mass, and
compute the gravitational wave emission to high accuracy.
However, finding the instantaneous self-force in a curved
spacetime is not at all straightforward; it turns out to
depend on the entire past history of the smaller mass, m.

The idea of a self-force has a long history in physics. In
the late 19th century it was well known that a charge
undergoing an acceleration in flat spacetime will generate
electromagnetic radiation, and will feel a corresponding
radiation reaction. The self-acceleration of a charged point
particle in flat spacetime is given by the well-known
Abraham-Lorentz-Dirac formula [10]. Radiation reaction
implies that the ‘‘classical’’ model of the atom (a point-
particle electron orbiting a compact nucleus) is unstable.
The observed stability of the atom remained a puzzle for
many years and provided a key motivation for the develop-
ment of quantum mechanics. In the 1960s, DeWitt and
Brehme [11] derived a formula for the self-force acting on
an electrically charged point particle in a curved back-
ground, and a correction was later provided by Hobbs
[12]. The gravitational self-force acting on a point mass
was found in 1997 by two groups working concurrently
and independently: Mino, Sasaki, and Tanaka [13] and
Quinn and Wald [14]. Shortly after, Quinn derived the

self-force acting on a minimally coupled scalar charge
[15]. These developments are summarized in 2004/05 re-
views by Poisson [16] (where the scalar case was extended
to cater for nonminimal coupling) and Detweiler [17]. In
the subsequent period, a range of complementary ap-
proaches to the self-force problem have been developed
[18–22].
The self-force expressions for scalar, electromagnetic,

and gravitational cases take similar forms [16]. In this
paper, we restrict our attention to the simplest case: a
pointlike scalar charge q of mass m coupled to a massless
scalar field �ðxÞ moving on a curved background geome-
try. The scalar field �ðxÞ satisfies the field equation

ðh� �RÞ�ðxÞ ¼ �4��ðxÞ (1.1)

where h is the d’Alembertian on the curved background
created by the larger massM, R is the Ricci scalar, and � is
the curvature coupling constant. The charge density � of
the point particle is

�ðxÞ ¼
Z
�
q
�4ðx� � z�ð�ÞÞffiffiffiffiffiffiffi�g

p d� (1.2)

where zð�Þ describes the worldline � of the particle with
proper time �, g�	 is the background metric, g ¼ detðg�	Þ,
and �4ð�Þ is the four-dimensional Dirac distribution. The
field exerts a radiation reaction on the particle, creating a
self-force [15]

fself� ¼ qr��R (1.3)

which leads to the equations of motion for the scalar
particle,

ma� ¼ ðg�	 þ u�u	Þfself	 ¼ qðg�	 þ u�u	Þr	�R

(1.4)

where u� is the particle’s four-velocity and �R is the
radiative part of the field. Identifying the correct radiative
field (which is regular at the particle’s position) is the
essential step in the derivation of the self-force [16].
Note that the projection operator g�	 þ u�u	 has been
applied here to ensure that u�a

� ¼ 0. The massm appear-

ing in (1.4) is the ‘‘dynamical’’ (and renormalized) parti-
cle’s mass, which in the scalar case is not necessarily a
constant of motion [15]. Rather, it evolves according to

dm

d�
¼ �qu�r��R: (1.5)

In other words, a spinless particle may radiate away its
mass through the emission of monopolar waves.
A leading method for computing the derivative of the

radiative field,r��R, and hence the self-force, is based on

mode-sum regularization (MSR). The MSR approach was
developed by Barack, Ori, and collaborators [23–26] and
Detweiler and coworkers [17,27,28]. The method has been
applied to the Schwarzschild spacetime to compute, for
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example, the gravitational self-force for circular orbits [26]
and the scalar self-force for eccentric orbits [29]. The
application to Kerr is in progress [30,31]. It was recently
shown [32] that the gravitational self-force computed in the
Lorenz gauge is in agreement with that found in the Regge-
Wheeler gauge [17,27]. Further gauge-invariant compari-
sons and comparison with the predictions of post-
Newtonian theory [33,34] are presently under considera-
tion [35].

One drawback of the MSR method is that it gives
relatively little geometric insight into the physical origin
of the self-force. An alternative approach, based on
matched expansions, was suggested by Poisson and
Wiseman in 1998 [36]. Their idea was to compute the
self-force by matching together two independent expan-
sions for the Green function, valid in ‘‘quasilocal’’ and
‘‘distant past’’ regimes. This suggestion was analyzed by
Anderson and Wiseman [37], who concluded in 2005 that
‘‘this approach remains, in our opinion, in the category of
‘promising but possessing some technical challenges’.’’
The present paper represents the first practical implemen-
tation of this method.

In the following sections we demonstrate that accurate
self-force calculations via matched expansions are indeed
feasible. We apply the method to compute the self-force for
a scalar charge at a fixed position on the product spacetime
dS2 � S2 (i.e. the product of a two-sphere and a two-
dimensional de Sitter spacetime) introduced long ago by
Nariai [38,39]. We introduce a method for calculating the
distant past Green function using an expansion in quasi-
normal modes (QNMs). The effect of caustics upon wave
propagation is examined. This work is intended to lay a
foundation for future studies of self-force in black hole
spacetimes through matched expansions. The prospects for
extending the calculation to the Schwarzschild spacetime
appear good, although the work remains to be conducted.

The remainder of this paper is organized as follows. In
Sec. II we define the self-force and outline the Poisson-
Anderson-Wiseman method of matched expansions. In
Sec. III we consider wave propagation on the
Schwarzschild spacetime. A radial equation of standard
form is obtained via the well-known ‘‘trick’’ of replacing
the Schwarzschild potential with a so-called Pöschl-Teller
potential. We show that a Pöschl-Teller potential arises
more naturally if we consider wave propagation on the
Nariai spacetime, whose properties are described in detail.

Section IV is concerned with the scalar Green function
on the Nariai spacetime. We begin in Sec. IVA by express-
ing the Green function as a sum over angular modes and
integral over frequency. We show in Sec. IVB that per-
forming the integral over frequency leaves a sum of resi-
dues: a so-called ‘‘quasinormal mode sum,’’ which may be
matched onto a quasilocal Green function, briefly de-
scribed in Sec. IVC.

In Sec. V we consider the singular structure of the Green
function. In Sec. VAwe demonstrate that the Green func-

tion is singular on the null surface, even beyond the bound-
ary of the normal neighborhood and through caustics. We
show that the singular behavior arises from the large-l
asymptotics of the quasinormal mode sums. To investigate
further, we employ two closely related methods for con-
verting sums into integrals, namely, the Watson transform
and Poisson sum (Sec. VB). The form of the Green func-
tion close to the null cone is studied in detail in Secs. VD
and VE, and asymptotic expressions are derived.
In Sec. VI we take a short breath and rewrite the main

equations obtained for the Green function.
Section VII describes the calculation of the self-force for

the specific case of the static particle. For the
Schwarzschild spacetime, the static case has been well
studied. We show in Sec. VII B that the massive-field
approach of Rosenthal [40,41] may be adapted to the
Nariai spacetime. This provides an independent check on
the matched-expansion calculation which is described in
Sec. VII C. Relevant numerical methods are outlined in
Sec. VII D.
In Sec. VIII we present a selection of significant nu-

merical results. We start in Sec. VIII A by examining the
properties of the quasinormal mode Green function. In
Sec. VIII B we test the asymptotic expressions describing
the singularity structure. In Sec. VIII C we show that the
quasilocal and distant past Green functions match in an
appropriate regime. In Sec. VIII D we present results for
the self-force on a static particle.
We conclude in Sec. IX with a discussion of the impli-

cations of this study. Throughout the paper, we employ
geometrized units G ¼ c ¼ 1, and the metric sign conven-
tion f� þþþg.

II. THE METHOD OF MATCHED EXPANSIONS

Here we briefly outline the Poisson-Wiseman-Anderson
method of matched expansions [36,37]. We start with an
expression for the covariant derivative of the radiative
scalar field [15,16],

r��Rðzð�ÞÞ ¼ � 1

12
ð1� 6�ÞqRu� þ qðg�	 þ u�u	Þ

�
�
1

3
_a	 þ 1

6
R	


u



�
þ�tail

� ðzð�ÞÞ: (2.1)

Here, R	

 is the Ricci tensor of the background metric and

_a	 is the derivative with respect to proper time of the four-
acceleration a	 ¼ u	;�u

�. The first two sets of terms are

evaluated locally [14–16]. The final term �tail
� is nonlocal;

it is the so-called tail integral,

�tail
� ðzð�ÞÞ ¼ q lim

�!0þ

Z ���

�1
r�Gretðzð�Þ; zð�0ÞÞd�0 (2.2)

where Gretðx; x0Þ is the retarded Green function, defined by
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ðhx � �RÞGretðx; x0Þ ¼ �4�
�4ðx� � x0�Þffiffiffiffiffiffiffi�g

p (2.3)

together with appropriate causality conditions (which we
describe in Sec. IVA).

Note that the tail integral depends on the entire past
history of the particle’s motion. Its evaluation is the main
obstacle to progress. The tail integral (2.2) may be split into
so-called quasilocal (QL) and distant past (DP) parts, as
shown in Fig. 1. That is,

�tail
� ðzð�ÞÞ ¼ �ðQLÞ

� ðzð�ÞÞ þ�ðDPÞ
� ðzð�ÞÞ

¼ q lim
�!0þ

Z ���

����
r�Gretðzð�Þ; zð�0ÞÞd�0

þ q
Z ����

�1
r�Gretðzð�Þ; zð�0ÞÞd�0 (2.4)

where �� �� is the matching time, with �� being a free
parameter in the method (see Fig. 1).

The QL and DP parts may be evaluated separately using
independent methods. In particular, if we choose �� to be
sufficiently small that zð�Þ and zð����Þ are within a
normal neighborhood1 [42], then the QL part may be
evaluated by expressing the Green function in the
Hadamard parametrix [43]. In other words, if zð�Þ and
zð����Þ are connected by a unique nonspacelike geode-
sic, then the QL integral is simply

q�1�ðQLÞ
� ðzð�ÞÞ ¼ � lim

�!0þ

Z ���

����
r�Vðzð�Þ; zð�0ÞÞd�0

(2.5)

where Vðx; x0Þ is the smooth symmetric biscalar describing
the propagation of radiation within the light cone (see
Sec. IVC for full details). The approach ultimately yields
a series expansion for the QL self-force in the coordinate
separation of the points x and x0. The Hadamard-expansion
method is now well advanced for several spacetimes of
physical relevance, such as Schwarzschild and Kerr [44–
49]. In Sec. IVC we apply this method to determine the
quasilocal Green function and self-force in the Nariai
spacetime.

Evaluating the contribution to the Green function from
the distant past is a greater challenge, and is the main focus
of this work. One possibility is to decompose the Green
function into a sum over angular modes and an integral
over frequency. In a spherically symmetric spacetime the
‘‘retarded’’ Green function may be defined in terms of a

Laplace integral transform and an angular l-mode decom-
position as follows,

Gretðx; x0Þ ¼ 1

2�

Z þ1þic

�1þic
d!e�i!ðt�t0Þ Xþ1

l¼0

ð2lþ 1Þ

� Plðcos�Þ~gl!ðr; r0Þ: (2.6)

Here c is a positive constant, t and r are appropriate time
and radial coordinates, and cos� ¼ cos� cos�0 þ
sin� sin�0 cosð
�
0Þ, where � is the angle between the
spacetime points x and x0. The radial Green function
~gl!ðr; r0Þ may be constructed from two linearly indepen-
dent solutions of a radial equation. Since the DP Green
function does not need to be extended to coincidence (�0 !
�), the mode sum does not require regularization (though it
may still be regularized if desired). However, Anderson
and Wiseman [37] found the convergence of the mode sum
to be poor, noting that going from 10 modes to 100
increased the accuracy by only a factor of 3.
In this paper we explore a new method for evaluating the

distant past contribution, based on an expansion in so-
called quasinormal modes. The integral over frequency
in Eq. (2.6) may be evaluated by deforming the contour
in the complex plane [50,51]. This is shown in Fig. 6
(below). In the Schwarzschild case there arise three distinct
contributions to the Green function, from the three sections
of the frequency integral in (2.6):
(1) An integral along high-frequency arcs, which leads

to a prompt response.
(2) A quasinormal mode sum, arising from the residues

of poles in the lower half-plane of complex fre-
quency!. This contribution leads to a damped ring-
ing, characteristic of the black hole.

(3) An integral along a branch cut, which leads to a
power-law tail (among possibly other features).

FIG. 1. In the method of matched expansions, the tail integral
is split into QL and DP parts.

1More precisely, the Hadamard parametrix requires that zð�Þ
and zð����Þ lie within a causal domain—a convex normal
neighborhood with a causality condition attached. This effec-
tively requires that zð�Þ and zð����Þ be connected by a unique
nonspacelike geodesic which stays within the causal domain.
However, as we expect the term normal neighborhood to be
more familiar to the reader, we will use it throughout this paper,
with implied assumptions of convexity and a causality condition.
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The three parts (1–3) are commonly supposed to dominate
the scattered signal at early, intermediate, and late times,
respectively [50,51]. [This may be slightly misleading,
however; Leaver [50] notes that, in addition, the branch-
cut integral (part 3) ‘‘contributes heavily to the initial burst
of radiation.’’] In this work, we investigate an alternative
spacetime, introduced by Nariai in 1950 [38,39], in which
the power-law tail (part 3) is absent. We demonstrate that,
on the Nariai spacetime, at suitably ‘‘late times’’ the distant

past Green function may be written as a sum over quasi-
normal modes (defined in Sec. IVB). We use the sum to
compute the Green function, the radiative field, and the
self-force for a static particle.
The key question addressed in this work is the following:

how much of the self-force arises from the quasilocal
region, and how much from the distant past? If the Green
function falls off fast enough, then only the QL integral
would be needed, and, since the QL integral is restricted to

FIG. 2 (color online). Orbiting null geodesics on the Schwarzschild spacetime that intersect timelike circular orbits of various radii
R ¼ 6M, 8M, 10M, and 12M. The null geodesics are shown as dotted (colored) lines, and the timelike circular orbit is shown as a solid
(black) line. The spacetime point x is connected to x1; x2; . . . by null geodesics, as well as by the timelike circular geodesic. The Green
function is singular when x0 ¼ x1, x2, etc. Note that between R ¼ 6M and R ¼ 8M the ordering of the points x2 and x3 becomes
reversed.
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the normal neighborhood, only the Hadamard parametrix
is required. Unfortunately, this is not necessarily the case;
Anderson and Wiseman [37] note that there are simple
situations in which the DP integral in (2.6) gives the
dominant contribution to the self-force.

Using the methods presented in this paper, we are able to
compute the retarded Green function and the integrand of
Eq. (2.2) as a function of time along the past worldline. We
show that the DP contribution cannot be neglected. In
particular, we find that the Green function and the inte-
grand of Eq. (2.2) are singular whenever the two points
z�ð�Þ and z�ð�0Þ are connected by a null geodesic. We
show that the singular form of the Green function changes
every time a null geodesic passes through a caustic. On a
spherically symmetric spacetime, caustics occur at antipo-
dal points.

On Schwarzschild spacetime, the presence of an un-
stable photon orbit at r ¼ 3M implies that a null geodesic
originating on a timelike worldline may later reintersect
the timelike worldline, by orbiting around the black hole.
Hence the effect of caustics may be significant. For ex-
ample, Fig. 2 shows orbiting null geodesics on the
Schwarzschild spacetime which intersect timelike circular
orbits of various radii. We believe that understanding the
singular behavior of the integrand of Eq. (2.2) is a crucial
step in understanding the origin of the nonlocal part of the
self-force. As we shall see, the Nariai spacetime proves a
fertile testing ground.

III. SCHWARZSCHILD AND NARIAI SPACETIMES

To evaluate the retarded Green function (2.6) we require
solutions to the homogeneous scalar-field equation on the
appropriate curved background. In the absence of sources,
the scalar-field equation (1.1) is

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g�	@	�Þ � �R� ¼ 0: (3.1)

For the Schwarzschild spacetime, the line element is

ds2 ¼ �fSðrÞdt2S þ f�1
S ðrÞdr2 þ r2d�2

2;

d�2
2 ¼ d�2 þ sin2�d
2;

(3.2)

where fSðrÞ ¼ 1� 2M=r and the label ‘‘S’’ denotes
‘‘Schwarzschild.’’ Decomposing the field in the usual way,

�ðxÞ ¼
Z 1

�1
d!S

Xþ1

l¼0

Xþl

m¼�l

clm!S
�lm!S

ðxÞ

where �lm!S
ðxÞ ¼ uðSÞl!S

ðrÞ
r

Ylmð�;
Þe�i!StS ; (3.3)

where Ylmð�;
Þ are the spherical harmonics, clm!S
are the

coefficients in the mode decomposition, and the radial

function uðSÞl!S
ðrÞ satisfies the radial equation

�
d2

dr2�
þ!2

S � VðSÞ
l ðrÞ

�
uðSÞl!S

ðrÞ ¼ 0 (3.4)

with an effective potential

VðSÞ
l ðrÞ ¼ fSðrÞ

�
lðlþ 1Þ

r2
þ f0SðrÞ

r

�

¼
�
1� 2M

r

��
lðlþ 1Þ

r2
þ 2M

r3

�
: (3.5)

Here r� is a tortoise (Regge-Wheeler) coordinate, defined
by

dr�
dr

¼ f�1
S ðrÞ )

r� ¼ rþ 2M lnðr=2M� 1Þ � ð3M� 2M ln2Þ:
(3.6)

The outer region r 2 ð2M;þ1Þ of the Schwarzschild
black hole is now covered by r� 2 ð�1;þ1Þ. Note that
we have chosen the integration constant for our conve-
nience so that, in the high-l limit, the peak of the potential
barrier (at r ¼ 3M) coincides with r� ¼ 0.

A. Pöschl-Teller potential and Nariai spacetime

Unfortunately, to the best of our knowledge, closed-form
solutions to (3.4) with potential (3.5) are not known.
However, there is a closely related potential for which
exact solutions are available: the so-called Pöschl-Teller
potential [52],

VðPTÞ
l ðr�Þ ¼ �2V0

cosh2ð�ðr� � rð0Þ� ÞÞ (3.7)

where �, V0, and rð0Þ� are constants (V0 may depend on l).
Unlike the Schwarzschild potential, the Pöschl-Teller po-

tential is symmetric about rð0Þ� , and decays exponentially in
the limit r� ! 1. Yet, like the Schwarzschild potential, it
has a single peak, and with an appropriate choice of con-
stants, the Pöschl-Teller potential can be made to fit the
Schwarzschild potential in the vicinity of this peak (see
Fig. 3). In the Schwarzschild spacetime, the peak of the
potential barrier is associated with the unstable photon
orbit at r ¼ 3M. As mentioned in the previous section
(see Fig. 2), the photon orbit may lead to singularities in
the distant past Green function, and in the integrand of
(2.2). Hence by building a toy model which includes an
unstable null orbit, we hope to capture the essential fea-
tures of the distant past Green function. Authors have
found that the Pöschl-Teller potential is a useful model
for exploring (some of the) properties of the Schwarzschild
solution, for example, the quasinormal mode frequency
spectrum [53,54]. In this work, we hope to gain some
insight into the distant past integral on the Schwarzschild
spacetime by using the exact wave functions for the
Pöschl-Teller potential, given later in Sec. IVA1.
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An obvious question follows: is there a spacetime on
which the scalar-field equation reduces to a radial wave
equation with a Pöschl-Teller potential? The answer turns
out to be yes [55,56]. The relevant spacetime was first
introduced by Nariai in 1950 [38,39].

To show the correspondence explicitly, let us define the
line element

ds2 ¼ �fð�Þdt2N þ f�1ð�Þd�2 þ d�2
2; (3.8)

where fð�Þ ¼ 1� �2 and � 2 ð�1;þ1Þ. The line element
(3.8) describes the central diamond of the Penrose diagram
of the Nariai spacetime (Fig. 4), which is described more
fully in Sec. III B. Consider the wave equation (3.1) on this

spacetime. We seek separable solutions of the form�ðxÞ ¼
uðNÞ
l!N

ð�ÞYlmð�;
Þe�i!NtN , where the label ‘‘N’’ denotes

‘‘Nariai.’’ The radial function satisfies the equation

fð�Þ d

d�

�
fð�Þ du

ðNÞ
l!N

d�

�
þ ð!2

N � fð�Þ½lðlþ 1Þ þ �R�ÞuðNÞ
l!N

ð�Þ ¼ 0 (3.9)

where � is the curvature coupling constant and R ¼ 4 is the
Ricci scalar. Now let us define a new tortoise coordinate in
the usual way,

d��
d�

¼ f�1ð�Þ ) �� ¼ tanh�1�: (3.10)

Note that fð�Þ ¼ sech2ð��Þ and the tortoise coordinate is
in the range �� 2 ð�1;þ1Þ. Hence the radial equation
(3.9) may be rewritten in Pöschl-Teller form,�

d2

d�2�
þ!2

N � U0

cosh2��

�
uðNÞ
l!N

ð��Þ ¼ 0 (3.11)

where U0 ¼ lðlþ 1Þ þ 4�. We take the point of view that,
as well as being of interest in its own right, the Nariai
spacetime can provide insight into the propagation of
waves on the Schwarzschild spacetime. The closest anal-
ogy between the two spacetimes is found by making the
associations

�� Ð �r�; tN Ð �tS;

!N Ð !S=� where � ¼ 1=ð ffiffiffiffiffiffi
27

p
MÞ:

(3.12)

Figure 3 shows the corresponding match between the

potential barriers VðSÞ
l ðr�Þ and VðPTÞ

l ð��Þ. In the following

sections, we drop the label ‘‘N,’’ so that t � tN and ! �
!N.

The solutions of Eq. (3.11) are presented in Sec. IVA1.
First, though, we consider the Nariai spacetime in more
detail.

B. Nariai spacetime

The Nariai spacetime [38,39] may be constructed from
an embedding in a six-dimensional Minkowski space

ds2 ¼ �dZ2
0 þ

X5
i¼1

dZ2
i (3.13)

of a 4-D surface determined by the two constraints

� Z2
0 þ Z2

1 þ Z2
2 ¼ a2;

Z2
3 þ Z2

4 þ Z2
5 ¼ a2; where a > 0;

(3.14)

corresponding to a hyperboloid and a sphere, respectively.
The entire manifold is covered by the coordinates
fT ; c ; �; 
g defined via

Z0 ¼ a sinh

�
T
a

�
; Z1 ¼ a cosh

�
T
a

�
cosc ;

Z2 ¼ a cosh

�
T
a

�
sinc ;

(3.15)

Z3 ¼ a sin� cos
; Z4 ¼ a sin� sin
;

Z5 ¼ a cos�;
(3.16)

with T 2 ð�1;þ1Þ, c 2 ½0; 2�Þ, � 2 ½0; ��, 
 2
½0; 2�Þ. The line element is given by

ds2 ¼ �dT 2 þ a2cosh2
�
T
a

�
dc 2 þ a2d�2

2: (3.17)

From this line element one can see that the spacetime has
the following features: (1) it has geometry dS2 � S2 and
topology R� S1 � S2 (the radius of the one-sphere di-
minishes with time down to a value a at T ¼ 0 and then
increases monotonically with time T , whereas the two-
spheres have constant radius a), (2) it is symmetric (i.e.,
R�	��;� ¼ 0), with R�	 ¼ �g�	 and a constant Ricci

scalar R ¼ 4�, where � ¼ 1=a2 is the value of the cos-
mological constant, (3) it is spherically symmetric (though

FIG. 3 (color online). Effective potentials for Schwarzschild
(3.5) and Pöschl-Teller (3.7) radial wave equations. Note that
here the Schwarzschild tortoise coordinate is defined in (3.6) so
that the peak is near r� ¼ 0. The constants in (3.7) are V0 ¼
lðlþ 1Þ, rð0Þ� ¼ 0, and � ¼ 1=ð ffiffiffiffiffiffi

27
p

MÞ.
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not isotropic), homogeneous, and locally (not globally)
static, and (4) its conformal structure can be obtained by
noting the Kruskal-like coordinates defined via U ¼
�ð1��UVÞðZ0 þ Z1Þ=2, V¼�ð1��UVÞðZ0�Z1Þ=2,
for which the line element is then

ds2 ¼ � 4dUdV

ð1��UVÞ2 þ d�2
2: (3.18)

Its two-dimensional conformal Penrose diagram is shown
in Fig. 4 (see, e.g., [57]), where we have defined the
conformal time � � 2 arctanðT =aÞ 2 ð0; �Þ. Its Penrose
diagram differs from that of de Sitter spacetime in that here
each point represents a two-sphere of constant radius; note
also that the corresponding angular coordinate c in
de Sitter spacetime has a different range, c 2 ½0; �Þ,
which corresponds to its R� S3 topology. Past and future
timelike infinity i� coincide with past and future null
infinity I�, respectively, and they are all spacelike hyper-
surfaces. A consequence of the latter fact is the existence of
past/future (cosmological) event horizons [57–59]: not all
events in the spacetime will be influentiable/observable by
a geodesic observer; the boundary of the future/past of the
worldline of the observer is its past/future (cosmological)
event horizon.

In this paper, we consider the static region of the Nariai
spacetime which is covered by the coordinates ft; �; �;
g,
where � � a tanhð��=aÞ 2 ð�a;þaÞ, �� � ðv� uÞ=2 2
ð�1;þ1Þ, t � ðvþ uÞ=2 2 ð�1;þ1Þ, and the null co-

ordinates fu; vg are given via U ¼ ae�u=a, V ¼ �aev=a.
This coordinate system, ft; �; �;
g, covers the diamond-
shaped region in the Penrose diagram (Fig. 4) around the
hypersurface, say, c ¼ � (because of homogeneity we
could choose any other c ¼ constant hypersurface). We
denote byH�� the past cosmological event horizon at � ¼
�a of an observer moving along c ¼ �; similarly, Hþ�

will denote its future cosmological event horizon at � ¼
�a. Interestingly, Ginsparg and Perry [60] showed that this
static region is obtained from the Schwarzschild–de Sitter
black hole spacetime as a particular limiting procedure in
which the event and cosmological horizons of the
Schwarzschild–de Sitter coincide (see also [61–64]).
Note that there are three hypersurfaces � ¼ 0, only two

of which (those corresponding to c ¼ 0 and 2�) are
identified (the one corresponding to c ¼ � is not).
Without loss of generality, we will take � ¼ 1 ¼ a. The
line element corresponding to this static coordinate system
is given in (3.8).

C. Geodesics on Nariai spacetime

Let us now consider geodesics on the Nariai spacetime.
Our chief motivation is to find the orbiting geodesics, the
analogous rays to those shown in Fig. 2 for the
Schwarzschild spacetime. We wish to find the coordinate
times t� t0 for which two angularly separated points at the
same ‘‘radius’’ � (the quotes indicate the fact that the area
of the two-spheres does not depend on �) may be con-
nected by a null geodesic. We expect the Green function to
be singular at these times t� t0.
We will assume that particle motion takes place within

the central diamond of the Penrose diagram in Fig. 4, that
is, the region �1<�<1 (notwithstanding the fact that
timelike geodesics may pass through the future horizons
Hþþ and Hþ� in finite proper time). Without loss of
generality, let us consider motion in the equatorial plane
(� ¼ �=2) described by the worldline z�ð
Þ¼ ½tð
Þ;�ð
Þ;
�=2;
ð
Þ� with the tangent vector u�¼½ _t; _�;0; _
�, where
the overdot denotes differentiation with respect to an affine
parameter 
. Symmetry implies two constants of motion,

k ¼ fð�Þ _t and h¼ _
. The radial equation is _�¼�Hð�2�
�2
0Þ1=2, where �0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2=H2

p
is the closest approach

FIG. 4. Penrose diagram for the Nariai spacetime in coordinates ðc ; �Þ. The hypersurfaces c ¼ 0 and c ¼ 2� are identified. Past/
future timelike infinity i�=þ coincides with past/future null infinity I�=þ, and they are all spacelike hypersurfaces. Thus, there exist
observer-dependent past and future cosmological event horizons, here marked as H�� for an observer along c ¼ �.
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point and H2 ¼ h2 þ �m2
0. Here, m0 is the scaling of the

affine parameter (which is equal to the particle’s rest mass
in the case of a massive particle following a timelike
geodesic) and � ¼ þ1 for timelike geodesics, � ¼ 0 for
null geodesics, and � ¼ �1 for spacelike geodesics. We
still have the freedom to rescale the affine parameter 
 by
choosing a value form0. It is conventional to rescale so that

 corresponds to proper time or distance, that is, set m0 ¼
1. Instead, we will rescale so that 
 ¼ 
 [N.B. here 
 and
�
 are unbounded, 
;�
 2 ½0;þ1Þ, as opposed to � 2
½0; ��]; that is, we set h ¼ 1.

Let us consider a geodesic that starts at � ¼ �1, 
 ¼ 0
which returns to radius � ¼ �1 after passing through an

angle of �
. The geodesic distance in this case is s ¼
��ðH2 � 1Þ1=2�
. It is straightforward to show that

�ð
Þ ¼ �1

coshðH
�H�
=2Þ
coshðH�
=2Þ ; (3.19)

hence the radius of closest approach �0 is

�0 ¼ �1sechðH�
=2Þ: (3.20)

The coordinate time�t1 it takes to go from � ¼ �1,
 ¼ 0
to � ¼ �1, 
 ¼ �
 is

�t1 ¼ 2��1 þ ln

0
@�1 � �2

0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2

0Þð�2
1 � �2

0Þ
q

�1 þ �2
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� �2

0Þð�2
1 � �2

0Þ
q

1
A
(3.21)

where ��1 ¼ tanh�1ð�1Þ. Substituting (3.20) into (3.21)

yields �t1 as a function of the angle �
,

�t1 ¼ 2��1 þ ln

0
@1� �1sech

2ðH�
=2Þ þ tanhðH�
=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1sech
2ðH�
=2Þ

q
1þ �1sech

2ðH�
=2Þ � tanhðH�
=2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

1sech
2ðH�
=2Þ

q
1
A: (3.22)

This takes a particularly simple form as �1 ! 1,

�t1 � 2��1 þ lnðsinh2ðH�
=2ÞÞ; for �1 ! 1: (3.23)

As �
 ! 1, the geodesic coordinate time increases line-
arly with the orbital angle �
,

�t1 � 2��1 þH�
; for �
 ! 1; �1 ! 1: (3.24)

In other words, for fixed spatial points near � ¼ 1, the
geodesic coordinate times �t1 are very nearly periodic,
with the period 2�H. Results (3.19), (3.22), (3.23), and
(3.24) will prove useful when we come to consider the
singularities of the Green function in Secs. VD and VE.

IV. THE SCALAR GREEN FUNCTION

A. Retarded Green function as a mode sum

The retarded Green function for a scalar field on the
Nariai spacetime is defined by Eq. (2.3), together with
appropriate causality conditions. As described in Sec. II
the retarded Green function may be defined through a
Laplace integral transform and an angular l-mode sum,

Gretðt; ��; t0; �0�;�Þ ¼ 1

2�

Z þ1þic

�1þic
d!

Xþ1

l¼0

~gl!ð��; �0�Þ

� ð2lþ 1ÞPlðcos�Þe�i!ðt�t0Þ; (4.1)

where �� and t are the ‘‘tortoise’’ and ‘‘time’’ coordinates
in the line element (3.8), c is a positive real constant, t� t0
is the coordinate time difference, and � is the spatial angle
separating the points. The remaining ingredient in this
formulation is the one-dimensional (radial) Green function
~gl!ð��; �0�Þ which satisfies

�
d2

d�2�
þ!2 � U0

cosh2��

�
~gl!ð��; �0�Þ ¼ ��ð�� � �0�Þ:

(4.2)

The radial Green function may be constructed from two
linearly independent solutions of the radial equation (3.11).
To ensure a retarded Green function we apply causal
boundary conditions: no flux may emerge from the past
horizons H�� and H�þ (see Fig. 4). To this end, we will
employ a pair of solutions denoted uinl! and uupl!, in analogy
with the Schwarzschild case. These solutions are defined in
the next subsection.

1. Radial solutions

The homogeneous radial equation (3.11) may be rewrit-
ten as the Legendre differential equation

d

d�

�
ð1� �2Þ dul!

d�

�
þ

�
�ð�þ 1Þ � �2

1� �2

�
ul! ¼ 0

(4.3)

where

� ¼ �i!; � ¼ �1=2þ i
; (4.4)


 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1=2Þ2 þ d

q
; d ¼ 4�� 1=2: (4.5)

We choose � ¼ i!, 
 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ 1=2Þ2 þ d
p

and note that
the choice of signs will not have a bearing on the result.
The value of the constant � in the conformally coupled
case in a D-dimensional spacetime is ðD� 2Þ=ð4ðD� 1ÞÞ.
Note that for conformal coupling in 4-D (� ¼ 1=6), the
constant is d ¼ 1=6, and for minimal coupling (� ¼ 0) we
have d ¼ �1=2. For the special value � ¼ 1=8, we have
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d ¼ 0. The possible significance of the value � ¼ 1=8, the
conformal-coupling factor in three dimensions, was re-
cently noted in a study of the self-force on wormhole
spacetimes [65].

The solutions of Eq. (4.3) are associated Legendre func-
tions of complex order, which are defined in terms of
hypergeometric functions as follows [Ref. [66],
Eq. (8.771)],

P�
�ð�Þ ¼

1

�ð1��Þ
�
1þ �

1� �

�
�=2

� 2F1

�
��;�þ 1; 1��;

1� �

2

�
: (4.6)

Note that P
�
�1=2þi
ð�Þ ¼ P

�
�1=2�i
ð�Þ, so clearly any re-

sults will be independent of the choice of sign for 
 in (4.5).
In the particular case � ¼ 0, the solutions belong to the
class of conical functions [Ref. [66], Eq. (8.840)]. We
define the pair of linearly independent solutions (see
Penrose diagram in Fig. 5) to be

uðinÞl! ð�Þ ¼ �ð1��ÞP�
�ð��Þ; (4.7)

uðupÞl! ð�Þ ¼ �ð1��ÞP�
�ð�Þ: (4.8)

These solutions are labeled ‘‘in’’ and ‘‘up’’ because they
obey analogous boundary conditions to the ‘‘ingoing at

horizon’’ and ‘‘outgoing at infinity’’ solutions that are
causally appropriate in the Schwarzschild case [51]. It is
straightforward to verify that the in and up solutions obey

uðinÞl! � e�i!�� as �� ! �1; (4.9)

uðupÞl! � eþi!�� as �� ! þ1: (4.10)

To find the asymptotes of uðinÞl! near � ¼ 1, we may employ

the series expansion

2F1ða; b; c; zÞ ¼
�ðcÞ�ðaþ b� cÞ

�ðaÞ�ðbÞ ð1� zÞc�a�b

�X1
k¼0

ðc� aÞkðc� bÞk
ðcþ 1� a� bÞk

ð1� zÞk
k!

�

þ �ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞ

�X1
k¼0

akbk
ð1þ aþ b� cÞk

ð1� zÞk
k!

�
(4.11)

where ðzÞk � �ðzþ kÞ=�ðzÞ is the Pochhammer symbol. In
our case a ¼ ��, b ¼ �þ 1, c ¼ 1��, and 1� z ¼
ð1� �Þ=2. It is straightforward to show that

uðinÞl! ð��Þ �
�
e�i!�� �� ! �1
AðoutÞ
l! ei!�� þ AðinÞ

l! e�i!�� �� ! þ1;

(4.12)

where

AðinÞ
l! ¼ �ð1� i!Þ�ð�i!Þ

�ð1þ �� i!Þ�ð��� i!Þ ; (4.13)

AðoutÞ
l! ¼ �ð1� i!Þ�ði!Þ

�ð1þ �Þ�ð��Þ ; (4.14)

with � as defined in (4.4). The up solution is found from
the in solution via spatial inversion � ! ��; hence

u
ðupÞ
l! ð��Þ �

�
AðoutÞ
l! e�i!�� þ AðinÞ

l! ei!�� �� ! �1
ei!�� �� ! þ1:

(4.15)

The Wronskian W of the two linearly independent solu-
tions uinl!ð��Þ and u

up
l!ð��Þ can be easily obtained:

W ¼ uinl!ð��Þdu
up
l!

d��
� uupl!ð��Þdu

in
l!

d��
¼ 2i!AðinÞ

l! : (4.16)

The one-dimensional Green function ~gl!ð��; �0�Þ is then
given by

~gl!ð��; �0�Þ

¼ � 1

W

� uinl!ð��Þuupl!ð�0�Þ �� <�0�
uupl!ð��Þuinl!ð�0�Þ �� >�0�

¼ 1

2
�ð1þ ���Þ�ð����ÞP�

�ð��<ÞP�
�ð�>Þ; (4.17)

where �< � minð�; �0Þ and �> � maxð�; �0Þ. The four-
dimensional retarded Green function can thus be written as

FIG. 5 (color online). Penrose diagrams for ‘‘in’’ and ‘‘up’’
radial solutions.
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Gretðx; x0Þ ¼ 1

4�

Xþ1

l¼0

ð2lþ 1ÞPlðcos�Þ
Z þ1þic

�1þic
d!e�i!ðt�t0Þ�

�
1

2
þ i
� i!

�
�

�
1

2
� i
� i!

�
Pi!
�1=2þi
ð��<ÞPi!

�1=2þi
ð�>Þ:

(4.18)

Unfortunately, we have not been able to find anywhere in
the literature where this retarded Green function has been
obtained in closed form. In this paper we will calculate it
and extract interesting information about it (such as its
singularity structure) by using a combination of analytic
and numerical techniques.

B. Distant past Green function: the quasinormal mode
sum

As discussed in Sec. II, the integral over frequency in
Eq. (4.1) may be evaluated by deforming the contour in the
complex plane [50,51]. The deformation is shown in Fig. 6.
The left plot (a) shows the Schwarzschild case, and the
right plot (b) shows the Nariai case.

On the Schwarzschild spacetime, it is well known that a
‘‘power-law tail’’ arises from the frequency integral along
a branch cut along the (negative) imaginary axis [Fig. 6,
part (3)]. In the Schwarzschild case, the branch cut is
necessary due to a branch point in ~gl!ðr; r0Þ at ! ¼ 0
[50,67]. In contrast, for the Nariai case with � > 0, ! ¼
0 is a regular point of ~gl!ðr; r0Þ [the Wronskian (4.16) is
well defined and nonzero in the limit ! ! 0 and the
Legendre functions P

�
�ð�Þ are regular for � 2 ð�1;þ1Þ].

Interestingly, for minimal coupling (� ¼ 0), we find that
! ¼ 0 is a simple pole of ~gl!ðr; r0Þ when l ¼ 0, and yet

AðinÞ
l¼0;!¼0 � 0, so this mode does not obey the quasinormal

mode boundary conditions (see below); we will not con-
sider the minimal-coupling case in this paper, however. In
either case (� > 0 and � ¼ 0), ! ¼ 0 is not a branch point
and hence power-law decay does not arise on the Nariai
spacetime.

The simple poles of the Green function (shown as dots in
Fig. 6) occur in the lower half-plane of the complex

frequency plane. Given that the associated Legendre func-
tions P�

�ð�Þ have no poles for fixed � 2 ð�1;þ1Þ, and that
the poles of �ð1��Þ in Eqs. (4.7) and (4.8) cancel out
with those of the Wronskian, the poles of the Green func-
tion correspond to the zeros of the Wronskian (4.16). The
Wronskian is zero when the in and up solutions are linearly
dependent. This occurs at a discrete set of (complex) QNM
frequencies !q. Beyer [68] has shown that, for the Pöschl-

Teller potential, the corresponding QNM radial solutions
form a complete basis at sufficiently late times (t > tc, to
be defined below). Completeness means that any wave
function obeying the correct boundary conditions at �� !
�1 can be represented as a sum over quasinormal modes,
to arbitrary precision. Intuitively, we may expect this to
mean that, at sufficiently late times, the Green function
itself can be written as a sum over the residues of the poles.

1. Quasinormal modes

QNMs are solutions to the radial wave equation (3.11)
which are left-going (e�i!��) as �� ! �1 and right-going
(eþi!��) as �� ! þ1. QNMs occur at discrete complex

frequencies ! ¼ !q for which AðinÞ
l!q

¼ 0 (with the men-

tioned exception of! ¼ 0 for modes l ¼ 0 in the case � ¼
0). At QNM frequencies, the in and up solutions (uinl!q

and

u
up
l!q

) are linearly dependent and the Wronskian (4.16) is

zero.
The QNMs of the Schwarzschild black hole have been

studied in much detail [69–72]. QNM frequencies are
complex, with the real part corresponding to oscillation
frequency, and the (negative) imaginary part corresponding
to damping rate. QNM frequencies !ln are labeled by two
integers: l, the angular momentum, and n ¼ 0; 1; . . .1, the

FIG. 6. Contour integrals. These plots show the deformation of the integral over frequency in the complex plane to include the poles
of the Green function (quasinormal modes), for two spacetimes: (a) Schwarzschild (left plot) (including a branch point at ! ¼ 0 and
the corresponding branch cut) and (b) Nariai (right plot) (for � > 0).
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overtone number. For every multipole l, there are an infi-
nite number of overtones. In the asymptotic limit l 	 n,
the Schwarzschild QNM frequencies approach [53,73,74]

M!ðSÞ
ln 
 1ffiffiffiffiffiffi

27
p ½�ðlþ 1=2Þ � iðnþ 1=2Þ�: (4.19)

In general, the damping increases with n. The n ¼ 0
(‘‘fundamental’’) modes are the least damped.

The quasinormal modes of the Nariai spacetime are

found from the condition AðinÞ
l!ln

¼ 0. Using (4.13), we find

1þ �� i!ln ¼ �n or � �� i!ln ¼ �n (4.20)

where n is a non-negative integer. These conditions lead to
the QNM frequencies

!ln ¼ �
� iðnþ 1=2Þ; (4.21)

where 
 is defined in (4.5). (Note we have chosen the sign
of the real part of the frequency here for consistency with
previous studies [53,54] which use � ¼ �! as the fre-
quency variable.)

2. The quasinormal mode sum

The quasinormal mode sum is constructed from (2.6) by
taking the sum over the residues of the poles of ~gl!ð�; �0Þ
in the complex-! plane. Applying Leaver’s analysis [50]
to (2.6), with the radial Green function (4.17), we obtain

GQNM
ret ðt; �; t0; �0;�Þ ¼ 2Re

Xþ1

n¼0

Xþ1

l¼0

ð2lþ 1ÞPlðcos�Þ

�Bln~ulnð�Þ~ulnð�0Þe�i!lnT; (4.22)

where

T � t� t0 � �� � �0�; (4.23)

and the sum is taken over either the third or fourth quadrant
of the frequency plane only. Here, � and t are the coor-
dinates in line element (3.8), �� is defined in (3.10),!ln are
the QNM frequencies and Bln are the excitation factors,
defined as

B ln �
AðoutÞ
l!ln

2!ln
dAðinÞ

l!

d! j!ln

; (4.24)

and ~ulnð�Þ are the QNM radial functions, defined by

~u lnð��Þ ¼
uinl!ln

ð��Þ
AðoutÞ
l!ln

ei!ln��
: (4.25)

The QNM radial functions are normalized so that ~ulnð�Þ !
1 as � ! 1 (�� ! 1). The excitation factors, defined in
(4.24), may be shown to be

B ln ¼ 1

2n!

�ðnþ 1� 2i!lnÞ
½�ð1� i!lnÞ�2

¼ 1

2n!

�ð�nþ 2i
Þ
½�ð�nþ 1=2þ i
Þ�2 : (4.26)

The steps in the derivation are given in Appendix A.3 of
[54].
The Green function (4.22) now takes the form of a

double infinite series, taken over both angular momentum
l and overtone number n. Let us briefly consider the con-
vergence properties of these sums.
The infinite series over n taken at fixed l is convergent if

t� t0 > tc, where tc � �� þ �0� (i.e., at late times T > 0),
and divergent if t� t0 < tc (i.e., at ‘‘early times’’ T < 0).
Note that the QNM frequencies have a negative imaginary
part. The dominant quantity in the series is the exponential
expð�ðnþ 1=2ÞTÞ, which decays or diverges more power-
fully with n than any other factor in the sum (this can be
seen from the exact analytic forms shown below for the
excitation factors and the radial functions and their large-n
asymptotic behavior). More details on the convergence
with n in the Schwarzschild case are given in Sec. IIIB
of [51], and their arguments follow through to our case.
Beyer [68] has shown in the Nariai case that, for late times
T > 0, QNMs form a complete basis. Physically, for the
QNM n sum to be appropriate, sufficient coordinate time
must elapse for a light ray to propagate inwards from �0,
reflect off the potential barrier near � ¼ 0, and propagate
outwards again to �.
The infinite series over l, taken at fixed n, is divergent.

For large l, the magnitudes of the factors ðlþ 1=2ÞBln,

Plðcos�Þ, and ~ulnð�Þ asymptote as, respectively, ðlþ
1=2Þnþ1=2, ðlþ 1=2Þ�1=2 [except at � ¼ 0, �, where it is
equal to þ1, ð�1Þl, respectively; see Eq. (C8)] and a
bounded term. Therefore, the limit l ¼ þ1 of the sum-
mand in (4.22) is not zero and so the l series (for fixed n) is
divergent. Despite the series being divergent, we show in
Sec. VC by applying a Watson transform that well-defined
and meaningful values can be extracted from the series
over l. This procedure (the Watson transform) is not pos-
sible globally, as the series also contains ‘‘physical’’ diver-
gences, associated with the null wave front. We show in
Sec. VA that the breakdown in validity of the Watson
transform is related to a ‘‘coherent phase condition’’ for
terms in the series.

3. Green function near spatial infinity, �, �0 ! þ1

In the limit that both radial coordinates �� and �0� tend to
infinity (�, �0 !þ1), the QNM sum (4.22) may be rewrit-
ten

GQNM
ret ðT; �Þ

� 2Re
X1
l¼0

ð2lþ 1ÞPlðcos�Þei
T
X1
n¼0

Blne
�ðnþ1=2ÞT;

��; �0� ! þ1; (4.27)

where 
 was defined in (4.5). Using the expression for the
excitation factors (4.26), the sum over n can be evaluated
explicitly, as follows,
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X1
n¼0

Blne
�ðnþ1=2ÞT

¼ z1=2

2

X1
n¼0

�ð�nþ 2i
Þ
½�ð�nþ 1=2þ i
Þ�2

zn

n!

¼ z1=2

2

�ð2i
Þ
½�ð1=2þ i
Þ�2

X1
n¼0

ð2i
Þ�n

½ð1=2þ i
Þ�n�2
zn

n!
(4.28)

where z ¼ e�T and ð�Þk is the Pochhammer symbol. Using
the identity ðxÞ�n ¼ ð�1Þn=ð1� xÞn and the duplication
formula �ðzÞ�ðzþ 1=2Þ ¼ 21�2z

ffiffiffiffi
�

p
�ð2zÞ, we findX1

n¼0

Blne
�ðnþ1=2ÞT

¼ e�T=2

4
ffiffiffiffi
�

p 22i
�ði
Þ
�ð1=2þ i
Þ 2F1ð��;��;�2�;�e�TÞ

(4.29)

where 2F1 is the hypergeometric function, and � was
defined in (4.4). Hence the Green function near spatial
infinity (�, �0 ! 1) is

GQNM
ret ðT; �Þ � e�T=2ffiffiffiffi

�
p Re

Xþ1

l¼0

ðlþ 1=2Þ�ði
Þ
�ð1=2þ i
Þ Plðcos�Þ

� ei
ðTþ2 ln2Þ
2F1ð��;��;�2�;�e�TÞ;

��; �0� ! þ1: (4.30)

4. Green function at arbitrary ‘‘radii’’

Unfortunately, it is not straightforward to perform the
sum over n explicitly for general values of � and �0.
Instead we must include the QNM radial functions
~ulnð��Þ, defined by (4.7) and (4.25). We note that the
Legendre function appearing in (4.7) can be expressed in
terms of a hypergeometric function [see Eq. (4.6)], and the
hypergeometric function can be written as a power series
about � ¼ 1 [Eq. (4.11)]. At quasinormal mode frequen-
cies, the second term in Eq. (4.11) is zero, and hence the
wave function is purely outgoing at infinity, as expected.
Combining results (4.6), (4.7), (4.11), and (4.25) we find
the normalized wave functions to be

~u lnð�Þ ¼
�

2

1þ �

�
i!ln

Slnð�Þ; (4.31)

where � is the radial coordinate in line element (3.8) and
Sln is a finite series with n terms,

S lnð�Þ ¼
Xn
k¼0

1

k!

ð�nþ 2i
Þkð�nÞk
ð�nþ 1=2þ i
Þk

�
1� �

2

�
k

¼ 2F1

�
�nþ 2i
;�n;�nþ 1

2
þ i
;

1� �

2

�
;

(4.32)

where we have adopted the sign convention !ln ¼ �
�
iðnþ 1=2Þ of (4.21). Hence the Green function at arbitrary
radii may be written as the double sum

GQNM
ret ðx; x0Þ ¼ 2Re

X1
l¼0

ð2lþ 1ÞPlðcos�Þei
½T�lnð2=ð1þ�ÞÞ�lnð2=ð1þ�0ÞÞ� X1
n¼0

Bln

�
4e�T

ð1þ �Þð1þ �0Þ
�
nþ1=2

Slnð�ÞSlnð�0Þ: (4.33)

5. Green function approximation from fundamental
modes

Expression (4.33) is complicated and difficult to ana-
lyze, as it involves a double infinite sum. It would be useful
to have a simple approximate expression, with only a
single sum, which captures the essence of the physics. At
late times, we might expect that the Green function is
dominated by the least-damped modes, that is, the n ¼ 0
fundamental quasinormal modes. If we discard the higher
modes n > 0, we are left with an approximation to the
Green function which does indeed seem to capture the
essential features and singularity structure. However, as
we show in Sec. VD, it does not correctly predict the
singularity times.

The n ¼ 0 approximation to the Green function is

Gðn¼0Þ
ret ðx; x0Þ

¼
�

e�T

�ð1þ �Þð1þ �0Þ
�
1=2

Re
Xþ1

l¼0

ð2lþ 1ÞPlðcos�Þ�ði
Þ
�ð1=2þ i
Þ

� ei
½Tþlnð1þ�Þð1þ�0Þ�; (4.34)

since Sl0ð�Þ � 1. Note that the sum over l is approximately

periodic in T (exactly periodic in the case � ¼ 1=8), with
period 4�.

C. Quasilocal Green function: Hadamard-WKB
expansion

We now consider the Green function in the quasilocal
region, which is needed for the calculation of the quasilo-

cal contribution to the scalar self-force �ðQLÞ
� given in

Eq. (2.4). When spacetime points x and x0 are sufficiently
close together (within a normal neighborhood—see foot-
note 1), the retarded Green function may be expressed in
the Hadamard parametrix [42,43],

Gretðx; x0Þ ¼ ��ðx; x0ÞfUðx; x0Þ�ð�ðx; x0ÞÞ
� Vðx; x0Þ�ð��ðx; x0ÞÞg; (4.35)

where ��ðx; x0Þ is analogous to the Heaviside step function
(unity when x0 is in the causal past of x, and zero other-
wise), �ð�ðx; x0ÞÞ is the standard Dirac delta function,
Uðx; x0Þ and Vðx; x0Þ are symmetric bi-scalars having the
benefit that they are regular for x0 ! x, and �ðx; x0Þ is the
Synge [16,75,76] world function. Clearly, the term involv-
ing Uðx; x0Þ, the ‘‘direct’’ part, will not contribute to the
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quasilocal integral in Eq. (2.4) since it has support only on
the light cone, while the integral is internal to the light
cone. We will therefore only concern ourselves with the
calculation of the function Vðx; x0Þ, the ‘‘tail’’ part, which
has support inside the light cone.

The fact that x and x0 are close together suggests that an
expansion of Vðx; x0Þ in powers of the separation of the
points may give a good representation of the function
within the quasilocal region. In Ref. [77] we use a WKB
method (based on that of Refs. [44,78,79]) to derive such a
coordinate expansion, and we also give estimates of its
range of validity. Referring to the results therein, we have
Vðx; x0Þ as a power series in ðt� t0Þ and ðcos�� 1Þ,

Vðx; x0Þ ¼ Xþ1

i;j¼0

vijð�Þðt� t0Þ2iðcos�� 1Þj; (4.36)

where � is the angular separation of the points. In general,
this expression also includes a third index, k, correspond-
ing to the kth power of the radial separation of the points,
ð�� �0Þk. However, for the nonradial motion considered in
the present work, we will only need the terms of order
O½ð�� �0Þ0� and O½ð�� �0Þ1�. The k ¼ 0 terms, vij0 ¼
vij, are given by Eq. (4.36) and Ref. [77], and the k ¼ 1

terms, vij1, are easily calculated from the k ¼ 0 terms

using the identity [48]

vij1ð�Þ ¼ �1
2vij0;�ð�Þ: (4.37)

Equation (4.36) therefore gives the quasilocal contribution
to the retarded Green function as required in the present
context.

V. SINGULAR STRUCTURE OF THE GREEN
FUNCTION

In this section we investigate the singular structure of the
Green function. We note that one expects the Green func-
tion to be singular when its two argument points are con-
nected by a null geodesic, on account of the ‘‘propagation
of singularities’’ theorems of Duistermaat and Hörmander
[80,81] and their application to the Hadamard elementary
function [which is, except for a constant factor, the imagi-
nary part of the Feynman propagator defined below in
Eq. (5.36)] for the Klein-Gordon equation by, e.g., Kay,
Radzikowski, and Wald [82]: ‘‘if such a distributional
bisolution is singular for sufficiently nearby pairs of points
on a given null geodesic, then it will necessarily remain
singular for all pairs of points on that null geodesic.’’

We begin in Sec. VA by exploring the large-l asymp-
totics of the quasinormal mode-sum expressions (4.30),
(4.33), and (4.34). The large-l asymptotics of the mode
sums are responsible for the singularities in the Green

function. We argue that the Green function is singular
whenever a ‘‘coherent phase’’ condition is satisfied. The
coherent phase condition is applied to find the times at
which the Green function is singular. We show that the
‘‘singularity times’’ are exactly those predicted by the
geodesic analysis of Sec. III C. In Sec. VB we introduce
two methods for turning the sum over l into an integral. We
show in Sec. VC that the Watson transform can be applied
to extract meaningful values from the QNM sums, away
from singularities. We show in Sec. VD that the Poisson
sum formula may be applied to study the behavior of the
Green function near the singularities. We show that there is
a fourfold repeating pattern in the singular structure of the
Green function, and use uniform asymptotics to improve
our estimates. In Sec. VE we rederive the same effects by
computing the Van Vleck determinant along orbiting geo-
desics, to find the ‘‘direct’’ part of the Green function
arising from the Hadamard form. The two approaches are
shown to be consistent.

A. Singularities of the Green function: Large-l
asymptotics

We expect the Green function Gretðx; x0Þ to be ‘‘singu-
lar’’ if the spacetime points x and x0 are connected by a null
geodesic. By singular we mean thatGretðx; x0Þ does not take
a finite value, although it may be well defined in a distri-
butional sense. Here we show that the Green function is
singular in this sense if the large-l asymptotics of the terms
in the sum over l satisfy a coherent phase condition.

1. Near spatial infinity �, �0 ! þ1

Insight into the occurrence of singularities in the Green
function may be obtained by examining the large-l asymp-
totics of the terms in the series (4.30). Let us write

GQNM
ret ðx; x0Þ � Re

X1
l¼0

GlðT; �Þ; ��; �0� ! þ1: (5.1)

The asymptotic behavior of the gamma function ratio is

straightforward: �ði
Þ=�ð1=2þ i
Þ � 
�1=2e�i�=4, 
 !
þ1. The large-l asymptotics of the hypergeometric func-
tion are explored in Appendix A. We find

2F1ð��;��;�2�;�e�TÞ

� ð1þ e�TÞ�1=4 exp

�
i


�
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p � 1

�

� 2 ln2� T

��
; 
 ! þ1: (5.2)

For simplicity, let us consider the special case of spatial
coincidence � ¼ 0 (near spatial infinity �, �0 ! 1),

GlðT; � ¼ 0Þ � e�T=2ffiffiffiffi
�

p ð1þ e�TÞ1=4
ðlþ 1=2Þ


1=2
exp

�
i
 ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p � 1

�
� i�=4

�
; 
 ! 1: (5.3)
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Asymptotically, the magnitude of the terms in this series
grows with ðlþ 1=2Þ1=2. Hence the series is divergent.
Nevertheless, due to the oscillatory nature of the series,
well-defined values can be extracted (see Sec. VC), pro-
vided that the coherent phase condition

lim
l!þ1

argðGlþ1=GlÞ ¼ 2�N; N 2 Z; (5.4)

is not satisfied (for a related, but different, coherent phase
condition or ‘‘resonance’’ see, for example, [83]). In other
words, the Green function is singular in our sense if
Eq. (5.4) is satisfied. In this case,

ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p � 1

�
¼ 2�N; N 2 Z: (5.5)

Rearranging, we see that the Green function (4.30) with
� ¼ 0 is singular when the ‘‘QNM time’’ T is equal to

Tð��1;�¼0Þ ¼ t� t0 � �� � �0� ¼ ln½sinh2ð�NÞ�: (5.6)

Note that the coherent phase condition (5.4) implies that
the Green function is singular at precisely the null geodesic
times (3.23) (with H ¼ 1 and �
 ¼ 2�N), derived in
Sec. VD.

For the more general case where the spacetime points x,
x0 are separated by an angle � on the sphere, it is straight-
forward to use the asymptotics of the Legendre polyno-
mials to show that the Green function (4.30) is singular
when the QNM time T is equal to

Tð��1Þ ¼ t� t0 � �� � �0� ¼ ln½sinh2ð�
=2Þ�;
where �
 ¼ 2�N � �; (5.7)

again in concordance with (3.23).

2. ‘‘Fundamental mode’’ n ¼ 0

In Sec. IVB 5 we suggested that a reasonable approxi-
mation to the Green function may be found by neglecting
the higher overtones n > 0. The fundamental mode series
(4.34) also has singularities arising from the coherent phase
condition (5.4), but they occur at slightly different times;
we find that these times are

Tðn¼0Þ ¼ �
� ln½ð1þ �Þð1þ �0Þ�;
where �
 ¼ 2�N � �:

(5.8)

Towards spatial infinity, (5.8) simplifies to Tðn¼0Þ ¼ �
�
2 ln2, which should be compared with the ‘‘null geodesic
time’’ given in (3.23) (withH ¼ 1, as it corresponds to null
geodesics). In Sec. VD we compare the singularities of the
approximation (4.34) with the singularities of the exact
solution (4.30) at spatial infinity. Note that the singularity

times Tðn¼0Þ are periodic, with period 2�. Clearly, the

periodic times Tðn¼0Þ, for any � ¼ �0 2 ð�1;þ1Þ, are
not quite equal to the null geodesic times. Nevertheless,
the latter approaches the former, i.e. Eq. (3.22), as N ! 1.
These last properties are not surprising: n ¼ 0 corresponds
to the least-damped modes, which are the dominating ones

in the QNM Green function at late times. Therefore, one
would expect that the singularity times, at late times, of the
n ¼ 0 Green function correspond to those null geodesics
that come in from �0, orbit very near the two-sphere at � ¼
0 (the unstable photon orbit) a very large number of times
(N ! 1), and then come back out to �. Since it takes a null
geodesic a coordinate time of 2� (recall that all two-
spheres in Nariai have radius a ¼ 1) to orbit around the
two-sphere at � ¼ 0, this time of 2� should be (at least at
late times) precisely the time difference between singular-
ities for the n ¼ 0 QNM Green function.
To investigate the form of the Green function we now

introduce two methods for converting a sum over l into an
integral in the complex l plane. One method—the Watson
transformation—is used to investigate the Green function
away from the null cone, and the other method—the
Poisson sum—is used near the null cone.

B. Watson transform and Poisson sum

In Sec. IVB, the distant past Green function was ex-
pressed via a sum over l of the form

I � Re
Xþ1

l¼0

F
�
lþ 1

2

�
Plðcos�Þ: (5.9)

Here, F ðlþ 1
2Þ may be immediately read off from (4.30),

(4.33), and (4.34). The so-calledWatson transform [84] and
Poisson sum formula [85,86] [see Eq. (C5)] provide two
closely related ways of transforming a sum over l into an
integral in the complex l plane. The two methods provide
complementary advantages in understanding the sum over
l.
A key element of the Watson transform is that, when

extending the Legendre polynomial to noninteger l, the
function with the appropriate behavior is Plð� cos�Þ. This
is obscured by the fact that Plð� cos�Þ ¼ ð�1ÞlPlðcos�Þ
when l is an integer. Our first step is then to rewrite the sum
(5.9) as

I ¼ Re
Xþ1

l¼0

eið2Nþ1Þ�lF
�
lþ 1

2

�
Plð� cos�Þ; (5.10)

where we have also introduced an integer N for later
convenience. Using the Watson transform, we may now
express the sum (5.9) as a contour integral

I ¼ Re
ð�1ÞN
2i

Z
C1
ei2N�	F ð	ÞP	�1=2ð� cos�Þ d	

cosð�	Þ ;
(5.11)

where 	¼ lþ1=2. The contour C1 starts just below the real
axis at 1, encloses the points 	¼ 1

2 ;1þ 1
2 ;2þ 1

2 ; . . . which

are poles of the integrand, and returns to just above the real
axis at 1. The contour C1 is shown in Fig. 7. If the inte-
grand is exponentially convergent in both quadrants I and
IV, the contour may be deformed in the complex-l plane
onto a contour C2 parallel to the imaginary axis (see Fig. 7).
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Note that there are no poles present inside quadrants I and IV in this case.
To study the asymptotic behavior of the Green function near singularities, it is convenient to use the alternative

representation of the sum obtained by writing

1

cosð�	Þ ¼
�
2i
P1

l¼0 e
i�ð2lþ1Þð	�1=2Þ Imð	Þ> 0

�2i
P1

l¼0 e
�i�ð2lþ1Þð	�1=2Þ ¼ �2i

P�1
l¼�1 ei�ð2lþ1Þð	�1=2Þ Imð	Þ< 0:

(5.12)

Inserting representation (5.12) into (5.11) leads to the Poisson sum formula

I ¼ Xþ1

s¼�1
ð�1Þs Re

Z 1

0
d	e2�is	F ð	ÞP	�1=2ðcos�Þ: (5.13)

The Poisson sum formula is applied in Sec. VD to study the form of the singularities.

C. Watson transform: Computing the series

Let us now show how the Watson transform may be applied to extract well-defined values from series over l, even if
these are divergent. We will illustrate the approach by considering the nth-overtone QNM contribution to the Green
function, Eq. (4.33), for which case

F ðx; x0;	Þ ¼ 1

n!

�
4e�T

ð1þ �Þð1þ �0Þ
�
nþ1=2

2	ei
½T�lnð2=ð1þ�ÞÞ�lnð2=ð1þ�0ÞÞ� �ð�nþ 2i
Þ
½�ð�nþ 1=2þ i
Þ�2

� 2F1

�
�n� 2i
;�n;�nþ 1

2
þ i
; ð1� �Þ=2

�
2F1

�
�n� 2i
;�n;�nþ 1

2
þ i
; ð1� �0Þ=2

�
; (5.14)

where 
 was defined in (4.5). We will choose the integer N
so that this contour may be deformed into the complex
plane (as shown in Fig. 7) to a contour on which the
integral converges more rapidly. First, we note that the
Legendre function may be written as the sum of waves
propagating clockwise and counterclockwise,
P	�1=2ðcos�Þ ¼ QðþÞ

	�1=2ðcos�Þ þQð�Þ
	�1=2ðcos�Þ, where

Q ð�Þ
� ðzÞ ¼ 1

2

�
P�ðzÞ � 2i

�
Q�ðzÞ

�
(5.15)

and here Q�ðzÞ is a Legendre function of the second kind.

The functions Qð�Þ
	�1=2 have exponential asymptotics in the

limit 	� 	 1,

Q ð�Þ
	�1=2ðcos�Þ �

�
1

2�	 sin�

�
1=2

e�i�=4e�i	�: (5.16)

If the integrand is convergent in both the upper and lower
complex-	 planes, the integration contour may be rotated
to run, for example, along a line Reð	Þ ¼ c with c a
constant between 0 and 1

2 . We are free to choose N to
ensure convergence; for example, for the ‘‘fundamental
mode’’ series (n ¼ 0) we choose N to be

�N¼
�½ðTþlogðð�þ1Þð�0þ1ÞÞþ�Þ=ð2�Þ� forQðþÞ
½ðTþlogðð�þ1Þð�0þ1ÞÞþ2���Þ=ð2�Þ� forQð�Þ

(5.17)

where here ½x� denotes the greatest integer less than or
equal to x.
We performed the integrals along Reð	Þ ¼ 1

4 and found

rapid convergence of the integrals except near the critical
times defining the jumps inN given by Eq. (5.17), when the
integrands fall to 0 increasingly slowly. An alternative
method for extracting meaningful values from divergent
series is described in Sec. VII D.

D. The Poisson sum formula: Singularities and
asymptotics

In this section we study the singularity structure of the
Green function by applying the Poisson sum formula
(5.13). The first step is to group the terms together so that

I¼ X1
N¼0

IN where IN �Re
Z þ1

0
d	F ð	ÞRNð	;�Þ (5.18)

and

FIG. 7. The Watson transform. The plot shows the contour C1
that defines the Watson transform in Eq. (5.11). Provided the
integrand is convergent in both quadrants I and IV, the contour
may be deformed onto C2.
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RN ¼
� ð�1ÞN=2½Qð�Þ

	�1=2ðcos�ÞeiN�	 þQðþÞ
	�1=2ðcos�Þe�iN�	� N even

ð�1ÞðNþ1Þ=2½QðþÞ
	�1=2ðcos�ÞeiðNþ1Þ�	 þQð�Þ

	�1=2ðcos�Þe�iðNþ1Þ�	� N odd:
(5.19)

Qð�Þ
	�1=2 were defined in Eq. (5.15). We can now use the exponential approximations forQð�Þ

	�1=2 given in (5.16) to establish

RN � 1

ð2�	 sin�Þ1=2
� ð�1ÞN=2½e�i�=4ei	ðN�þ�Þ þ c:c:� N even

ð�1ÞðNþ1Þ=2½ei�=4ei	ððNþ1Þ���Þ þ c:c:� N odd:
(5.20)

It should be borne in mind that the exponential approx-
imations (5.16) are valid in the limit �	 	 1. Hence the
approximations are not suitable in the limit � ! 0. Below,
we use alternative asymptotics (5.28) to investigate this
case.

1. Fundamental mode n ¼ 0

Let us apply the method to the fundamental mode QNM
series (4.34). In this case we have

F ð	Þ ¼
�

4e�T

�ð1þ �Þð1þ �0Þ
�
1=2 	�ði
Þ

�ð1=2þ i
Þ e
i
�

(5.21)

where T was defined in (4.23), 
 was defined in (4.5), and

� ¼ T þ ln½ð1þ �Þð1þ �0Þ�: (5.22)

Taking the asymptotic limit 	 ! 1 we find

F ð	Þ �
�

4	e�T

i�ð1þ �Þð1þ �0Þ
�
1=2

ei	�; 	 ! 1:

(5.23)

Now let us combine this with the ‘‘exponential approxi-
mations’’ (5.20) for RN ,

F ð	ÞRNð	; �Þ �
�

2e�T

�2 sin�ð1þ �Þð1þ �0Þ
�
1=2

� ð�1ÞN=2½�iei	ð�þN�þ�Þ þ ei	ð��N���Þ� N even

ð�1ÞðNþ1Þ=2½ei	ð�þðNþ1Þ���Þ � iei	ð��ðNþ1Þ�þ�Þ� N odd;
(5.24)

for 	 ! 1. It is clear that the integral in (5.18) will be singular if the phase factor in either term in (5.24) is zero. In other
words, each wave RN gives rise to two singularities, occurring at particular singularity times. We are only interested in the
singularities for T > 0; hence we may neglect the former terms in (5.24). Now let us note that

lim
�!0þ

Z 1

0
ei	ð�þi�Þd	 ¼ lim

�!0þ

�
i

� þ i�

�
¼ i=� þ ��ð�Þ: (5.25)

Upon substituting (5.24) into (5.18) and performing the integral [adding a small � in (5.25) is equivalent to imposing a
smooth high-frequency cutoff upon the integral], we find

I ðn¼0Þ
N �

�
2e�T

sin�ð1þ �Þð1þ �0Þ
�
1=2

� ð�1ÞN=2�ðt� t0 � tðn¼0Þ
N Þ N even

ð�1ÞðNþ1Þ=2

�ðt�t0�tðn¼0Þ
N Þ N odd;

(5.26)

where I ðn¼0Þ
N is IN in (5.18) with F ð	Þ given by (5.21), and

tðn¼0Þ
N ¼ �� þ �0� � lnðð1þ �Þð1þ �0ÞÞ þ

�
N�þ � N even

ðN þ 1Þ�� � N odd:
(5.27)

These times tðn¼0Þ
N are equivalent to the ‘‘periodic’’ times

identified in Sec. VA [Eq. (5.8)] and, for � ¼ �0 ¼ �1 and
N ! 1, in Sec. III C [Eq. (3.22)].

Let us consider the implications of Eq. (5.26) carefully.
Let us fix the spatial coordinates �, �0, and � and consider
variations in t� t0 only. Each term IN corresponds to a
particular singularity in the mode-sum expression (4.34)
for the ðn ¼ 0Þ-Green function. The Nth singularity occurs

at t� t0 ¼ tðn¼0Þ
N . For times close to tðn¼0Þ

N , we expect the

term IN to give the dominant contribution to the ðn ¼ 0Þ
Green function. Equation (5.26) suggests that the ðn ¼ 0Þ
Green function has a repeating fourfold singularity struc-
ture. The ‘‘shape’’ of the singularity alternates between a

delta distribution [� �ðt� t0 � tðn¼0Þ
N Þ, N even] and a

singularity with antisymmetric ‘‘wings’’ [� 1=ðt� t0 �
tðn¼0Þ
N Þ, N odd].
The Nth wave may be associated with the Nth orbiting

null geodesic shown in Fig. 2. Note that ‘‘even N’’ and
‘‘odd N’’ geodesics pass in opposite senses around � ¼ 0
(see, for example, Fig. 2). Now, N has a clear geometrical

interpretation: it is the number of caustics through which
the corresponding geodesic has passed. Caustics are points

where neighboring geodesics are focused, and in a spheri-
cally symmetric spacetime caustics occur whenever a geo-
desic passes through angles �
 ¼ �, 2�, 3�, etc.
Equation (5.26) implies that the singularity structure of

the Green function changes each time the wave front passes
through a caustic [87].
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More accurate approximations to the singularity struc-
ture may be found by using the uniform asymptotics estab-

lished by Olver [88] [as an improvement on the
‘‘exponential asymptotics’’ (5.16)],

Q ð�Þ
	�1=2ðcos�Þ �

1

2

�
�

sin�

�
1=2

Hð�Þ
0 ð	�Þ; (5.28)

where Hð�Þ
0 ð�Þ ¼ J0ð�Þ � iY0ð�Þ are Hankel functions of the first (þ ) and second (� ) kinds. This approximation (5.28) is

valid in the large-	 limit for angles in the range 0 � �< �. With these asymptotics, we replace (5.20) with

RN � 1

2

�
�

sin�

�
1=2

� ð�1ÞN=2½HðþÞ
0 ð	�ÞeiN�	 þHð�Þ

0 ð	�Þe�iN�	� N even

ð�1ÞðNþ1Þ=2½Hð�Þ
0 ð	�ÞeiðNþ1Þ�	 þHðþÞ

0 ð	�Þe�iðNþ1Þ�	� N odd:
(5.29)

In Appendix B we derive the following asymptotics for the fundamental mode (n ¼ 0) Green function,

I ðn¼0Þ
1 �

8<
:

2Að�Þffiffiffi
�

p ½ð2���Þ���½ð2�þ�Þ���1=2 Eð2�=½ð2�þ �Þ � ��Þ �< 2�� �

�Að�Þ ffiffiffi
�

p
2½��ð2���Þ�3=2 2F1ð3=2; 1=2; 2; ��2���

��2�þ�Þ �> 2�� �;
(5.30)

I ðn¼0Þ
2 �

8><
>:
�

ffiffiffiffiffi
2�
�

q
Að�Þ�ð�� ð2�þ�ÞÞ �� 2�þ�

Að�Þ ffiffiffi
�

p
2½��ð2���Þ�3=2 2F1ð3=2;1=2;2;��2���

��2�þ�Þ �> 2�þ�;
(5.31)

where E is the complete elliptic integral of the second kind,
� was defined in (5.22), and

A ð�Þ ¼
�

�

sin�

�
1=2

�
e�T

�ð1þ �Þð1þ �0Þ
�
1=2

: (5.32)

The asymptotics (5.30) and (5.31) provide insight into
the singularity structure near the caustic at �
 ¼ 2�.
Figure 8 shows the asymptotics (5.30) and (5.31) at � ¼
�0 ! þ1 for two cases: (i) � ¼ �=20 (left plot) and

(ii) � ¼ 0 (right plot). In the left plot, the I ðn¼0Þ
1 integral

has a (nearly) antisymmetric form. The I ðn¼0Þ
2 integral is a

delta function with a tail. However, the tail is exactly

canceled by the I ðn¼0Þ
1 integral in the regime �> 2�þ

�. The cancellation creates a step discontinuity in the
Green function at � ¼ 2�þ �. The form of the divergence
shown in the right plot (� ¼ 0) may be understood by
substituting � ¼ 0 into (5.30) to obtain

F F

FIG. 8 (color online). Singularities of the fundamental mode Green function (4.34) near the caustic at 2� and � ¼ �0 ! þ1. These
plots show the I1 (dashed line) and I2 (dotted line) contributions to the Poisson sum, given explicitly by (5.30) and (5.31). The left plot
shows an angular separation � ¼ �=20 and the right plot shows angular coincidence � ¼ 0. Note that, for T > 2�þ �� 2 ln2, the I1
and I2 integrals are equal and opposite and will exactly cancel out (see text).
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I ðn¼0Þ
1 ð� ¼ 0Þ �

�
e�T

ð1þ �Þð1þ �0Þ
�
1=2ð2�� �Þ�3=2:

(5.33)

2. Near spatial infinity, �, �0 ! þ1

It is straightforward to repeat the steps in the above
analysis for the closed-form Green function (4.30), valid
for �, �0 ! þ1. We reach a result of the same form as
(5.26), but with modified singularity times,

tð��1Þ
N � �� þ �0�

þ
�
lnðsinh2ð½N�þ ��=2ÞÞ N even

lnðsinh2ð½ðN þ 1Þ�� ��=2ÞÞ N odd;

(5.34)

corresponding to the geodesic times (3.23). For instance,
with the exponential asymptotics (5.20) applied to (4.30),
we obtain

I ð��1Þ
N �

�
e�T

2 sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p
�
1=2

�
� ð�1ÞN=2�ðt� t0 � tð��1Þ

N Þ N even

ð�1ÞðNþ1Þ=2

�ðt�t0�t
ð��1Þ
N Þ N odd:

(5.35)

In Sec. VIII the asymptotic expressions derived here are
compared against numerical results from the mode sums.

We believe that the fourfold cycle in the singularity
structure of the Green function which we have just un-
earthed using tricks we picked up from seismology [86] is
characteristic of the S2 topology (different types of cycles
arising in different cases). This cycle may thus also appear
in the more astrophysically interesting case of the
Schwarzschild spacetime. Since this cycle does not seem
to be widely known in the field of general relativity (with
the notable exception of [87]), in Appendix C we apply the
large-l asymptotic analysis of this section to the simplest
case withS2 topology: the spacetime of T � S2, where the
same cycle blossoms in a clear manner.

E. Hadamard approximation and the Van Vleck
determinant

In this section, we rederive the singularity structure
found in (5.26) and (5.35) using a ‘‘geometrical’’ argument
based on the Hadamard form of the Green function. In
Sec. IVC we used the Hadamard parametrix of the Green
function to find the quasilocal contribution to the self-
force. Strictly speaking, the Hadamard parametrix of
Eq. (4.35) is only valid when x and x0 are within a normal
neighborhood [42] (see footnote 1). Nevertheless, it is
plausible (particularly in light of the previous sections)
that the Green function near the singularities may be
adequately described by a Hadamard-like form, but with
contributions from all appropriate orbiting geodesics

(rather than just the unique timelike geodesic joining x
and x0).
We first introduce the Feynman propagator GFðx; x0Þ

(see, e.g., [11,89]) which satisfies the inhomogeneous sca-
lar wave equation (2.3). The Hadamard form, which in
principle is only valid for points x0 within the normal
neighborhood of x, for the Feynman propagator in 4-D is
[11,90]

GFðx; x0Þ ¼ i

2�

�
Uðx; x0Þ
�þ i�

þ Vðx; x0Þ lnð�þ i�Þ

þWðx; x0Þ
�
; (5.36)

where Uðx; x0Þ, Vðx; x0Þ (already introduced in Sec. IVC),
andWðx; x0Þ are bitensors which are regular at coincidence
ðx ! x0Þ, and �ðx; x0Þ is Synge’s world function: half the
square of the geodesic distance along a specific geodesic
joining x and x0. Note the Feynman prescription
‘‘� ! �þ i�’’ in (5.36), where � is an infinitesimally
small positive value, which is necessary so that the
Feynman propagator has the appropriate analytical prop-
erties; this implies that Eq. (5.37) below is then satisfied.
The retarded Green function is readily obtained from the

Feynman propagator by

Gretðx; x0Þ ¼ 2��ðx; x0ÞReðGFðx; x0ÞÞ; (5.37)

which yields (4.35) inside the normal neighborhood, since
Uðx; x0Þ, Vðx; x0Þ, and Wðx; x0Þ are real-valued there. We
posit that the ‘‘direct’’ part of the Green function remains
in Hadamard form,

Gdir:
ret ðx; x0Þ ¼ lim

�!0þ

1

�
Re

�
i
Uðx; x0Þ
�þ i�

�

¼ Re

�
Uðx; x0Þ

�
�ð�Þ þ i

��

��
; (5.38)

even outside the normal neighborhood [note that outside
the normal neighborhood we still use the term direct part to
refer to the contribution from the Uðx; x0Þ term, even
though its support may not be restricted on the null cone
anymore]. It is plausible that the Green function near the
Nth singularity (see previous section) is dominated by the
direct Green function (5.38) calculated along geodesics
near the Nth orbiting null geodesic. To test this assertion,
we will calculate the structure and magnitude of the singu-
larities and compare with (5.35).
In four-dimensional spacetimes, the symmetric bitensor

Uðx; x0Þ is given by

Uðx; x0Þ ¼ �1=2ðx; x0Þ; (5.39)

where �ðx; x0Þ is the Van Vleck determinant [91–93]. The
Van Vleck determinant can be found by integrating a
system of transport equations along the appropriate geo-
desic joining x and x0. The first of these [16],



d ln�

d

¼ 4� ��

�; (5.40)
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is a transport equation for the Van Vleck determinant itself,
with the initial condition �ð
 ¼ 0Þ ¼ 1. Here, 
 is an
affine parameter along the geodesic joining x and x0, and
��

� ¼ r�r�� is the second covariant derivative (taken

with respect to spacetime point x) of Synge’s world func-
tion, which in turn is found from the coupled system of
transport equations [58,94]



d��

�

d

¼ ��

� ���
��

�
� þ
u�ð�	

���
�
	 ���

	��
	
�Þ

�
2R�
��	u

�u	 (5.41)

and the boundary condition ��
�ð
 ¼ 0Þ ¼ ��

�.

In principle, transport equations (5.40) and (5.41) may
be integrated numerically to determine the Van Vleck de-
terminant along any given geodesic on any given space-
time. This is the approach that we might take on, for
example, in Schwarzschild. A numerical approach is not
necessary for the Nariai spacetime, however. This space-
time is the Cartesian product of a two-sphere with a 2-D
de Sitter spacetime. On a product spacetime M ¼ M1 �
M2 we may make the following decomposition:

� ¼ �1 þ �2; � ¼ �1�2; (5.42)

where �i and�i (i ¼ 1, 2) are, respectively, Synge’s world
function and the Van Vleck determinant on the manifold
Mi. It will be shown in a forthcoming work [95] that the
Van Vleck determinant on the Nariai spacetime when the
two points x and x0 are within the normal neighborhood is
simply

�ðx; x0Þ ¼
�

�

sin�

��
�

sinh�

�
(5.43)

where, here, � is the geodesic distance traversed on the
two-sphere and � is the geodesic distance traversed in the
two-dimensional de Sitter subspace. Hence the Van Vleck
determinant is singular at the angle � ¼ �.

This may be seen another way. Using the spherical
symmetry, let us assume, without loss of generality, that
the motion is in the plane
 ¼ const, from which it follows
that the equation for �



 in (5.41) decouples from the

remainder; it is

�
d�





d�
þ �2 � �



ð1� �


Þ ¼ 0: (5.44)

Here we have rescaled the affine parameter 
 to be equal to
the angle � subtended by the geodesic. Note that here we
let � take values greater than �. It is straightforward to
show that the solution of Eq. (5.44) is �



 ¼ � cot�.

Hence �


 is singular at the angles � ¼ �, 2�, 3�, etc.

In other words, the Van Vleck determinant is singular at the
antipodal points, where neighboring geodesics are focused:
the caustics. The Van Vleck determinant may be separated
in the following manner: � ¼ �
�t�, where

�
d ln�


d�
¼ 1� �



; (5.45)

�
d ln�t�

d�
¼ 2� �t

t � ��
�: (5.46)

Equation (5.45) yields

ln�
 ¼ ln

�
�

�0

�
�

Z �

�0

d�0 cot�0 (5.47)

which can be integrated analytically by following a Landau
contour in the complex �0 plane around the (simple) poles
of the integrand (located at �0 ¼ k�, k 2 Z), which are the
caustic points. Following the Feynman prescription � !
�þ i�, we choose the Landau contour so that the poles lie
below the contour. We then obtain (setting �0 ¼ 0, without
loss of generality)

�
 ¼
�������� �

sin�

��������e�iN�: (5.48)

Here, N is the number of caustic points the geodesic has
passed through. The phase factor, obtained by continuing
the contour of integration past the singularities at � ¼ �,

2�, etc., is crucial. Inserting the phase factor e�iN�=2 in
(5.38) leads to exactly the fourfold singularity structure
predicted by the large-l asymptotics of the mode sum
(5.35). That is,

Gdir
N �

�
�

sinh�

�
1=2

�
�

sin�

�
1=2

� ð�1ÞN=2�ð�Þ N even
ð�1ÞðN�1Þ=2

�� N odd:

(5.49)

The accumulation of a phase of ‘‘�i’’ on passing
through a caustic, and the alternating singularity structure
which results, is well known to researchers in other fields
involving wave propagation—for example, in acoustics
[96], seismology [86], symplectic geometry [97], and
quantum mechanics [98], the integer N is known as the
Maslov index [99,100].
We would expect to find an analogous effect in, for

example, the Schwarzschild spacetime. The fourfold struc-
ture has been noted before by at least one researcher [87].
Nevertheless, the effect of caustics on wave propagation in
four-dimensional spacetimes does not seem to have re-
ceived much attention in the gravitational literature (see
[101,102] for exceptions).
To compare the singularities in the mode-sum expres-

sion (5.35) with the singularities in the Hadamard form
(5.49), let us consider the odd-N singularities of 1=� form.
We will rearrange (5.35) into an analogous form by ex-

panding � to first order in t� tð��1Þ
N , where tð��1Þ

N is the
Nth singularity time for orbiting geodesics starting and
finishing at � ! 1. For the orbiting geodesics described
in Sec. III C we have � ¼ �1

2ðH2 � 1Þ�2. At � ! 1, ex-

panding to first order and using (3.23) yields

���ðH�Þ tanhðH�=2Þðt� t
ð��1Þ
N Þ: (5.50)
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The mode-sum expression (5.35) may then be rewritten in
analogous form to the N-odd expression in (5.49),

GQNM
ret � ð�1ÞðN�1Þ=2 j�ðQNMÞj1=2

��

where j�ðQNMÞj1=2 ¼
�
H� sinhð�=2Þ
2cosh3ð�=2Þ

�
1=2

�������� �

sin�

��������1=2

:

(5.51)

Here � ¼ H�, where H is the constant of motion intro-
duced in Sec. III C. We find very good agreement between
(5.43) and (5.51) in the � * � regime. The disagreement at
small angles is not unexpected, as the QNM sum is invalid
at early times (or equivalently, for orbiting geodesics which
have passed through small angles �).

VI. SUMMARY

After a series of equations and results, for the benefit of
the reader we will now take a moment to recap and
(literally) rewrite the main equations obtained thus far.

We recall that � ¼ �1=2þ i
, 
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðlþ1=2Þ2þ4��1=2
p

,
�� ¼ tanh�1�; that we tend to use T ¼ t� t0 � �� � �0�
as the independent ‘‘time’’ variable; and that the un-
bounded orbital angle is given by �
 ¼ N�þ � for N
even and by �
 ¼ ðN þ 1Þ�� � for N odd, where N is
the number of caustics the null geodesic has gone through.
The main equations for the ‘‘retarded’’ Green function

we have obtained so far are as follows:
(i) QNM retarded Green function (valid 8x, x0 where

T > 0), Eq. (4.33):

GQNM
ret ðx;x0Þ¼2Re

X1
l¼0

ð2lþ1ÞPlðcos�Þei
½T�lnð2=ð1þ�ÞÞ�lnð2=ð1þ�0ÞÞ� X1
n¼0

Bln

�
4e�T

ð1þ�Þð1þ�0Þ
�
nþ1=2

Slnð�ÞSlnð�0Þ;

(6.1)

where Bln are the excitation factors (4.26) and Slnð�Þ is the finite series (4.32) essentially based on the radial
functions evaluated at the QNM frequencies.

(ii) QNM retarded Green function (after summing over all overtone numbers n) at ��, �0� ! þ1 (and T>0), Eq. (4.30):

GQNM
ret ðT;�Þ�e�T=2ffiffiffiffi

�
p Re

Xþ1

l¼0

ðlþ1=2Þ�ði
Þ
�ð1=2þi
Þ Plðcos�Þei
ðTþ2ln2Þ

2F1ð��;��;�2�;�e�TÞ; ��;�0�!þ1; (6.2)

with singularities at times given by Eq. (5.7) [also Eq. (3.23) withH ¼ 1 and Eq. (5.34)], Tð��1Þ ¼ ln½sinh2ð�
=2Þ�.
The corresponding singularity structure is given by Eq. (5.35):

I ð��1Þ
N �

�
e�T

2 sin�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p
�
1=2

8<
: ð�1ÞN=2�ðt� t0 � tð��1Þ

N Þ N even
ð�1ÞðNþ1Þ=2

�ðt�t0�tð��1Þ
N Þ N odd;

(6.3)

where I ð��1Þ
N is the contribution IN to the retarded Green function associated with the Nth orbiting null geodesic in

the case where the points are located at spatial infinity.
(iii) Contribution of the fundamental mode n ¼ 0 to the QNM retarded Green function (valid 8x, x0 where T > 0), Eq.

(4.34):

Gðn¼0Þ
ret ðx; x0Þ ¼

�
e�T

�ð1þ �Þð1þ �0Þ
�
1=2

Re
Xþ1

l¼0

ð2lþ 1ÞPlðcos�Þ�ði
Þ
�ð1=2þ i
Þ ei
½Tþlnð1þ�Þð1þ�0Þ�; (6.4)

with singularities at times given by Eq. (5.8) [also
Eq. (5.27)], Tðn¼0Þ ¼ �
� ln½ð1þ �Þð1þ �0Þ�,
which coincide with Tð��1Þ [and with Eq. (3.23)
with H ¼ 1] for �, �0 ! 1 and N ! þ1. The cor-
responding singularity structure is given by Eq.
(5.26):

I ðn¼0Þ
N �

�
2e�T

sin�ð1þ �Þð1þ �0Þ
�
1=2

�
8<
:
ð�1ÞN=2�ðt� t0 � tðn¼0Þ

N Þ N even

ð�1ÞðNþ1Þ=2

�ðt�t0�tðn¼0Þ
N Þ N odd

(6.5)

[for more accurate asymptotics, which include the
tail in the singularity, see Eqs. (5.30) and (5.31)],
where I ðn¼0Þ

N is IN for n ¼ 0 only.
(iv) The extension beyond the normal neighborhood of

the direct part in the Hadamard form of the retarded
Green function has a contribution from the Nth
orbiting null geodesic given by (5.49):

Gdir
N �

�
�

sinh�

�
1=2

�
�

sin�

�
1=2

�
� ð�1ÞN=2�ð�Þ N even

ð�1ÞðN�1Þ=2
�� N odd;

(6.6)

which, for � ! 1 and � * �, agrees well with
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I ð��1Þ
N with � ¼ H� (where H > 1 for timelike geo-

desics, H ¼ 1 for null geodesics, and H < 1 for
spacelike geodesics).

VII. SELF-FORCE ON THE STATIC PARTICLE

In this section we turn our attention to a simple case: the
self-force acting on a static scalar particle in the Nariai
spacetime. By ‘‘static’’ we mean a particle with constant
spatial coordinates. It is not necessarily at rest, since its
worldline may not be a geodesic, and it may require an
external force to keep it static. In Sec. VII A we review
previous calculations for the static self-force on a range of
spacetimes, and in Sec. VII B we explore one such analytic
method for computing the static self-force in Nariai space-
time. This method, based on the massive-field approach of
Rosenthal [40,41], provides an independent check on the
matched-expansion approach. In Sec. VII C we describe
how the method of matched expansions may be applied to
the static case. To compute the self-force, we require robust
numerical methods for evaluating the quasinormal mode
sums such as (6.1); two such methods are outlined in
Sec. VII D. The results of all methods are validated and
compared in Sec. VIII.

A. The static particle

A static particle—a particle with constant spatial coor-
dinates—has been the focus of several scalar self-force
calculations, in particular, for the Schwarzschild spacetime
[37,40,48,103–106]. Although a static particle may not be
a particularly physical case, it is frequently chosen because
it involves relatively straightforward calculations and has
an exact solution for the Schwarzschild spacetime. It there-
fore provides a good testing ground for new approaches to
the calculation of the self-force.

Smith andWill [103] calculated the self-force on a static
electric charge in the Schwarzschild background and found
it to be nonzero. In [104], Wiseman considered the analo-
gous case of a static scalar charge in the case of minimal
coupling (i.e., � ¼ 0) in Schwarzschild spacetime. Using
isotropic coordinates, he managed to sum the Hadamard
series for the Green function in the static case (i.e., the
‘‘Helmholtz’’-like equation in Schwarzschild spacetime
with zero frequency, ! ¼ 0) and thus obtain in closed
form the field created by the static charge in the scalar
and also electrostatic (already found in [107,108] using a
different method) cases. He then found the self-force to be
zero in the scalar, minimally coupled case.

In [106], the calculation of the self-force on a static
scalar charge in Schwarzschild spacetime is extended to
the case of nonminimal coupling (� � 0) and is found to be
zero as well. The fact that the value of the scalar self-force
in Schwarzschild spacetime is the same (zero) indepen-
dently of the value of the coupling constant is in agreement

with the Quinn-Wald axioms [14,15]: their method relies
only on the field equations, and these are independent of
the coupling constant in a Ricci-flat spacetime such as
Schwarzschild spacetime. The calculation (without using
the Quinn-Wald axioms) is by no means trivial, however,
since the effect of the coupling constant might be felt
through the stress-energy tensor (in fact, [106] corrected
a previous result in [109], where the self-force had been
incorrectly found to be nonzero). Rosenthal [40] has also
considered the case of a static particle in Schwarzschild
spacetime and used it as an example application of the
massive-field approach [41] to self-force calculations.
On the other hand, using the conformal invariance of

Maxwell’s equations, Hobbs [110] showed that, in a con-
formally flat spacetime, the tail contribution (2.2) to the
self-force on an electric charge (on any motion, static or
not) is zero. The only possible contribution to the self-force
might then come from the local Ricci terms, which are zero
in cases of physical interest such as in a de Sitter universe.
One would expect the tail contribution to the scalar self-

force to also be zero for a charge undergoing any motion in
a conformally flat 4-D spacetime with conformal coupling
(i.e., � ¼ 1=6). In a recent article [65], it was further
argued using Hobbs’ result that the self-force should be
zero for a static charge (where the time independence
effectively reduces the problem to a 3-D spatial one), in
a spacetime such that its 3-D spatial section is conformally
flat and with conformal coupling in 3-D (i.e., � ¼ 1=8).
Indeed, they showed that the scalar self-force on a massless
static particle in a wormhole spacetime (with a nonzero
Ricci scalar and where the 3-D spatial section is confor-
mally flat) is equal to zero at � ¼ 1=8 and it actually
changes sign at this 3-D conformal value. (Note that in
this case the local contribution to the self-force is exactly
zero, so there may only be a tail contribution—if any.) It is
not completely clear to us, however, that the argument that
the tail contribution to the self-force is zero due to the
conformality of the physical system carries through intact
from a 4-D spacetime to its 3-D spatial section. Note that,
from the Hadamard form in 3-D [43,111], the correspond-
ing Green function (the so-called ‘‘scalarstatic’’ or ‘‘elec-
trostatic’’ Green function) never (regardless of whether
there is conformality or not) possesses a tail part Vðx; x0Þ,
and the self-force is calculated from this static Green
function, not via Eqs. (1.3), (1.4), (2.1), and (2.2), but rather
via, e.g., Eq. (7.2) below.
The Nariai spacetime, not being Ricci-flat and being

conformal to a wormhole spacetime (and so with a con-
formally flat 3-D spatial section), suggests a very interest-
ing playground for calculating the self-force: What role
does the coupling constant � play? Do particular values
such as � ¼ 1=6 (4-D conformal coupling) and � ¼ 1=8
(3-D conformal coupling, so a particular value in the case
of a static charge) yield ‘‘particular’’ values (namely, zero)
for the self-force? Are the Quinn-Wald axioms satisfied?
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B. Static Green function approach

The conventional approach to calculating the self-force
on a static particle due to Wiseman [104] uses the scalar-
static Green function. Following Copson [107], Wiseman
was able to obtain this Green function by summing the
Hadamard series. Only by performing the full sum was he
able to verify that his Green function satisfied the appro-
priate boundary conditions. Linet [112] has classified all
spacetimes in which the scalarstatic equation is solvable by
the Copson ansatz and, unfortunately, the Nariai metric
does not fall into any of the classes given. Therefore,
instead we work with the mode form for the static Green
function. This corresponds to the integrand at ! ¼ 0 of
Eq. (4.18) (with integral measure d!

2� ),

Gstaticð�;�;�0;�0Þ ¼ X1
l¼0

ð2lþ 1ÞPlðcos�Þ

� �P�1=2þi
ð��<ÞP�1=2þi
ð�>Þ
2 coshð�
Þ

(7.1)

where, as before, 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 1

2Þ2 þ d
q

. This equation, hav-

ing only one infinite series, is amenable to numerical
computation.

To regularize the self-force we follow the method of
Rosenthal [40], who used a massive-field approach to
calculate the static self-force in Schwarzschild.
Following his prescription, we calculate the derivative of
the scalar field and of a massive scalar field. In the limit of
the field mass going to infinity, we obtain the derivative of
the radiative field which is regular. This method can be
carried through to Nariai spacetime, where it yields the
expression

ma� ¼ q2ð1� �2Þ3=2 lim
�0!��

�
@�Gstaticð�;�;�0;�Þ

þ 1

ð�� �0Þ2 �
ð�R� 2

3Þ
2ð1� �2Þ

�
; (7.2)

where R ¼ 4. Note that the massive-field approach was
developed in [40] for the case � ¼ 0, but it can be seen that
it equally applies to � � 0 too. The limiting process �0 !
�� does not affect the term with 1=ð1� �2Þ in (7.2). We
will therefore omit it from the following calculation and we
will trivially subtract it from the self-force in the calcula-
tions we carry out later in Sec. VIII D. The singular (as
�0 ! ��) subtraction term may be expressed in a conve-
nient form using the identity [113,114]

Z þ1

0
d

 tanhð�
Þ�P�1=2þi
ð��<ÞP�1=2þi
ð�>Þ

coshð�
Þ
¼ 1

�> � �<

:

(7.3)

Subtracting (7.3) from (7.1), we can express the regularized
Green function as a sum of two well-defined and easily
calculated sums/integrals,

Gstaticð�;�;�0;�Þ � 1

�> � �<

¼ Ið�; �0Þ þ J ð�; �0Þ
(7.4)

where

I ð�; �0Þ ¼
Z þ1

0
d

ð1� tanhð�
ÞÞ

� �P�1=2þi
ð��<ÞP�1=2þi
ð�>Þ
coshð�
Þ (7.5)

and

J ð�; �0Þ ¼ Xþ1

l¼0

�
lþ 1

2

�
�P�1=2þi
ð��<ÞP�1=2þi
ð�>Þ

coshð�
Þ

�
Z þ1

0
d



�P�1=2þi
ð��<ÞP�1=2þi
ð�>Þ
coshð�
Þ :

(7.6)

The first term in J ð�; �0Þ may either be calculated directly
as a sum or by using the Watson-Sommerfeld transform to
write

Xþ1

l¼0

g

�
lþ 1

2

�
¼ Re

�
1

i

Z
�
dz tanð�zÞgðzÞ

�
; (7.7)

where � runs from 0 to 1 just above the real axis, and for
us

gðzÞ ¼ z
�P�1=2þi

ffiffiffiffiffiffiffiffi
z2þd

p ð��<ÞP�1=2þi
ffiffiffiffiffiffiffiffi
z2þd

p ð�>Þ
coshð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ d

p
Þ

: (7.8)

Writing

tanð�zÞ ¼ i� 2i

1þ e�2�iz
; (7.9)

the contribution to (7.7) from the first term in (7.9) yields

Z 1

0
dxgðxÞ ¼

Z 1ffiffi
d

p d


�P�1=2þi
ð��<ÞP�1=2þi
ð�>Þ

coshð�
Þ :

(7.10)

The contribution to (7.7) from the second term in (7.9) can
be best evaluated by rotating the original contour to a
contour �0, running from 0 to i1 just to the right of the
imaginary axis. This is permitted since the Legendre func-
tions are analytic functions of their parameter and the
contribution from the arc at infinity vanishes for our choice
of gðzÞ. From the form of gðzÞ it is clear that it possesses
poles along the contour �0 but these give a purely imagi-
nary contribution to the integral. We conclude that
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J ð�; �0Þ ¼ �
Z ffiffi

d
p

0
tdt tanhð�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d� t2

p
Þ�P�1=2þitð��<ÞP�1=2þitð�>Þ

coshð�tÞ
þ P

Z þ1

0

2�tdt

ð1þ e2�
ffiffiffiffiffiffiffiffi
dþt2

p
Þ cosð�tÞ

P�1=2�tð��<ÞP�1=2�tð�>Þ (7.11)

where P denotes the principal value. These integrals and
that defining Ið�; �0Þ and their derivatives with respect to �
are very rapidly convergent and easily calculated.

C. Matched expansions for the static particle

In Sec. II, we outlined the method of matched expan-
sions. In this subsection, we show how to apply the method
to a specific case: the computation of the self-force on a
static particle in the Nariai spacetime.

The four-velocity of the static particle is simply

u� ¼ u� ¼ u
 ¼ 0; ut ¼ ð1� �2Þ�1=2 (7.12)

and hence d�0 ¼ ð1� �2Þ1=2dt0. We find from Eqs. (1.4),
(4.5), and (2.1) that mat ¼ ma� ¼ ma
 ¼ 0 and

ma� ¼ q2
�
1

3
_a� þ lim

�!0þ

Z ���

�1
g��@�Gretðzð�Þ; zð�0ÞÞd�0

�
;

(7.13)

dm

d�
¼ �q2

�
1

12
ð1� 6�ÞRþ ð1� �2Þ�1=2

� lim
�!0þ

Z ���

�1
@tGretðzð�Þ; zð�0ÞÞd�0

�
: (7.14)

We note that in the tail integral of the mass loss equation
(7.14), the time derivative @t may be replaced with �@t0
since the retarded Green function is a function of ðt� t0Þ.
Hence we obtain a total integral,

ð1� �2Þ�1=2 lim
�!0þ

Z ���

�1
@tGretðzð�Þ; zð�0ÞÞd�0

¼ � lim
�!0þ

Z t��

�1
@t0Gretðzð�Þ; zð�0ÞÞdt0

¼ � lim
�!0þ

½Gretðx; x0Þ�t0¼t��
t0!�1: (7.15)

The total integral depends only on the values of the Green
function at the present time and in the infinite past (t0 !
�1). The QNM sum expressions for the Green function
[e.g. Eq. (6.2)] are zero in the infinite past, as the quasi-
normal modes decay exponentially. The value of the Green
function at coincidence ðt0 ! tÞ is found from the coinci-

dence limit of the function�Vðx; x0Þ in the Hadamard form
(4.35). It is 1

12 ð1� 6�ÞR, which exactly cancels the local

contribution in the mass loss equation (7.14). It is no
surprise to find that this cancellation occurs—the local
terms were originally derived from the coincidence limit

of the Green function. In fact, because d�R

d� ¼ 0 due to time-

translation invariance, we can see directly from the original
equation (1.5) that the mass loss is zero in the static case.
Now let us consider the radial acceleration (7.13). The

acceleration keeping the particle in a static position is
constant ( _a� ¼ 0). The remaining tail integral may be split
into two parts,

ma� ¼ q2ð1� �2Þ3=2
�
� lim

�!0þ

Z t��

t��t
@�VðzðtÞ; zðt0ÞÞdt0

þ
Z t��t

�1
@�GretðzðtÞ; zðt0ÞÞdt0

�
; (7.16)

where �t is a free parameter corresponding to �� intro-
duced in (2.4) that determines the matching time in the
matched-expansions method. For the first part of (7.16), we
use the quasilocal calculation of Vðx; x0Þ from Sec. IVC.
As Vðx; x0Þ is given as a power series in ð�� �0Þ and ðt�
t0Þ, the derivatives and integrals can be done termwise and
are straightforward. The quasilocal integral contribution is
therefore simply

lim
�!0

Z t��

t��t
@�VðzðtÞ; zðt0ÞÞdt0

¼ 1

2

Xþ1

k¼0

1

ð2kþ 1Þ@�vk0ð�tÞ2kþ1: (7.17)

The second part of (7.16) can be computed using the
QNM sum (6.1). To illustrate the approach, let us rewrite
(6.1) as

GQNM
ret ð�; t;�0; t;�Þ

¼ Re
X
l;n

Glnð�0; �Þe�i!lnðt�t0�����0�Þ~ulnð�Þ: (7.18)

Applying the derivative with respect to � and taking the
integral with respect to t0 leads to

Z t��t

�1
@�GretðzðtÞ; zðt0ÞÞdt0 ¼

�
d�

d��

��1 Z t��t

�1
@t0G

QNM
ret dt0 þ Re

X
l;n

Z t��t

�1
Glne

�i!lnðt�t0�����0�Þ d~uln
d�

dt0

¼ ð1� �2Þ�1½Gret�t0¼t��t þX
l;n

Gln

i!ln

e�i!lnð�t�����0�Þ d~uln
d�

: (7.19)
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It is straightforward to find the derivative of the radial wave
function from the definition (4.31). In Sec. VII D we out-
line two methods for numerically computing mode sums
such as (7.19).

The self-force computed via (7.16), (7.17), and (7.19)
should be independent of the choice of the matching time
(we verify this in Sec. VIII D). This invariance provides a
useful test of the validity of our matched expansions.
Additionally, through varying �� we may estimate the
numerical error in the self-force result.

D. Numerical methods for computing mode sums

The static-self-force calculation requires the numerical
calculation of mode sums like (7.19). We used two meth-
ods for robust numerical calculations: (1) ‘‘smoothed sum’’
and (2) Watson transform (described previously in
Sec. VC). We see in Sec. VIII that the results of the two
methods are consistent.

The smoothed sum method is straightforward to de-
scribe and implement. Let us suppose that we wish to
extract a numerical value from an infinite series

Xþ1

l¼0

al (7.20)

such that liml!1al � 0, and so the series is divergent. Let
us now suppose that the divergence is ‘‘sufficiently weak’’

that liml!1e�kðlþ1Þ2 jalþ1j=ðe�kl2 jaljÞ< 1 for all k > 0.
Then we may instead compute the finite sum

SðlcutÞ ¼
Xl1
l¼0

ale
�l2=2l2cut (7.21)

where l1 is large enough to suppress any high-l oscillations
in the result (typically l1 > 4lcut). We find that (7.21) is a
good approximation to (7.20) provided we are not within
�t� 1=lcut of a singularity of the Green function.
Increasing the cutoff lcut therefore improves the resolution
of the singularities. The introduction of such a cutoff is—
although of different magnitude—in the same spirit as the
Feynman prescription of Sec. VE.

VIII. RESULTS

We now present a selection of results from our numerical
calculations. In Sec. VIII A the distant past Green function
is examined. We plot the Green function as a function of
coordinate time t� t0 for fixed spatial points. A fourfold
singularity structure is observed. In Sec. VIII B we test the
asymptotic approximations of the singular structure, de-
rived in Secs. VD and VE [Eqs. (6.3) and (6.6)]. We show
that the fundamental mode (n ¼ 0) series (6.4) is a good
approximation of the exact result (6.2), if a time-offset
correction is applied. In Sec. VIII C the quasilocal and
distant past expansions for the Green function are com-
pared and matched. We show that the two methods for

finding the Green function are in excellent agreement for a
range of matching times��. In Sec. VIII D we consider the
special case of the static particle. We present the Green
function, the radiative field,2 and the self-force in turn. The
radial self-force acting on the static particle is computed
via the matched-expansion method (described in Secs. II
and VII C), plotted as a function of coordinate �, and
compared with the result derived in Sec. VII B.

A. The Green function near infinity from quasinormal
mode sums

Let us begin by looking at the Green function for fixed
points near spatial infinity, � ¼ �0 ! 1 (i.e. �� ¼ �0� !
þ1). The Green function may be computed numerically
by applying either the Watson transform (Sec. VC) or the
smoothed sum method (Sec. VII D) to the QNM sum (6.2).
Figure 9 shows the Green function for fixed spatially

coincident points near infinity (� ¼ �0 ! 1, � ¼ 0) and
� ¼ 1=6. The Green function has been calculated from
series (6.2) using the smoothed sum method. It is plotted
as a function of QNM time, T ¼ t� t0 � ð�� þ �0�Þ. We
see that singularities occur at the times (3.23) predicted by
the geodesic analysis of Sec. III C. In this case, TC ¼
ln½sinh2ðN�Þ� 
 4:893, 11.180, 17.463, etc. At times prior
to the first singularity at T 
 4:893, the Green function
shows a smooth power-law rise. At the singularity itself,
there is a feature resembling a delta distribution, with a
negative sign. Immediately after the singularity the Green

FIG. 9 (color online). Distant past Green function for spatially
coincident points near infinity (� ¼ �0 ! 1, � ¼ 0). The Green
function was calculated from mode sum (6.2) numerically using
the smoothed sum method (7.21) with lcut ¼ 200 and curvature
coupling factor � ¼ 1=6.

2In this section what is referred to as the ‘‘radiative field’’ is
more precisely the ‘‘tail field’’, found from the integral of the
retarded Green function along the past worldline (excluding
coincidence). The self-force derived from the tail field is equiva-
lent to that derived from the radiative field.
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function falls close to zero (although a small tail does
appear). This behavior is even more marked in the case
� ¼ 1=8 (not shown). A similar pattern is found close to
the second singularity at T 
 11:180, but here the Green
function takes the opposite sign, and its amplitude is
smaller.

Figure 10 shows the Green function for points near
infinity (� ¼ �0 ! 1) separated by an angle of � ¼ �=2

and � ¼ 1=6. The Green function shown here is computed
from the fundamental mode approximation (6.4), again
using the smoothed sum method. In this case, the singu-
larities occur at periodic times (3.24), given by T ¼ �
�
2 ln2 
 0:1845, 3.326, 6.468, etc., where �
 ¼
�=2; 3�=2; 5�=2; . . . . As discussed, there is a one-to-one
correspondence between singularities and orbiting null
geodesics, and the fourfold singularity pattern predicted
in Sec. VD [(6.6)] and Sec. VE [(6.3)] is clearly visible.
Every ‘‘even’’ singularity takes the form of a delta distri-
bution. Numerically, the delta distribution is manifest as a
Gaussian-like spike whose width (height) decreases (in-
creases) as lcut is increased. By contrast (for � � 0; �),
every ‘‘odd’’ singularity diverges as 1=ðT � TcÞ; it has
antisymmetric wings on either side. The singularity ampli-
tude diminishes as T increases.

B. Asymptotics and singular structure

The analyses of Secs. VD and VE yielded approxima-
tions for the singularity structure of the Green function. In
particular, Eq. (6.3) gives an estimate for the amplitude of
the odd singularities as �, �0 ! 1. We tested our numerical
computations against these predictions. Figure 11 shows
the Green function near the singularity associated with the
null geodesic passing through an angle �
 ¼ 3�=2. The
left plot compares the numerically determined Green func-
tion (6.4) with the asymptotic prediction (6.3). The right
plot shows the same data on a log-log plot. The asymptotic

FIG. 11. Green function near the singularity arising from a null geodesic passing through an angle �
 ¼ 3�=2 and with � ¼
�0 ! 1. The fundamental mode (n ¼ 0) Green function (6.4) (with lcut ¼ 2500) is compared with approximations (6.3) and (6.6) from
considering high-l asymptotics. The approximations give Gret ��0:042 68=ðT � TcÞ and Gret ��0:043 44=ðT � TcÞ, respectively.
The left panel shows the Green function in the vicinity of the (periodic) singularity at Tc ¼ 3�=2� 2 ln2 
 3:3261. The right panel
shows the same data on a log-log scale, and compares the mode sum (dashed line) with the approximation (dotted line). The
discrepancy close to the singularity may be improved by increasing lcut.

FIG. 10 (color online). Distant past Green function near spatial
infinity (� ¼ �0 ! 1) for points separated by the angle � ¼ �=2
and � ¼ 1=6. The Green function was calculated from the
fundamental mode approximation (6.4) numerically using the
smoothed sum method with lcut ¼ 1000. Note the fourfold
singularity structure (see text).
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prediction (6.3) is a straight line with gradient�1, and it is
clear that the numerical data are in excellent agreement.

Improved asymptotic expressions for the singular struc-
ture of the fundamental mode Green function were given in
(5.30) and (5.31). These asymptotics are valid all the way
up to � ¼ 0. Figure 12 compares the asymptotic expres-
sions (5.30) and (5.31) (solid line) with numerical compu-
tations (broken lines) from the mode sum (6.4). It is clear
that the asymptotics (5.30) and (5.31) are in excellent
agreement with the numerically determined Green func-
tion. The closest agreement is found near the singular
times, but the asymptotics provide a remarkably good fit
over a range of t.

In Fig. 13, the fundamental mode (n ¼ 0) approxima-
tion (6.4) is compared with the exact QNM Green function
(6.2) near spatial infinity. Away from singularities, the
former is found to be a good approximation to the latter.
However, close to singularities this is not the case. The
singularities of the fundamental mode approximation (6.4)
occur at slightly different times to the singularities of the
exact solution (6.2), as discussed in Sec. VA. For the
fundamental mode series (6.4), the singularity times TN

reg

given in Eq. (5.8) are periodic. For the exact solution (6.2)
near spatial infinity, the singularity times TN

exact are pre-
cisely the ‘‘null geodesic times’’ given in Eq. (3.23).
Remarkably, if we apply a singularity time offset to the
fundamental mode approximation (T ! T þ �T where
�T ¼ TN

exact � TN
reg), we find that the fundamental mode

Green function is an almost perfect match to the exact
Green function. This is clearly shown in the lower plot of
Fig. 13. Comparing the series (6.2) and (6.4) we see that, in

FIG. 13 (color online). Singularities of fundamental mode
approximation. The top plot shows the Green function near
spatial infinity (� ¼ �0 ! 1, �� ¼ �0� ! 1), for an angular
separation � ¼ �=2. It compares the exact solution (6.2) [plain
solid (red) line] and the approximation from the fundamental
modes [crossed (blue) line], as a function of time T ¼ t� t0 �
�� � �0�. The singularities occur at two distinct times, marked
Texact and Treg, respectively. If a time offset is applied to the

fundamental mode approximation (see text), then we find the
singularities look remarkably similar (lower plot).

FIG. 12 (color online). Singularities of the fundamental mode Green function (6.4) compared with asymptotics from the Poisson sum
(5.30) and (5.31). The left plot shows a small angular separation � ¼ �=20, and the right plot shows coincidence � ¼ 0, for �, �0 ! 1.
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both cases, the magnitude of the terms in the series in-

creases as ðlþ 1=2Þ1=2 in the large-l limit [see Eqs. (5.3)
and (5.23)]. This observation raises the possibility that the
n ¼ 0 modes may give the essential features of the full
solution; if true, this would certainly aid the analysis of the

Schwarzschild case, where it is probably not feasible to
perform a sum over n analytically.

C. Matched expansions: Quasilocal and distant past

Let us now turn our attention to the match between
quasilocal and distant past Green functions. The quasilocal
expansion (4.36) is valid within the convergence radius of
the series, t� t0 < tQL, while the QNM n series is con-

vergent at ‘‘late’’ times, t� t0 >�� þ �0�. Hence, a
matched-expansion method will only be practical if the
quasilocal and distant past Green functions overlap in an
intermediate regime �� þ �0� < t� t0 < tQL. It is expected
that the convergence radius of the quasilocal series, tQL,
will lie within the normal neighborhood, tNN, of spacetime
point x. The size of the normal neighborhood is limited by
the earliest time at which spacetime points x and x0 may be
connected by more than one nonspacelike geodesic.
Typically this will happen when a null geodesic has orbited
once, taking a time tNN >�� þ �0�, so we can be optimistic
that an intermediate regime will exist. To test this idea, we
computed the quasilocal Green function using (4.36), and
the distant past Green function (6.1) [or its approximation
(6.4) for n ¼ 0] for a range of situations.
Figure 14 shows the n ¼ 0 retarded Green function (6.4)

as a function of coordinate time t� t0 for a static particle at
� ¼ �0 ¼ 0:5. At early times, the quasilocal Green func-
tion is well defined, but the distant past Green function is
not. Conversely, at late times the quasilocal series is not
convergent. At intermediate times 1:099< �t & 3:45, we
find an excellent match. Figure 14 also shows that the
results of the two numerical methods for evaluating
QNM sums are equivalent. That is, the Green function
found from the Watson transform (Sec. VC, solid (red)

FIG. 14 (color online). Matching of the quasilocal and distant
past Green functions for � ¼ 1=8 and for a static particle at � ¼
�0 ¼ 0:5. Here, the Green functions are plotted as functions of
coordinate time, t� t0 (not QNM time, as in most other plots).
The (black) dots and solid (red) line show the results of the
smoothed sum and Watson transform methods applied to com-
pute the n ¼ 0 QNM sum (6.4) (see text). The dashed (blue) line
shows the quasilocal series expansion taken to order ðt� t0Þ60.
The distant past Green function cannot be computed for early
times t� t0 < �� þ �0� ¼ 2tanh�1ð1=2Þ ¼ 1:099, whereas the
quasilocal series diverges at large t� t0 * 3:46. In the inter-
mediate regime, we find excellent agreement (see also Figs. 15
and 16). Note that the quasilocal Green function tends to 1

12 �
ð1� 6�ÞR ¼ 1

12 in the limit t0 ! t.

FIG. 15 (color online). Matching of the quasilocal and distant past Green functions. The left plot shows curvature coupling � ¼ 1=6
and the right plot shows � ¼ 1=8, for a static particle at � ¼ �0 ¼ 0:5. Note the time scale on the horizontal axis, T ¼ t� t0 � �� �
�0�. The distant past Green function [(blue) lines reaching up to the last value for T] cannot be computed for T < 0, whereas the
quasilocal series [(red) lines not reaching up to the last value for T] clearly diverges at large T. In the intermediate regime, we find
excellent agreement.
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line) coincides with the Green function calculated by the
method of smoothed sums (Sec. VII D, black dots).

Let us now examine the matching procedure in more
detail. Figure 15 shows the match between the distant past
and quasilocal Green functions, computed from (4.36) and
(6.1), in the case � ¼ �0 ¼ 0:5. The double sum in (6.1)
has been calculated by applying the smoothed sum method
(7.21) to the l sum and by summing over n up to the value
nmax ¼ 4. In Fig. 15, the left plot shows the case for
conformal coupling � ¼ 1=6 and the right plot shows the
case for � ¼ 1=8. Note that the Green function tends to the
constant value 1

12 ð1� 6�ÞR in the limit �t ! 0þ. In both

cases, we find that the fit between quasilocal and distant
past Green functions is good up to nearly the radius of
convergence of the quasilocal series.

Figure 16 quantifies the accuracy of the match between
quasilocal and distant past Green functions. Here, we have
used the smoothed sum method (Sec. VII D) to compute
the distant past Green function from (6.1). To apply this
method, we must choose appropriate upper limits for l
(angular momentum) and n (overtone number). We have
experimented with various cutoffs lcut and nmax. As ex-
pected, better accuracy is obtained by increasing lcut and
nmax, although the run time for the code increases com-
mensurately. With care, a relative accuracy of one part in
104 to 105 is possible. This accuracy is sufficient for
confidence in the self-force values computed via matched
expansions, presented in Sec. VIII D.

D. The self-force on a static particle

In this section, we present a selection of results for a
specific case: a static particle at fixed spatial coordinates.
Our goal is to compute the self-force as a function of �, to
demonstrate the first practical application of the Poisson-
Wiseman-Anderson method of matched expansions
[36,37].
The radiative field may be found by integrating the

Green function with respect to �0, where d�0 ¼
ð1� �2Þ1=2dt0. Integrating a mode sum like (6.4) with
respect to t0 is straightforward; we simply multiply each
term in the sum by a factor 1=ði!lnÞ. Hence it is straight-
forward to compute a partial field defined by

�partialð�tÞ¼qð1��2Þ1=2
Z t��t

�1
Gretðt� t0;�¼�0;�¼0Þdt0:

(8.1)

This may be interpreted as ‘‘the field generated by the
segment of the static-particle worldline lying between t0 !
�1 and t0 ¼ t��t.’’ In the limit�t ! 0, the partial field
�partial will coincide with the radiative field �R. An ex-

ample of this calculation is shown in Fig. 17. Here,
q�1�partial is plotted as a function of T ¼ �t� �� � �0�
for a static particle near spatial infinity, � ! 1. We have
used the n ¼ 0 QNM Green function (6.4) together with
the method of smoothed sums (Sec. VII D), with lcut ¼
200. The ‘‘partial field’’ �partial shares singular points with

Gret. Figure 17 shows that a significant amount of the total
radiative field arises from the segment of the worldline
after the first singularity. The Green function tends to zero

FIG. 16 (color online). Error in matching the quasilocal and
distant past Green functions. This plot shows the difference
between the quasilocal and distant past Green functions in the
matching regime. The magnitude of the Green function as a
function of time T ¼ t� t0 � �� � �0� is shown as a solid red
line. The broken lines show the ‘‘matching error’’: the difference
between the quasilocal and QNM sum Green functions, for
various lcut in (7.21) (see Sec. VIID) and nmax. Note the
logarithmic scale on the vertical axis. It is clear that the matching
error is reduced by increasing nmax and lcut, and that the best
agreement is found close to the radius of convergence of the
quasilocal series (at T � 1:9). The plot shows that a matching
accuracy of above one part in 104 is achievable.

FIG. 17 (color online). Partial field generated by a static par-
ticle at � ¼ 0:5. The dotted (blue) line shows the n ¼ 0 QNM
Green function (6.4). The solid (red) line shows the partial field
q�1�partial defined in Eq. (8.1). This may be interpreted as the

portion of the radiative field generated by the segment of the
static-particle worldline between t0 ! �1 and t0 ¼ t��t.
Here �t ¼ T þ �� þ �0�, where T is the time coordinate shown
on the horizontal axis.

SELF-FORCE CALCULATIONS WITH MATCHED . . . PHYSICAL REVIEW D 79, 124043 (2009)

124043-29



in the limit �t ! 0 (for � ¼ 1=6). On the other hand, the
partial field tends to a constant nonzero value in this limit.
The constant value is the radiative field q�1�R.

An accurate value for the total radiative field is found by
using the quasilocal Green function to extend �partial to

(almost) coincidence, �t ! 0þ. The method is illustrated
in Fig. 18 (left plot). The dashed line shows the quasilocal
contribution to the radiative field, and the dotted line shows
the distant past contribution to the radiative field, as a
function of matching time. The former is the result of

integrating from the matching point �� �� to (almost)
coincidence, and the latter from integrating from �1 to
the matching point. Here,�� varies linearly with the x-axis
scale T (see caption). The right plot illustrates the same
calculation for the radial self-force. Here, the dotted line
representing the contribution from the distant past is found
from the sum (7.19) using the smoothed sum method (7.21)
with lcut ¼ 400 for the l sum and summing over n up to the
value nmax ¼ 4.

FIG. 19 (color online). The radiative field generated by the static particle. The plot shows the radiative field for the static particle at
� ¼ �0. For the case � ¼ 1=6 (left plot) the field is negative, whereas for the case � ¼ 1=8 it is positive (right plot). Note the differing
scales on the vertical axis.

FIG. 18 (color online). Illustration of the matching calculation of the self-force for � ¼ 1=6 on a static particle at � ¼ �0 ¼ 0:5. The
(blue) dashed line shows the quasilocal contribution, integrated from ���� ¼ ð1� �2Þ1=2½T þ �� þ �0�� to (almost) coincidence.
The (green) dotted line shows the distant past contribution, integrated from �1 to ����. The (red) solid line shows the total. In the
matching region 1 & T & 2 the total approaches a constant, which corresponds to the value of the radiative field (left plot) and radial
self-force (right plot).
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Figure 19 shows the total radiative field�R generated by
a static particle in the Nariai spacetime. The field is plotted
as a function of �, for two cases: � ¼ 1=6 and � ¼ 1=8. In
the former case, the field is negative. In the latter case, the
field is positive, and about 2 orders of magnitude greater in
amplitude. In both cases, the amplitude of the field is

maximal at � ¼ 0 and tends to zero as � ! 1 as �R �
ð1� �2Þ1=2.

Figure 20 shows the radial self-force ma� acting on a
static particle. The results of the matched-expansion are
shown as points, and the results of the ‘‘massive-field
regularization method’’ (described in Sec. VII B) are
shown as the solid line. The latter method provides an
independent check on the accuracy of the former. We
find agreement to approximately six decimal places be-
tween the two approaches. We find the self-force at � ¼ 0
to be zero, as expected from the symmetry of the static
region of the Nariai spacetime. The self-force also tends to
zero as � ! 1. Between these limits, the self-force rises to
a single peak, the magnitude and location of which depend
on the curvature coupling �. We find that the peak of the
self-force is approximately 4:9� 10�4 for � ¼ 1=6 and
approximately 3:8� 10�2 for � ¼ 1=8. Note that the argu-
ment (see Sec. VII A) in [65] that the scalar self-force with
� ¼ 1=8 should be zero for a static particle in a spacetime
(such as Nariai) possessing a conformally flat 3-D spatial
section does not seem to hold here.

IX. DISCUSSION AND CONCLUSIONS

In this paper we have presented the first practical dem-
onstration of a self-force calculation using the method of
matched expansions. The matched-expansions method was
first proposed over a decade ago by Poisson and Wiseman
[36]. We have shown that the quasilocal expansion in
coordinate separation [44,47–49], valid only in the normal
neighborhood, may be accurately matched onto a mode-

sum expansion, valid in the distant past. Through matching
the quasilocal and distant past expansions, the full retarded
Green function may be reconstructed. With full knowledge
of the Green function, one may accurately compute the tail
contribution to the self-force. In this work, we employed
the matching method to numerically compute the self-
force acting on a static particle, and showed that the
resulting self-force is in excellent agreement with the result
from an alternative method (Sec. VII B), to approximately
one part in 106.
The key new ingredient in our formulation is the so-

called quasinormal mode-sum expansion for the distant
past Green function. Following Leaver’s approach [50],
the integral over frequency in the mode-sum expansion
of the Green function (4.1) may be performed by deform-
ing the contour of integration in the complex frequency
plane. Poles of the Green function arise at (complex)
quasinormal mode frequencies in the lower half-plane.
The sum over the residues of the poles gives the quasinor-
mal mode sum—a key contribution to the Green function
(see below).
The QNM sum is only valid at late times, t� t0 
 tc,

where tc is approximately the time it takes for a geodesic to
reflect from the peak of the potential barrier. We have
demonstrated that there is a sufficient regime of overlap
in t� t0 in which both the quasilocal and QNM sum
expansions are valid for the method to be applied
successfully.
The QNM spectra of black holes have received much

attention in the last three decades. In some studies
[53,54,115], approximations to QNM frequencies are

found by replacing the effective potential VðSÞ
l (3.5) with

the so-called Pöschl-Teller potential (3.7). The advantage
of this replacement is that the QNMs and radial solutions
of the Pöschl-Teller potential are known in closed form. In
this paper, we have taken the idea a step further. We have
shown that the Pöschl-Teller potential arises naturally if we

FIG. 20 (color online). The radial self-force on the static particle. The radial component of the self-force, q�2ma�, is plotted as a
function of the � of the static particle. The self-force was calculated by two methods: matched expansion [(black) dots] and massive-
field regularization [(blue) curve]. The left plot shows the curvature coupling � ¼ 1=6 whereas the right plot shows � ¼ 1=8. Note the
difference in scales for the two cases.

SELF-FORCE CALCULATIONS WITH MATCHED . . . PHYSICAL REVIEW D 79, 124043 (2009)

124043-31



consider the radial equation resulting from waves on an
alternative spacetime: the product spacetime dS2 � S2,
first introduced by Nariai [38,39] in 1950. This is an
Einstein spacetime of constant scalar curvature.

The symmetry of Nariai spacetime undoubtedly makes
calculations easier. For example, geodesic motion may be
separated into motion on the two submanifolds, dS2 and
S2; the Van Vleck determinant may be written in closed
form (5.43); and the decay rate of the quasinormal modes is
independent of l. We view the Nariai spacetime as an
excellent testing ground for our methods. Nevertheless,
we should not forget the overall goal of the Poisson-
Wiseman-Anderson proposal [36,37]: accurate matched-
expansions calculations on physical black hole spacetimes.
Below, we review some of the insights provided by our
‘‘experiment’’ with the Nariai spacetime which will help
any future calculations.

At late times t� t0 > �� þ �0� it has previously been
established [68] that the quasinormal modes provide a
complete basis on the Nariai spacetime. Here, we demon-
strated that, at late times, the QNM sum (4.22) fully
describes the retarded Green function. This is not expected
to be the case on the Schwarzschild spacetime [50]. In the
latter case, there arises a branch point at ! ¼ 0 and a
branch cut in the frequency integral which gives a power-
law tail contribution [51] to the Green function (Fig. 6).
The branch point is notably absent for the Nariai space-
time, making the analysis simpler. In this paper we have
thoroughly investigated the effect of the quasinormal
modes. The contribution of the branch-cut integral to the
self-force remains to be quantified. We hope to pursue this
calculation in a forthcoming work.

This study has provided a number of insights into the
properties of the Green function, which are of relevance to
any future investigation of the Schwarzschild spacetime.
Namely,

(i) The Green functionGretðx; x0Þ is singular whenever x
and x0 are connected by a null geodesic. The nature
of the singularity depends on the number of caustics
that the wave front has passed through. After an even
number of caustics, the singularity is a delta distri-
bution, with support only on the light cone. After an
odd number of caustics, the Green function diverges
as 1=��, where � is the Synge world function. A
fourfold repeating pattern occurs, i.e. �ð�Þ, 1=��,
��ð�Þ, �1=��, �ð�Þ, etc.

(ii) The fourfold singular structure can be shown to arise
from a Hadamard-like ansatz (5.38) valid even out-
side the normal neighborhood, if we allowUðx; x0Þ to
pick up a phase of�i upon passing through a caustic.
The accumulation of phase may be deduced by
analytically continuing the integral for the
Van Vleck determinant through the singularities
(due to caustics).

(iii) The Hadamard parametrix for the Green function
(4.35) is only strictly valid if x and x0 are in a normal

neighborhood [42] (see footnote 1). The extension
beyond the normal neighborhood does not seem to
be known. However, this work and some previous
studies [116] would tentatively suggest that, if x and
x0 are connected by a countable number of distinct
geodesics, then the Green function may be found
from the sum of their Hadamard contributions.

(iv) The effect of caustics on wave propagation has been
well studied in a number of other fields, such as
optics [117], acoustics [96], seismology [86], sym-
plectic geometry [97], and quantum mechanics [98].
It may be that mathematical results developed in
other fields may be usefully applied to wave propa-
gation in gravitational physics.

(v) The ‘‘shape’’ of the fundamental mode (n ¼ 0)
Green function is remarkably similar to that of the
whole (with sum over all n) QNM Green function
after a time offset has been applied (see Fig. 13).
This offers a potentially very practical way of eval-
uating the whole QNMGreen function from only the
n ¼ 0 overtone. If this were also true in other space-
times of more astrophysical interest such as
Schwarzschild, such a method would be particularly
valuable given the difficulty in calculating the sum
over n up to large values in these spacetimes.

A further observation made in this work is confirmation
that the tail self-force cannot be calculated from the qua-
silocal contribution alone. For instance, Fig. 17 would
appear to show that a significant part of the radiative field
is generated by the segment of the worldline which lies
outside of the normal neighborhood (i.e. beyond the first
caustic). Unlike in flat space, the radiated field generated
by an accelerated particle may propagate once, twice, etc.
around the black hole before later reintersecting the world-
line of the particle (see Fig. 2). Radiation from near these
orbits will give an important contribution to the self-force
which cannot be neglected.
Let us conclude by examining the prospects for a prac-

tical matched expansions calculation on the Schwarzschild
spacetime. Happily, the quasilocal expansion is now in
excellent shape, as described in [48]; the challenge remains
the distant past expansion. We have already mentioned that
a quasinormal mode sum will not be sufficient; it must be
augmented by a branch-cut integral. We have reason to be
optimistic that this is a tractable calculation [51]. Perhaps
more difficult will be the accurate numerical computation
of QNM frequencies and radial functions. A further diffi-
culty will be in integrating the mode sum over the world-
line; for accuracy we wish to avoid numerical integration if
possible. For the static particle, it was straightforward to
integrate each term in the mode sum analytically
(Sec. VII C) with respect to time. For other trajectories
(e.g. circular orbits) this may present more of a challenge.
Finally, we note that a range of established results is
available on Schwarzschild spacetime. For the static par-
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ticle the self-force is zero [104,106,118]; for radial trajec-
tories and circular and eccentric orbits, accurate numerical
results are available [26,29,105,119]. This will surely help
the validation of the matched-expansions method. We hope
to undertake such a study in the near future.
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APPENDIX A: LARGE-� ASYMPTOTICS OF

2F1ð12 � i�; 12 � i�; 1� 2i�;�e�TÞ
To determine the singularity structure of the Green

function in Sec. VA we required the large-
 asymptotic
behavior of 2F1ð��;��;�2�; zÞ where � ¼ � 1

2 þ i
,

z ¼ �e�T . The required asymptotics may be found by
applying the WKB method [120] to the hypergeometric
differential equation

zð1� zÞd
2u

dz2
� ½2�ð1� zÞ þ z� du

dz
� �2u ¼ 0 (A1)

which has solutions uðzÞ ¼ 2F1ð��;��;�2�; zÞ.
Inserting the WKB ansatz

uðzÞ � e
S0ðzÞþS1ðzÞþ
�1S2ðzÞþ... (A2)

immediately yields a quadratic equation for S00,

zð1� zÞðS00Þ2 � 2ið1� zÞS00 þ 1 ¼ 0: (A3)

In our case, z ¼ �e�T , we require the root which is finite
at z ¼ 0. We impose S0ð0Þ ¼ 0 to get

S00 ¼
i

z
ð1� ð1� zÞ�1=2Þ

) S0ðzÞ ¼ ln

�ð�zÞ
4

½ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p þ 1�
½ ffiffiffiffiffiffiffiffiffiffiffiffi

1� z
p � 1�

�

¼ �T � 2 ln2þ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�T

p � 1

�
: (A4)

At next order, we obtain the equation

2½ið1� zÞ � zð1� zÞS00�S01 ¼ zð1� zÞS000 þ ð1� 2zÞS00
þ i: (A5)

It is straightforward to show that this reduces to

S01 ¼ ð4ð1� zÞÞ�1 ) S1 ¼ �1
4 lnð1þ e�TÞ: (A6)

Inserting (A4) and (A6) into (A2) leads to the quoted
result, Eq. (5.2). Of course, the asymptotic approximation
may be further refined by taking the WKB method to
higher orders.

APPENDIX B: POISSON SUM ASYMPTOTICS

In this appendix we derive asymptotic approximations
for the singular structure of the Green function using the
Poisson sum formula (5.18). Our starting point is expres-
sion (5.29) for the ‘‘n ¼ 0’’ fundamental modes, in which
the Legendre polynomials Plðcos�Þ have been replaced by

angular waves Qð�Þ
	�1=2ðcos�Þ which are, in turn, approxi-

mated by Hankel functions Hð�Þ
0 ð	�Þ using (5.28).

Let us consider the I1 and I2 integrals arising from
substituting (5.29) into (5.18). These integrals are singular
at � ¼ 2�� � and � ¼ 2�þ �, respectively. First, let us
consider I1 (5.18) which can be written

I 1 
 �Að�ÞRe
Z 1

0
d	ð�i	Þ1=2eið��2�Þ	HðþÞ

0 ð	�Þ
(B1)

with Að�Þ as defined in Eq. (5.32).
For �> 2�� �, the integral may be computed by

rotating the contour onto the positive imaginary axis (	 ¼
iz) to obtain

I 1 
�2Að�Þ
�

Z
dzz1=2e�ð��2�ÞzK0ð�zÞ


� Að�Þ ffiffiffiffi
�

p
2½��ð2���Þ�3=2 2F1

�
3=2;1=2;2;

�� 2���

�� 2�þ�

�
:

(B2)

Here we have applied the identityHðþÞ
0 ðixÞ ¼ 2K0ðxÞ=ði�Þ,

where K0 is the modified Bessel function of the second
kind, and the integral is found from Eq. 621(3) of Ref. [66].
For �< 2�� �, the integral may be computed by

rotating the contour onto the negative imaginary axis (	 ¼
�iz). First, we make the replacement HðþÞ

0 ð	�Þ ¼
2J0ð	�Þ �Hð�Þ

0 ð	�Þ and note Hð�Þ
0 ð�ixÞ ¼

2K0ðxÞ=ð�i�Þ to obtain

I 1 
 2Að�Þ
�

Re
Z

dzz1=2e�ð2���Þz½�I0ð�zÞ þ iK0ð�zÞ�:
(B3)

Here I0 is a modified Bessel function of the first kind. Since
we are taking the real part, the K0 term is eliminated, and
we obtain

I1 
 2Að�Þffiffiffiffi
�

p ð2�� �� �Þ�1ð2�þ �� �Þ�1=2

� E

�
2�

2�þ �� �

�
(B4)

SELF-FORCE CALCULATIONS WITH MATCHED . . . PHYSICAL REVIEW D 79, 124043 (2009)

124043-33



where E is the elliptic integral of the second kind defined
in, for example, Eq. 111(3) of Ref. [66].

The I2 integral may be calculated in a similar manner.
For �< 2�þ �, we rotate the contour onto the negative
imaginary axis,

I 2 
 �Að�ÞRe
Z 1

0
d	ð�i	Þ1=2Hð�Þ

0 ð	�Þeið��2�Þ	


 2Að�Þ
�

Re i
Z 1

0
dzz1=2e�ð2���ÞzK0ð�zÞ ¼ 0:

(B5)

For �> 2�þ �, we rotate the contour onto the positive
imaginary axis after taking the complex conjugate

I 2 
�Að�ÞRe
Z 1

0
d	ði	Þ1=2HðþÞ

0 ð	�Þeið��2�Þ	


 2Að�Þ
�

Re
Z 1

0
dzz1=2e�ð���Þzði�I0ð�zÞ þK0ð�zÞÞ:

(B6)

The imaginary term does not contribute and hence I2 is
equal and opposite to I1 defined by Eq. (B2) when �>
2�þ �.

APPENDIX C: GREEN FUNCTION ON T� S2

To the best of our knowledge, the fourfold singularity
structure for the Green function of Sec. V has not been
shown before in the literature (with the exception of [87])
within the theory of general relativity. We therefore wish to
illustrate its derivation and manifestation in the simplest of
spacetimes including S2 topology:

ds2 ¼ �dt2 þ d�2
2; (C1)

where Synge’s world function is simply given by � ¼ 1
2 �ð��t2 þ�
2Þ, in the case of a conformally coupled (� ¼

1=8) scalar field. Let x ¼ ðt; �;
Þ denote any point in this
spacetime. In this appendix, � � t� t0 is the time interval
between any two spacetime points x and x0 (rather than the
free parameter determining the matching time in the main
body of the paper).

We introduce the Wightman function Gþðx; x0Þ (it sat-
isfies the homogeneous scalar wave equation—see, e.g.,
[89]), from which the retarded Green function Gretðx; x0Þ is
easily obtained:

Gþðx; x0Þ ¼
Xþ1

l¼0

Xþl

m¼�l

�lmðxÞ��
lmðx0Þ

¼ 1

4�

Xþ1

l¼0

e�iðlþ1=2Þ�tPlðcos�Þ; (C2)

Gretðx; x0Þ ¼ �2�ð�tÞ ImðGþðx; x0ÞÞ; (C3)

where�t � t� t0,�lmðxÞ¼e�iðlþ1=2ÞtYlmð�;
Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2lþ1Þp
are the Fourier-decomposed scalar-field modes on (C1)

normalized with respect to the scalar product

ð�lm;�l0m0 Þ
¼ �i

Z
�
dVn�½�lmðxÞ@���

l0m0 ðxÞ ���
l0m0 ðxÞ@��lmðxÞ�

¼ �ll0�mm0 ; (C4)

where� is a Cauchy hypersurface with future-directed unit
normal vector n� and volume element dV.
We now apply exactly the same tricks as in Sec. VD in

order to derive the fourfold singularity structure in the
Green function from the large-l asymptotics of the field
modes. We use the Poisson sum formula [85,86]

Xþ1

l¼0

gðlþ 1=2Þ ¼ Xþ1

s¼�1
ð�1Þs

Z þ1

0
d	gð	Þe2�is	 (C5)

to rewrite the mode sum in (C2) as

4�Gþðx;x0Þ¼
Xþ1

s¼�1
ð�1Þs

Z þ1

0
d	e�i	�tP	�1=2ðcos�Þe2�is	

¼Xþ1

N¼1

GNþ; (C6)

GNþðx; x0Þ �
Z þ1

0
d	RNðcos�Þe�i	�t: (C7)

The Legendre functions P�ðcos�Þ and Q�ðcos�Þ, as
well as RNðcos�Þ, are standing waves. This is in contrast

to Qð�Þ
� ðcos�Þ, which are traveling waves.

We can now use large-order uniform asymptotics (see
[88,121]) for the Legendre functions:

P	�1=2ðcos�Þ �
�

�

sin�

�
1=2

J0ð	�Þ; j	j ! 1;

“valid in a closed uniform interval containing � ¼ 0; ”

(C8)

Q	�1=2ðcos�Þ � ��

2

�
�

sin�

�
1=2

Y0ð	�Þ; j	j ! 1;

“valid with respect to � 2 ð0; �=2�; ” (C9)

Q ð�Þ
	�1=2ðcos�Þ �

1

2

�
�

sin�

�
1=2

Hð�Þ
0 ð	�Þ; j	j ! 1;

(C10)

to leading order.
The contribution to the Wightman function from the

N ¼ 1 orbit wave is immediately obtained by using the
large-order asymptotics of the Legendre function P	ðcos�Þ
only, which are ‘‘valid in a closed uniform interval con-
taining � ¼ 0’’—this is what we will mean by a result
being valid ‘‘near’’ � ¼ 0. Similarly, we can obtain a result
valid near � ¼ � by using in (C2) the symmetry
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Plðcos�Þ ¼ ð�1ÞlPlðcosð�� �ÞÞ for l 2 N. We then ob-
tain for N ¼ 1

4�GN¼1þ ðx; x0Þ �
ffiffiffiffiffiffiffiffiffiffi
�

sin�

s
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � �t2
p ; near � ¼ 0;

(C11)

4�GN¼1þ ðx;x0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���

sinð���Þ
s �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið���Þ2�ð�t��Þ2p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
���

sinð���Þ
s �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð�t��Þ½�t�ð2���Þ�p ;

near�¼�; (C12)

where, for convergence, a small imaginary part was given
to �t and/or �, in agreement with the Feynman prescrip-
tion� ! �þ i�. The result forGN¼1þ ðx; x0Þ valid near � ¼
0 is singular at �t ¼ ��, corresponding to � ¼ 0 before a
caustic has been crossed. It is in accord with the Hadamard
form in 3-D [111] and the Van Vleck determinant (5.48),
before a caustic has been crossed (and so without the phase

factor). The result for GN¼1þ ðx; x0Þ valid near � ¼ � is
singular at �t ¼ �, corresponding to the case where it
has not gone through any caustics, and at �t ¼ 2�� �,
corresponding to the case where it has gone through one
caustic; it has thus picked up a factor�i, as expected. Note
that these zeros inside the squared root in the denominator
are simple zeros along the null geodesic, except at the
caustic point itself, where the two zeros coincide and so
it becomes a double zero.
Similarly toN ¼ 1, we can use (C6) and the asymptotics

(C10) together with [66]

I�ðT; �Þ �
Z 1

0
d	e�i	ðT�i�ÞHð�Þ

0 ð	�Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ðT � i�Þ2p �

1� 2i

�
lnðiX þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
Þ
�
;

T 2 R; � > jIm�j; (C13)

where X � ðT � i�Þ=� (again, a small imaginary part
needs to be given for convergence, in accordance with
the Feynman prescription), in order to obtain for N > 1

4�GNþðx; x0Þ �
ffiffiffiffiffiffiffiffiffiffiffi
�

sin�

s
ð�1ÞN=2

2

� ½Iþð�tþ N�;�Þ þ I�ð�t� N�;�Þ� near � ¼ 0
�i½Iþð�tþ ðN � 1Þ�;�Þ þ I�ð�t� ðN þ 1Þ�;�Þ� near � ¼ �;

(C14)

forN even, where� ¼ � near � ¼ 0 and� ¼ �� � near � ¼ �. ForN odd, merely (1) swap I� ! I� and (2) replaceN
by N � 1 if near � ¼ 0 or N by N þ 1 if near � ¼ � in (C14). We can rewrite the equation as �2 � ð�t� N�� i�Þ2 ¼
�½ð�t� i�Þ � ð�N�� �Þ�½ð�t� i�Þ � ð�� N�Þ�. Note, however, that I�ðT; �Þ is regular at X ¼ �1.

We then have that the singular behavior goes as

4�Gþðx; x0Þ � 1

2

ffiffiffiffiffiffiffiffiffiffiffi
�

sin�

s 8>><
>>:
þIþð�t; �Þ 0<�t < � �� 0
�iIþð�t� �;�� �Þ �< �t < 2� �� �
�Iþð�t� 2�;�Þ 2�< �t < 3� �� 0
þiIþð�t� 3�;�� �Þ 3�< �t < 4� �� �:

(C15)

The fourfold singularity structure arises clearly: a phase of �=2 is picked up every time the null geodesic joining x and x0
goes through a caustic (� ¼ 0 or �).

The expression for Gþðx; x0Þ is simplified by noting that, near � ¼ 0,

4�½GNþðx; x0Þ þGNþ1þ ðx; x0Þ�

� iN
ffiffiffiffiffiffiffiffiffiffi
�

sin�

s �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 � ð�t� N�� i�Þ2p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � ð�tþ N�� i�Þ2p �

; N even;

iN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �

sinð�� �Þ
s �

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �Þ2 � ð�t� N�� i�Þ2p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�� �Þ2 � ð�tþ N�� i�Þ2p �
; N odd; (C16)

and similarly near � ¼ �. The Poisson sum formula has yielded a sum over geodesic paths, labeled by the indexN, and the
large-order asymptotics for the Legendre functions have yielded the correct singularity structure near the null geodesics,
allowing for the correct phase change at each caustic.
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