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3Departamento de Fı́sica, Universidade da Beira Interior, Rua Marquês d’Avila e Bolama, 6200 Covilhã, Portugal
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Classical models for dark energy can exhibit a variety of singularities, many of which occur for scale

factors much bigger than the Planck length. We address here the issue of whether some of these

singularities, the big freeze and the big démarrage, can be avoided in quantum cosmology. We use the

framework of quantum geometrodynamics. We restrict our attention to a class of models whose matter

content can be described by a generalized Chaplygin gas and be represented by a scalar field with an

appropriate potential. Employing the DeWitt criterion that the wave function be zero at the classical

singularity, we show that a class of solutions to the Wheeler-DeWitt equation fulfilling this condition can

be found. These solutions thus avoid the classical singularity. We discuss the reasons for the remaining

ambiguity in fixing the solution.
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I. INTRODUCTION

Understanding the observed acceleration of the Universe
may affect our understanding of gravity as well as enlarge
the framework of particle physics; see, for example, [1–4]
for some reviews on the state of the art. The presence of
precision observations is particularly promising in this
respect [5].

Even though a cosmological constant is the simplest way
to explain phenomenologically the late-time acceleration
of our Universe, it is not entirely appealing from a theo-
retical point of view. The reason is the mismatch between
the required observational value and the expected one from
theoretical grounds [6]. This has induced a whole manu-
facture of theoretical model building, aiming at an expla-
nation of the recent speedup of the Universe. Most of these
models invoke a dark-energy component with negative
pressure [7] or a modification of gravity on a large scale
[8] which, by weakening the gravitational interaction,
achieve the accelerated expansion. More exotic explana-
tions invoke ideas of a multiverse and may therefore have
to use the anthropic principle or isotropic and inhomoge-
neous cosmologies which violate the cosmological princi-
ple [9–11].

In practical applications and for a homogeneous and
isotropic universe, which is a good approximation for our
Universe on large scales, whatever the entity responsible
for the recent acceleration may be, it can be described
effectively through an equation of state parameter w.
This parameter w is just the ratio between the pressure
and the energy density of the unknown entity (sometimes

designated as ‘‘dark energy’’) and may, of course, be time-
dependent. The value of w is observationally very close to
w ¼ �1, that is, the equation of state for a cosmological
constant. However, if w is larger or smaller than w ¼ �1,
the future of the Universe will be dramatically different.
Let us mention that indications of a decaying dark energy
have recently been reported [12].
Our main interest here lies not so much in the observa-

tional significance of such models but in their relevance for
understanding the quantization of gravity. The search for a
consistent theory of quantum gravity is among the main
open problems in theoretical physics [13]. One aspect is
the fate of the singularities which are prevalent in the
classical theory of general relativity. The hope is that a
consistent quantum theory of gravity is free of such singu-
larities. This aspect can most easily be investigated in the
framework of quantum cosmology: the application of
quantum theory to the Universe as a whole [13,14].
Because of our restriction to homogeneous models, the
corresponding framework of quantum cosmology does
not encounter the mathematical problems of the full theory.
We also emphasize that quantum cosmology is a nonper-
turbative framework and thus different from approaches
employing ‘‘quantum corrections’’ to the classical theory.1

Within this context, some of the dark-energy models are
particularly suitable. Furthermore, if one of the models
applies to our real Universe, this would provide us with
important insights into its past and future, which could be a
singularity-free and timeless quantum world.
Indeed, during the past years, it has been shown that

some dark-energy scenarios with w<�1, dubbed phan-
tom energy models [17], can induce a new type of singu-
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1For reviews on cosmological singularities and string theory,
cf. [15,16], and references therein.
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larity called the big-rip singularity. This is a singularity
where both density and pressure diverge and which is
attained for a universe that expands to infinity in a finite
time. The quantum version of such a situation was exten-
sively investigated in [18] (see also [19,20]). It was found
there that the semiclassical approximation necessarily
breaks down for large-enough scale factors, and so the
singularity theorems no longer apply.

It was soon realized that the big-rip singularity is not the
unique singularity related to dark energy and that different
types of singularities could show up [21–23]. One of them
is the big-brake singularity, which is obtained for a uni-
verse in the future and which is characterized by an infinite
deceleration; the universe comes to an abrupt halt. The
quantum cosmology of such a model was discussed at
length in [24]. It was found there that, given reasonable
assumptions, the wave function vanishes in the region of
the classical singularity, which we can safely interpret as
singularity avoidance. From theoretical investigations such
classical singularities are well known [25], but in the
context here they occur within models possessing obser-
vational relevance.

In this work we are interested in the generalization of
these quantum-cosmological results to a broader class of
models. We shall find that the singularity avoidance is there
effective, too. We are mainly concerned with two types of
singularities known as the big-freeze2 and big-démarrage
singularity, respectively [29]. Let us give a brief character-
ization of them:

(i) The big-freeze singularity (or type-III singularity in
the nomenclature of [22]) takes place at a finite scale
factor and finite cosmic time in a (flat) Friedmann-
Lemaı̂tre-Robertson-Walker (FLRW) universe. At
this singularity, both the Hubble rate and its cosmic
derivative blow up. (This is not the case for a big-
brake singularity.) Such a singularity can be induced
by a generalized Chaplygin gas (GCG) [29]. The
GCG is a perfect fluid which satisfies the following
polytropic equation of state [30]:

p ¼ � A

��
; (1)

where A and � are constants. This equation of state
was introduced in cosmology with the intention to
unify the dark sectors of the Universe, that is, dark
matter and dark energy [30]. How this is achieved

can be seen from the conservation of the energy-
momentum tensor of such a fluid in a homogeneous
and isotropic universe. It implies

� ¼
�
Aþ B

a3ð1þ�Þ

�
1=ð1þ�Þ

; (2)

where B is a constant. Therefore, if A, B, and 1þ �
are positive, the energy density � interpolates be-
tween a dust energy density for a small scale factor
and a constant energy density for a large scale factor.
However, it is possible that the GCG can exclusively
correspond to dark energy in a FLRW universe.
The behavior of a GCG can be quite different if the
parameters A, B, and 1þ � are not all positive. In
particular, it can induce different sorts of singular-
ities [31]. Moreover, it was shown that a phantom
GCG, that is, a fluid which satisfies the polytropic
equation of state (1) for � > 0 and pþ � < 0, can
induce a future big-freeze singularity [29]. It was
also realized that even a GCG fulfilling the null,
strong, and weak energy conditions can lead to a
big-freeze singularity [31] in the past.

(ii) In Ref. [31], it was also shown that a sudden singu-
larity (or type-II singularity in the nomenclature of
[22]) can be induced by a GCG. A sudden singularity
is characterized by the fact that the Hubble rate is
finite, while its cosmic derivative blows up at a finite
scale factor. If the GCG fulfils the null, strong, and
weak energy conditions, then the sudden singularity
corresponds to a big-brake singularity [24] which
takes place in the future when the universal expan-
sion is stopped by an infinite deceleration. On the
other hand, if the GCG corresponds to a phantom
fluid, the sudden singularity takes place in the past.
In analogy with the terminology of the big-brake
singularity, we call this kind of sudden singularity
a big-démarrage singularity because the universe
starts its expansion with an infinite acceleration.
Since the big-brake singularity has been studied in
[24], we shall restrict our attention here to the phan-
tom model exhibiting a big-démarrage singularity.

An interesting feature of these singularities is the fact
that they can occur in a macroscopic universe, that is, for
large values of the scale factor. A pertinent question is then
whether quantum gravitational effects can resolve these
singularities. Would that mean that there could be quantum
effects in the macroscopic universe? How could we expect
these singularities to be resolved through quantum gravity?
This is the major motivation standing behind the quantum
analysis of the big-freeze and big-démarrage singularities.
We shall carry out our quantization in the geometrodynam-
ical framework, using the three-metric and its conjugate
momentum as fundamental variables. The governing equa-
tion in this framework is the Wheeler-DeWitt equation.
One can invoke various reasons why this framework is

2It has been recently shown that a big-freeze singularity might
be simply an indication that a brane is about to change from a
Lorentzian to a Euclidean signature [26], even though the brane
and the bulk remain fully regular everywhere. This kind of
behavior can happen in some braneworld models where the
bulk is always Lorentzian and does not change its signature. If
the brane and the bulk change simultaneously their signature like
in the models discussed in [27,28], observers at the brane would
not perceive to go into such a big-freeze singularity.
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appropriate for studying the question at hand3 [37].
Perhaps the most compelling one is the fact that the
Wheeler-DeWitt equation is the wave equation which
straightforwardly leads to the Einstein equations in the
semiclassical limit.

Our paper is organized as follows. In Sec. II, we review
the classical cosmology with a generalized Chaplygin gas
leading to a past/future big-freeze singularity or a past
sudden singularity. To be able to study the quantum be-
havior, the GCG has to be mimicked by a fundamental field
because also the matter part should have its own degrees of
freedom. The representation of the GCG in terms of mini-
mally coupled scalar fields will be given in Sec. III. The
remainder of this article is concerned with the quantum
properties of these scenarios. In Sec. IV, we obtain solu-
tions for the quantum-cosmological model with phantom
and nonphantom GCG evolving to and from a big-freeze
singularity, respectively. We investigate whether this sin-
gularity can be quantum gravitationally avoided. The big-
démarrage singularity is also addressed at the quantum-
cosmological level. The (general) results are then dis-
cussed for different types of boundary conditions in
Sec. V. We present explicit results for the quantum states
that avoid the singularities and discuss further consequen-
ces. Section VI gives our conclusions and outlook. In the
appendix, we present a justification of the gravitational
wave function approximation used in the paper.

II. THE CLASSICAL BIG-FREEZE AND
BIG-DÉMARRAGE SINGULARITIES INDUCED BY

A GENERALIZED CHAPLYGIN GAS

A. The big-freeze singularity without phantom matter

We review here a particular case of the plain generalized
Chaplygin gas [31], that is, a fluid which satisfies the
polytropic equation of state (1) and fulfils the null, strong,
and weak energy conditions. Such an equation of state may
induce a big-freeze singularity in the past. This is the case4

when A < 0, B> 0, and 1þ �< 0. Then the energy den-
sity can be written as

� ¼ jAj1=ð1þ�Þ
�
�1þ

�
amin

a

�
3ð1þ�Þ�1=ð1þ�Þ

; (3)

where

amin ¼
��������BA

��������1=3ð1þ�Þ
(4)

denotes the minimal scale factor, which is the value where
the singularity occurs. We consider a spatially flat homo-

geneous and isotropic universe filled with this sort of fluid.
Then, at the minimum scale factor amin, the energy density
blows up and so does the Hubble rate. Similarly the pres-
sure, which reads

p ¼ jAj1=ð1þ�Þ
�
�1þ

�
amin

a

�
3ð1þ�Þ���=ð1þ�Þ

; (5)

diverges when the scale factor approaches its minimum
value amin. Notice that the pressure is positive, and there-
fore a FLRW universe filled with this fluid would never
accelerate. This particular choice of parameters can thus
not describe the acceleration of the current Universe. In
fact, the deceleration parameter

q ¼ 1
2ð1þ 3wÞ (6)

is always positive. Figure 1 displays w ¼ p=�. On the
other hand, the Raychaudhuri equation implies that at
amin the cosmic-time derivative of the Hubble rate also
diverges. In order to show that the event that takes place at
amin corresponds to a past big-freeze singularity, it remains
to be proven that from a given finite scale factor the cosmic
time elapsed since the singularity took place is finite. This
can be done by integrating the Friedmann equation. The
cosmic time in terms of the scale factor reads [31]

FIG. 1 (color online). Plot of the ratio of pressure and energy
density w for the generalized Chaplygin gas analyzed in this
section as a function of the scale factor [31]. The dominant
energy condition is not fulfilled for a scale factor smaller than
adom.

3For a discussion on singularity avoidance within loop quan-
tum cosmology, cf. [32]; for an earlier discussion where geo-
metrodynamical elements were present, cf. [33–36].

4The conclusion reached in this section also holds for A > 0,
B < 0, 1þ �< 0, and 1þ � ¼ 1=ð2nÞ, with n some negative
integer number. For simplicity, we shall disregard this case.
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t� tmin ¼ � 2

�
ffiffiffi
3

p jAj�1=2ð1þ�Þ

1þ 2�

�
��

amin

a

�
3ð1þ�Þ � 1

�ð1þ2�Þ=2ð1þ�Þ� a

amin

�
3ð1þ�Þ

� F

�
1; 1;

3þ 4�

2ð1þ �Þ ; 1�
�

a

amin

�
3ð1þ�Þ�

; (7)

where �2 ¼ 8�G and Fðb; c; d; eÞ is a hypergeometric
function; see, for example, [38]. In the previous expres-
sion, tmin corresponds to the cosmic time when a universe
filled by this sort of generalized Chaplygin gas would
emerge from a past big-freeze singularity at a ¼ amin.
We thus find here a singularity at finite scale factor amin

and finite cosmic time tmin, where both energy density and
pressure blow up, as the Hubble parameter and its cosmic
derivative do as well. It can easily be checked that the
cosmic time elapsed since the universe emerged from the
past big-freeze singularity until it has a given size (at a
given t) is finite,5 that is, t� tmin is bounded for any finite
scale factor. Before concluding this section, we notice that,
although the generalized Chaplygin gas analyzed here
fulfils the null, strong, and weak energy conditions, it
violates the dominant energy condition for scale factors
smaller than adom, where

adom ¼ 2�1=3ð1þ�Þamin: (8)

At adom the pressure equals the energy density and for
smaller scale factors � < p. This situation is schematically
shown in Fig. 1.

B. The big-freeze singularity with a phantom GCG

The big-freeze singularity discussed above may also
take place in the future at a scale factor a ¼ amax. This is
possible if the GCG exhibits a phantom behavior, that is, if
it satisfies pþ � < 0 [39]. Eventually, the pressure will be
so negative that the universe not only accelerates but is
even superaccelerating; that is, the Hubble rate grows as
the universe expands. This is certainly a model capable of
describing dark energy. When the scale factor approaches
amax, the energy density as well as the pressure diverge in a
finite future cosmic time [31]. This phantom GCG induces
a big-freeze singularity, although in this case the event
happens in the future instead of, as above, in the past
[29,31]. Such a future big-freeze occurs for A > 0, B<
0, and 1þ �< 0. Being more precise, the energy density
in this case reads

� ¼ A1=ð1þ�Þ
�
1�

�
amax

a

�
3ð1þ�Þ�1=ð1þ�Þ

; (9)

while the pressure is

p ¼ �A1=ð1þ�Þ
�
1�

�
amax

a

�
3ð1þ�Þ���=ð1þ�Þ

; (10)

where

amax ¼
��������BA

��������1=3ð1þ�Þ
(11)

is the maximal value of the scale factor.

C. The big-démarrage singularity with a phantom GCG

The GCG is also known to induce future or past sudden
singularities [24,31,40]. The following cases can be dis-
tinguished:
(1) If the GCG fulfils the null, strong, and weak energy

conditions with A < 0, B> 0, and�> 0, a universe
filled with this sort of gas would face a future sudden
singularity, which is just the big-brake singularity
already mentioned above. For � ¼ 1 this fluid was
named an anti-Chaplygin gas in [24] because the
case with � ¼ 1 and A > 0 is usually called the
Chaplygin case. Since this model was discussed at
length in [24], we shall disregard it here.

(2) If the GCG is a phantom fluid with A > 0, B< 0,
and �> 0, a universe filled with this fluid would
face a past sudden singularity; that is, the classical
evolution starts at a finite scale factor and energy
density while the pressure of the fluid diverges. We
name this past sudden singularity a big-démarrage
singularity as the universe would start its classical
evolution with an extremely large acceleration due
to the very negative pressure of the fluid. This
phantom GCG corresponds to an example where a
future big-rip singularity can be avoided even for
phantom matter [39] as in this case the universe
would asymptotically approach de Sitter space in
the future. Here we are rather interested in the early
behavior of a universe close to the big-démarrage
singularity.

Let us add a few more comments on the second case
stated above. The energy density and pressure of the phan-
tom GCG can be expressed as in (9) and (10) after sub-
stituting amax by amin where the initial scale factor amin can
be expressed as in (4). The phantom nature of this fluid
induces a superacceleration of the universe which, in par-
ticular, implies that a universe filled with this fluid would
be accelerating.

III. THE CLASSICAL BIG-FREEZE AND
BIG-DÉMARRAGE SINGULARITIES INDUCED BY

SCALAR FIELDS

A perfect fluid is an effective description of matter. As
such it is valid only on certain (large) scales. At the
quantum level, we may need a more fundamental descrip-

5A hypergeometric series Fðb; c; d; eÞ, also called a hyper-
geometric function, converges at any value e such that jej � 1
whenever bþ c� d < 0. However, if 0 � bþ c� d < 1, the
series does not converge at e ¼ 1. In addition, if 1 � bþ c� d,
the hypergeometric function blows up at jej ¼ 1 [38].
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tion of matter. We herein choose the simplest possible one:
a minimally coupled scalar field. In the following subsec-
tions, we formulate the standard and phantom GCG in
terms of standard and phantom scalar fields, respectively.
This step is an important preparation for the quantum part
because the wave function is defined on configurations
space; that is, it will depend on the scale factor and the
scalar field.

A. The big-freeze singularity driven by a standard
canonical scalar field

We first show how the GCG given in Sec. II A can be
described by a standard minimally coupled scalar field
whose energy density and pressure in a homogeneous
and isotropic universe read, respectively,

�� ¼ 1
2
_�2 þ Vð�Þ; p� ¼ 1

2
_�2 � Vð�Þ: (12)

The dot corresponds to the derivative with respect to
cosmic time. Then by imposing that �� and p� satisfy

the equation of state (1), the kinetic energy density and the
scalar-field potential evolve with the scale factor as

_� 2 ¼ jAj1=ð1þ�Þ ðamin

a Þ3ð1þ�Þ

½ðamin

a Þ3ð1þ�Þ � 1��=ð1þ�Þ ;

VðaÞ ¼ 1

2
jAj1=ð1þ�Þ ðamin

a Þ3ð1þ�Þ � 2

½ðamin

a Þ3ð1þ�Þ � 1��=ð1þ�Þ :

(13)

Therefore, the scalar field changes with the scale factor as
(cf. Fig. 2)

j���minjðaÞ ¼ 2
ffiffiffi
3

p
3�j1þ �j ln

��
amin

a

�ð3=2Þð1þ�Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
amin

a

�
3ð1þ�Þ � 1

s �
; (14)

where �min corresponds to the value of the scalar field at
amin, where the singularity occurs; we shall set �min ¼ 0
for simplicity. Finally, by combining (13) and (14), the
scalar-field potential reads

Vð�Þ ¼ V1

�
sinh2=ð1þ�Þ

� ffiffiffi
3

p
2

�j1þ �jj�j
�

� 1

sinh2�=ð1þ�Þð
ffiffi
3

p
2 �j1þ �jj�jÞ

�
; (15)

where V1 ¼ jAj1=ð1þ�Þ=2. Notice that at the minimum scale
factor or at � ¼ 0 the potential is negative and divergent.
In fact, the potential can be approximated in this region by6

Vð�Þ ’ �V1

� ffiffiffi
3

p
2

�j1þ �jj�j
��2�=ð1þ�Þ

: (16)

We recall that 1þ �< 0 and therefore �2�=ð1þ �Þ<
�2; that is, Vð�Þ is at the big-freeze singularity more
singular than an inverse-square potential. This is crucial
for the discussion of the quantum theory below. On the
other hand, for large values of the scale factor or at large
values of the scalar field, we have

Vð�Þ ’ 2�2=ð1þ�ÞV1 expð�
ffiffiffi
3

p
�j�jÞ: (17)

The general behavior of the potential is shown in Fig. 3.
The scalar field starts with an infinite kinetic energy (at the
past big-freeze singularity) climbing up the potential until
it reaches its top and then starts rolling down the potential
hill. When the potential vanishes, the scale factor is equal
to adom. Hence, the dominant energy density is violatedFIG. 2 (color online). Plot of the scalar field versus the loga-

rithmic scale factor � ¼ lnða=a0Þ, where a0 corresponds to the
location of the singularity in the respective models. This plot
corresponds to a past big-freeze singularity where a0 ¼ amin [see
Eq. (14)].

FIG. 3 (color online). Plot of the potential (15) as a function of
the scalar field for the value � ¼ �3. The star denotes the
location of the singularity, KE denotes the kinetic energy of
the scalar field, and the arrows denote the trajectory of the scalar
field.

6At the lowest order, the first term in (15) does not contribute
to the approximation made in (16) because �2�=ð1þ �Þ<
2=ð1þ �Þ< 0.
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when the scalar field takes a value such that the potential
becomes negative.

B. The big-freeze singularity driven by a phantom
scalar field

Similarly to the case just considered, the GCG discussed
in Sec. II B can also be described by a minimally coupled
scalar field, although in this case the phantom nature of the
GCG implies that the scalar field does not have the stan-
dard kinetic term; therefore, its energy density and pressure
read, respectively,

�� ¼ �1
2
_�2 þ Vð�Þ; p� ¼ �1

2
_�2 � Vð�Þ (18)

for a FLRW universe. Equating the previous quantities to
(9) and (10), we obtain

_� 2 ¼ A1=ð1þ�Þ ðamax

a Þ3ð1þ�Þ

½1� ðamax

a Þ3ð1þ�Þ��=ð1þ�Þ ;

VðaÞ ¼ 1

2
A1=ð1þ�Þ 2� ðamax

a Þ3ð1þ�Þ

½1� ðamax

a Þ3ð1þ�Þ��=ð1þ�Þ :

(19)

Consequently,

� ¼ � 2

�
ffiffiffi
3

p 1

1þ �
arccos

��
amax

a

�
3ð1þ�Þ=2�

: (20)

In Fig. 4, we show how the scalar field is correlated with
the scale factor. From the last equation, one can read off
that the scalar field vanishes when the scale factor reaches
its maximal classically allowed value. By using the rela-
tions (19) and (20) we find the following expression for the
potential:

Vð�Þ ¼ V�1

�
1

sin2�=ð1þ�Þð
ffiffi
3

p
2 �j1þ �jj�jÞ

þ sin2=ð1þ�Þ
� ffiffiffi

3
p
2

�j1þ �jj�j
��

; (21)

where V�1 ¼ A1=ð1þ�Þ=2 and 0< ð ffiffiffi
3

p
=2Þ�j1þ �jj�j �

�=2 (see Fig. 5).
The big-freeze singularity at a ¼ amax is now located at

� ¼ 0 where the scalar-field potential can be approxi-
mated by7

Vð�Þ ’ V�1

� ffiffiffi
3

p
2

�j1þ �jj�j
��2�=ð1þ�Þ

: (22)

This potential [also the exact potential (21)] can be de-
duced from the expression (16) [respectively, (15)] by
rotating � ! i� and taking into account that A changes
sign. Notice that this implies that there is a change of sign
of the potential (16) after performing such an analytical
continuation.
In general, the potential (22) corresponds to a singular

potential. However, for large-enough� (and again for� !
0), Vð�Þ behaves effectively as an inverse-square potential;
that is,

Vð�Þ ’ V�1

� ffiffiffi
3

p
2

�j1þ �jj�j
��2

; 1 � j�j: (23)

The scalar field starts its cosmological evolution with a

vanishing kinetic energy density at
ffiffiffi
3

p
=2�j1þ �jj�j ¼

�=2, and then it climbs up through the potential reaching

FIG. 4 (color online). Plot of the scalar fields versus the
logarithmic scale factor � ¼ lnða=a0Þ, where a0 corresponds
to the location of the singularity in the respective models. The
plot corresponds to a future big-freeze/(past)big-démarrage sin-
gularity [see Eq. (20)]. In the scenario with a future big-freeze or
a (past) big-démarrage singularity, the quantity �3=2ð1þ �Þ�
is always negative.

FIG. 5 (color online). Plot of the potential defined in (21) as a
function of the scalar field for the value � ¼ �3. The star
denotes the location of the singularity, KE denotes the kinetic
energy of the scalar field, and the arrows indicate the trajectory
of the scalar field.

7Again, the second term in (21) does not contribute to the
potential (22) because �2�=ð1þ �Þ< 2=ð1þ �Þ< 0.
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an infinite kinetic energy when the classical universe
reaches its maximum size, that is, when � ! 0 [see
Fig. 5]. This is a usual feature of phantom scalar fields.
Notice as well that the standard canonical scalar field with
the potential (15) also climbs through its potential, but in
this case the reason behind this strange behavior is the
initial infinite kinetic energy of the scalar field when � !
0.

C. The big-démarrage singularity driven by a phantom
scalar field

Similarly to the above cases, one can also show that the
phantom GCG leading to a big-démarrage singularity can
be mimicked by a minimally coupled phantom scalar field
�, where � and the scalar-field potential Vð�Þ are given,
respectively, by Eqs. (20) and (21) after substituting amax

by amin; see also Figs. 4 and 6. The expressions given in
(19) are also valid after exchanging amax by amin. The
scalar field starts moving away from the singularity (lo-
cated at � ¼ 0 or a ¼ amin) by rolling down the potential
with an infinite kinetic energy. The phantom nature of the
scalar field implies that� loses its kinetic energy as it rolls
down the potential; cf. Fig. 6. In fact, when the scalar field

reaches the tail of the potential, that is,
ffiffiffi
3

p
=2�j1þ

�jj�j ! �=2, its kinetic energy is approaching zero,
which is in agreement with the asymptotic de Sitter-type
behavior of a universe filled by this phantom GCG.

Close to the singularity (� ! 0), Vð�Þ can be approxi-
mated by (22). Because �> 0, this potential does not
correspond to a singular potential, although for 1 � � it
behaves as an inverse-square potential. Notice as well that
for � ¼ 1 the potential behaves as a Coulomb potential
like its nonphantom version [24].

IV. WHEELER-DEWITT EQUATION AND
QUANTUM STATES

In this section, we shall describe the quantization of the
classical scenarios discussed above. This will be carried
out in the quantum geometrodynamical framework. Its
central equation is the Wheeler-DeWitt equation, depend-
ing on the configuration space variables ða;�Þ. From the
solutions obtained, we shall retrieve information concern-
ing the above GCG models with regard to their quantum
behavior at the classical singularity.8 A discussion of the
influence of different boundary conditions on the wave
function is presented in the next section.
Before proceeding to more technical aspects, let us

mention that, even though singularity avoidance is a major
touchstone for any quantum gravity theory, no consensus
regarding the criteria that may account for such an avoid-
ance exists. This is mainly due to the fact that the criteria
that one admits depend strongly on how one interprets the
wave function of the universe. Divergent opinions on that
interpretation arise because quantum gravity is itself a
timeless theory [13]. In this respect it differs from any
other quantum field theory, and there is not yet any agree-
ment about the appropriate interpretational framework.
One possible line to establish a reasonable research

criterion is to regard the quantum-cosmological wave func-
tion as the fundamental entity from which our spacetime
can be derived in an appropriate limit. The recovery of
spacetime can be expected to occur only in special regions
of configuration space. The derivation of the semiclassical
limit is performed by a Born-Oppenheimer type of ap-
proximation scheme with decoherence as an essential in-
gredient; cf. [13] and the references therein. The
gravitational part of the wave function is usually taken to
be of a WKB form, which means that narrow wave packets
around classical trajectories would not spread. But wave
packets which are initially peaked around classical trajec-
tories may not remain so along the entire trajectory. Such a
dispersion is unavoidable in a quantum universe whose
classical version exhibits recollapse [42]. Thus, a spread-
ing of the wave packet signals a breakdown of the semi-
classical approximation; one can then no longer associate
with the wave function a classical spacetime as an approxi-
mate concept. Such a spreading necessarily occurs when
approaching the region of the classical big-rip singularity
in quantum phantom cosmology, a phenomenon which we
interpreted in [18] as singularity avoidance.
Another sufficient (but by no means necessary) criterion

for singularity avoidance is the vanishing of the wave
function at the classical singularity; there is then no possi-
bility for such a singularity to occur in any limit. Vanishing
of the wave function as a criterion for singularity avoidance
was first suggested by DeWitt in his pioneering paper [43].

FIG. 6 (color online). Plot of the potential defined in (21) as a
function of the scalar field for the value � ¼ 3. The star denotes
the location of the singularity, KE denotes the kinetic energy of
the scalar field, and the arrows indicate the trajectory of the
scalar field.

8The generalized Chaplygin has been previously analyzed
from a quantum point of view in different setups (see Ref. [41]).
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Singularity avoidance in this sense occurred for the big-
brake singularity [24]. Vanishing of the wave function will
also be in the present section the appropriate criterion for
singularity avoidance.

Let us, then, turn to a detailed analysis of the quantum
versions for the above discussed classical models. The
wave function satisfies the Wheeler-DeWitt equation,
which with the Laplace-Beltrami factor ordering reads

@
2

2

�
�2

6

@2

@�2
� ‘

@2

@�2

�
�ð�;�Þ þ a60e

6�Vð�Þ�ð�;�Þ ¼ 0;

(24)

where Vð�Þ is given in (15) for the standard scalar-field
model and in (21) for both phantom scalar-field models.
We have introduced the new variable � :¼ lnð aa0Þ and as-

sume that a0 corresponds to the location of the singularity
in the respective models. In the following, we shall use
~a :¼ a

a0
instead of a such that ~a0 ¼ 1 holds. For simplicity,

we shall drop the tilde. Recall that �2 ¼ 8�G. We have
introduced the parameter ‘ in order to distinguish between
the phantom and nonphantom scalar fields. For the phan-
tom scalar field we have ‘ ¼ �1, whereas we have ‘ ¼ 1
for ordinary scalar-field matter. Note that a fundamental
length scale is necessary in the Wheeler-DeWitt equation
to yield correct dimensions. To solve this equation, we
make the ansatz

�ð�;�Þ ¼ ’kð�;�ÞCkð�Þ; (25)

where k is a priori not restricted to real values.
Furthermore, we require ’k to satisfy

� ‘
@
2

2

@2’k

@�2
þ a60e

6�Vð�Þ’k ¼ Ekð�Þ’k: (26)

Such a Born-Oppenheimer type of ansatz was first used in
quantum cosmology in [42] in the study of wave packets. It
assumes the approximate validity of a quasiseparability
between � and �; that is, the matter part ’k depends
only adiabatically on the scale factor. We discuss the
validity of the Born-Oppenheimer approximation in the
appendix.

As the potentials (15) and (21) are rather complicated,
we solve the Wheeler-DeWitt equation for certain ranges
of j�j and approximate the respective potential there. For
the study of singularity avoidance, the region of primary
interest is j�j � 1. This corresponds in each model to the
vicinity of the singularity. In this region, the potential is
approximated by (16) for the ordinary scalar field and by
(22) in the case of the phantom field. Introducing the
notation

V� :¼ a60e
6�V‘

� ffiffiffi
3

p
�

2
j1þ �j

��2�=ð1þ�Þ
; (27)

we find that ’k has to satisfy

� ‘
@
2

2

@2’k

@�2
� ‘V�j�j�2�=ð1þ�Þ’k ¼ Ekð�Þ’k: (28)

Defining k2 :¼ 2Ek

@
2 and ~V� :¼ 2V�

@
2 , we finally arrive at

’00
k þ ½‘k2 þ ~V�j�j�2�=ð1þ�Þ�’k ¼ 0; (29)

where 0 denotes a derivative9 with respect to �. We recog-
nize that this equation is formally the same as the radial
part of the stationary Schrödinger equation for an attrac-

tive potential of inverse power V � r�2�=ð1þ�Þ, where j�j
plays the role of the radial coordinate r, and the angular
momentum vanishes.
Equation (29) is the central equation for the following

discussion. Because it formally resembles the Schrödinger
equation, we are able to make use of results encountered in

quantum mechanics. Potentials of the type V � r�2�=ð1þ�Þ
are there called singular [44,45]. Any potential that ap-
proaches (plus or minus) infinity faster than r�2 for r ! 0
belongs to this class. For an attractive r�2 potential there
exists a transitional case: If the coupling is more negative
than a critical value, the potential is singular and otherwise
regular.
Analytical solutions for polynomial singular potentials

are known for the inverse-square, inverse fourth-power,
and inverse sixth-power potentials. The inverse-square
potential is realized for j�j � 1, where � is chosen such
that j1þ �jj�j is still small. The inverse fourth-power
potential corresponds to � ¼ �2, whereas the inverse
sixth-power potential is realized for � ¼ � 3

2 .

In our paper we shall focus on the case j�j � 1 for the
standard scalar field as well as the two phantom field
models. We thus deal with the case of the inverse-square

potential
~V�

j�j2 with

~V � ¼ 2a60e
6�V‘

@
2

� ffiffiffi
3

p
�j�j
2

��2
> 0:

The r�2 potential in quantummechanics was discussed, for
example, in [44–46]; cf. also [47] and the references
therein. It became recently of interest in studying the
polymer quantization which is motivated by loop quantum
gravity [47].
Note that for the models with a big-freeze singularity we

then have � � �1, whereas for the model with a big-d-
émarrage singularity we have � � 1. We expect that this
case is sufficiently generic to accommodate also the fea-

9In fact, there is one such equation for positive and one for
negative �. Both equations are (due to the modulus dependence
of the potential) identical. Matching is carried out through the
conditions �þð0Þ ¼ ��ð0Þ and �0þð0Þ ¼ ��0�ð0Þ, where ��
refer to the positive/negative � solutions, respectively. These
conditions imply that the constants in both solutions coincide.
We will therefore just refer to the modulus-dependent equation
(29) and its solution, keeping in mind that we have the same
solution for positive and negative �.
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tures of other singular potentials. As is known from quan-
tum mechanics [44,45], the most important issue for sin-
gular potentials is the fact that square integrability no
longer suffices to select a unique class of states and that
the spectrum therefore contains an ambiguity. This ambi-
guity points to new physics at short scales and must be
fixed by either experiment or knowledge from a more
fundamental theory. It is the fortunate property of the
Coulomb potential that its ensuing states do not contain
such an ambiguity (see, however, [48]). Thus, for the least
singular potential, which is realized for j�j � 1, we have
to solve the equation

’00
k þ

�
‘k2 þ ~V�

j�j2
�
’k ¼ 0: (30)

Note that phantom and scalar matter have to obey the same
quantum equation,10 where the realm of positive energy for
the ordinary scalar field k2 > 0 corresponds to the realm of
negative energy for the case of the phantom field k2 < 0;
cf. Eq. (29). The general solution to this equation is given
by [49]

’kð�; j�jÞ ¼
ffiffiffiffiffiffiffi
j�j

q
½c1J�ð

ffiffiffi
‘

p
kj�jÞ þ c2Y�ð

ffiffiffi
‘

p
kj�jÞ�;

(31)

where � :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þ � ~V�

q
, so the index is a function of �.

There are four cases to distinguish: k can be real or
imaginary, depending on whether the energy entering k2

is positive or negative. Furthermore, � can be real or
imaginary, depending on the parameters �, A, and the
value of �. Note that ’k satisfies

‘ðk2 � n2Þ
Z b

0
d�’kð�Þ’nð�Þ

¼
�
’kðbÞd’n

d�
ðbÞ � ’nðbÞd’k

d�
ðbÞ

�
; (32)

where b ¼ 1 for the standard scalar field and b ¼ �? :¼
�
2 ð2=

ffiffiffi
3

p
�j1þ �jÞ for the phantom scalar field. [This equa-

tion is analogous to Eq. (11) in [45].] We have fixed the
range of definition for � in the phantom case from 0 to �?

because all classical solutions are restricted to this range.
That this also holds in the quantum theory is, of course, an
assumption, similar to treating, say, a particle on the half-
line only.

The lower bound in the integral (32) does not contribute
as ’k vanishes at the origin (see below). Thus the matter-
dependent part of the wave function is not necessarily
orthogonal. But it is if the right-hand side of (32) vanishes.
This is the case if b ¼ 1 and � is not an integer, as happens
for the standard scalar field. The reason is the following:
(i) The first Bessel function J� satisfies an orthogonality

relation, and (ii) the J�ð
ffiffiffi
‘

p
kj�jÞ and J��ð

ffiffiffi
‘

p
kj�jÞ are

linearly independent solutions of (30) (except when � is
an integer). Therefore, as the solution ’k can then be
expressed exclusively in terms of the first kind of Bessel
functions, ’k is orthogonal if either of the two coefficients

in front of J�ð
ffiffiffi
‘

p
kj�jÞ or J��ð

ffiffiffi
‘

p
kj�jÞ is zero. Otherwise,

that is, if � is an integer, additional conditions have to be
imposed to get orthogonal eigenfunctions, as is the case for
the phantom scalar field.
Different types of solutions for the three models dis-

cussed in our paper will differ by the boundary conditions
that we may choose to impose (see next section). This
choice is determined by the classical trajectory. For ordi-
nary matter the classical trajectory has a minimum (see
Fig. 2), whereas for phantom matter with �þ 1< 0 it
reaches its maximum at the classical singularity (see
Fig. 3). For the second phantom model with �> 0, the
singularity lies again at a minimum of the classical trajec-
tory. We will see how this difference in the classical model
influences the quantum behavior through the boundary
condition. Moreover, the phantom field is restricted to a
finite range.
Independent of boundary conditions, the singularity oc-

curs in all three models at � ¼ 0 and � ¼ 0. For � ¼ 0,

� ¼ �0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þ � ~V�¼0

q
. There are three cases to dis-

tinguish: 14 � ~V�¼0 > 0, 14 � ~V�¼0 < 0, and the transitional

case 1
4 � ~V�¼0 ¼ 0. In the first and third cases �0 is real,

whereas in the second case it is purely imaginary.
(i) 1

4 � ~V�¼0 > 0.—Then 0< �< 1
2 . In the quantum

mechanical analogy, this corresponds to the case of
a regular potential. We get from the behavior of the
first Bessel function for a small argument

J�ðzÞ 	
�
z

2

�
� 1

�ð�þ 1Þ ; � � �1;�2;�3 . . .

(33)

[cf. [49], Eq. (9.1.7)] that it vanishes at the origin.
This holds for the real as well as imaginary argu-
ment. The behavior of the second Bessel function for
a small argument is given by

Y�ðzÞ 	 � 1

�

�
z

2

���
�ð�Þ; Reð�Þ> 0 (34)

[cf. [49], Eq. (9.1.9)]. Thus it diverges weaker than

j�j�1=2. As the Bessel functions in ’k are multiplied

by a factor
ffiffiffiffiffiffiffij�jp

, this divergence is, however, can-
celled. We thus conclude that the matter-dependent
part of the wave function vanishes at the singularity.
In the quantum mechanical case of regular poten-
tials, one of the two independent solutions of the
Schrödinger equation is not normalizable and there-
fore discarded. This is, however, not necessarily the
case for a vanishing angular momentum, since for
the Coulomb potential, for example, both solutions

10Note that V1 ¼ jAj1=ð1þ�Þ
2 and V�1 ¼ A1=ð1þ�Þ

2 , so both are positive
and coincide numerically.
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are normalizable. The selection occurs in that case
because only one of the solutions leads to an essen-
tial self-adjoint Hamiltonian [50]. Such an argument
can, however, not be invoked in the present case
because the classical time parameter t is absent in
quantum cosmology. There is thus no notion of
unitarity here and thus no reason to advocate the
self-adjointness of the Hamiltonian. We thus have
nonuniqueness also in the ‘‘regular’’ case.

(ii) 1
4 � ~V�¼0 < 0.—This corresponds to the singular
case in quantum mechanics. Here, �0 is imaginary;
we write �0 ¼ i�0. Since the above formula (33)
holds for � � �1;�2;�3 . . . , we can still use it
and find

lim
j�j!0

ffiffiffiffiffiffiffi
j�j

q
Ji�0

ð
ffiffiffi
‘

p
j�jkÞ ¼ lim

j�j!0

ffiffiffiffiffiffiffi
j�j

q 1

�ð1þ i�0Þ
� ei�0 lnð

ffiffi
‘

p
kj�j=2Þ: (35)

For real as well as imaginary k (corresponding to
positive and negative energy, respectively), this part
of the matter-dependent wave function oscillates
infinitely rapidly as it goes to zero as j�j ! 0. For
the second part of the matter-dependent wave func-
tion, we introduce a small parameter � > 0, since
(34) holds only for Reð�Þ> 0:

lim
j�j!0

lim
�!0

ffiffiffiffiffiffiffi
j�j

q
Y�þi�ðj�j ffiffiffi

‘
p

kÞ

¼ � 1

�
lim
j�j!0

lim
�!0

ffiffiffiffiffiffiffi
j�j

q � ffiffiffi
‘

p
kj�j
2

���

� �ð�þ i�0Þei�0 lnð
ffiffi
‘

p
kj�j=2Þ:

(36)

This function oscillates very rapidly but goes to zero

as j�j ! 0 due to the factor
ffiffiffiffiffiffiffij�jp

. We therefore
conclude that the wave function vanishes at the
origin in this parameter range as well.

(iii) 1
4 � ~V�¼0 ¼ 0.—In this case we have to consider the
Bessel functions J0ðzÞ and Y0ðzÞ for small z. It is
J0ð0Þ ¼ 1 and so this part of ’k vanishes when

multiplied by
ffiffiffiffiffiffiffij�jp

for � ! 0. But Y0ðzÞ 	 2
� lnðzÞ

for small z [see [49], Eq. (9.1.8)] and thus diverges
but

ffiffiffi
z

p
Y0ðzÞ 	 2

�

ffiffiffi
z

p
lnðzÞ ! 0 as z ! 0. We thus find

a vanishing wave function in this case as well.
The singularities in these three cases are thus avoided

when the matter-dependent part of the wave function van-
ishes. To complete this claim, we have to ensure that the
gravitational part of the wave function does not diverge at
the respective singularities. Note that this result does not
depend on any boundary conditions but is just a conse-
quence of the Wheeler-DeWitt equation.

Note also that the general solution ’k does not vanish at
the singularity if � ¼ 1

2 . This corresponds to V‘ ¼ 0, thus a

vanishing potential. This case is excluded by the setup of
our model. One could read this as: no potential implies no

singularity and thus no singularity avoidance but a finite
wave function at the origin � ¼ 0. Nevertheless, it is
always possible to pick up a specific solution, that is, a
particular ’k which vanishes.
Concerning the gravitational part of the wave function,

inserting the solution (31) for the matter-dependent part of
the wave function into the Wheeler-DeWitt equation (24),
we arrive at

�2

6
ð2 _Ck _’k þ Ck €’kÞ þ

�
�2

6
€Ck þ k2Ck

�
’k ¼ 0; (37)

where a dot denotes derivative with respect to �. To obtain
the gravitational part of the wave function, we assume that
the terms _Ck _’k and Ck €’k can be neglected; this is just the
meaning of the Born-Oppenheimer approximation dis-
cussed above. Basically, we assume that Ck varies much
more rapidly with � than ’k and, moreover, neglect the
backreaction of the matter part on the gravitational part. In
summary, we are assuming that the change in the matter
part does not influence the gravitational part; the matter
part simply contributes its energy through k2. This leads to
the equation �

�2

6
€Ck þ k2Ck

�
’k ¼ 0: (38)

It is solved by

Ckð�Þ ¼ b1e
ið ffiffi

6
p

k=�Þ� þ b2e
�ið ffiffi

6
p

k=�Þ�: (39)

As the equation determining the gravitational part of the
wave function is independent of ‘, we get the same solu-
tion, irrespective of whether we deal with a phantom or
with a scalar field. Note that for k2 < 0, k becomes imagi-
nary and the dependence on � becomes exponential. In any
case, Ckð� ¼ 0Þ<1, so the wave function remains finite
at the respective singularities and we can safely speak of
singularity avoidance.

V. BOUNDARY CONDITIONS AND SINGULARITY
AVOIDANCE

Nobody knows what the correct boundary condition for
the quantum universe is. There have been several pro-
posals, most of them using the boundary condition with
the ambition to lead to singularity avoidance [43,51–53].
DeWitt, in particular, speculates that the fact that a bound-
ary condition is generally needed to make the quantum
theory ‘‘singularity-free: is an argument in favor of the
theory: The theory itself does not leave any freedom of
choice but provides the boundary condition itself [43]. As
for the present state of understanding quantum gravity,
however, singularity avoidance is demanded from the out-
side as a selection criterion.
Irrespective of this discussion, it is in general necessary

to impose a completely different condition if one instead
wants to construct wave packets that follow classical tra-
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jectories with a turning point in configuration space [42].
Namely, one has to require that the wave packet decays in
the classically forbidden region. This allows the interfer-
ence of wave packets following the two branches of the
classical solution behind the classical turning point. Of
course, this is just the standard quantum mechanical treat-
ment of classically forbidden regions. In general, out of
solutions to the Wheeler-DeWitt equation which grow in
the classically forbidden region, no wave packet can be
constructed that follows the classical path. This is what
happens generically for the no-boundary state [54]. In
order to make connection with the underlying classical
theory, we shall therefore use herein as a condition that
the wave function decrease in the classically forbidden
region.

One cannot assume that the condition of the wave func-
tion to decrease into the classically forbidden region al-
ways fixes it uniquely. Nonetheless, it is a necessary
condition that has to be imposed in order to get a theory
with the correct semiclassical limit. It can be used in
selecting physically sensible solutions out of the general
set of solutions to the Wheeler-DeWitt equation. We now
want to explore the situation for our models presented
above.

A. Defrosting the big freeze

1. Standard scalar field

In the classical scalar-field model, the region a <
amin ¼ 1 is a forbidden region.11 We impose the boundary
condition that the wave function decay there. In terms of
the variable �, the boundary condition to be imposed is
therefore � ! 0 as � ! �1. But as � ! �1, � ! 1

2 .

The matter-dependent part of the wave function is then
given by

lim
�!�1’kð�; j�jÞ ¼

ffiffiffiffi
2

�

s
½c1 sinðkj�jÞ � c2 cosðkj�jÞ�;

(40)

see [49], Eqs. (10.1.11) and (10.1.12). This vanishes for
small j�j if c2 ¼ 0 for both real and imaginary k. Thus
imposing c2 ¼ 0, we are left with the solution12

’kð�; j�jÞ ¼ c1

ffiffiffiffiffiffiffi
j�j

q
J�ðkj�jÞ: (41)

Because of the vanishing of ’k at the origin and its bound-
edness at infinity, the ’k are orthogonal, that is,R
d�’k’n / 	ðk� nÞ [55]. This is due to the fact that �

can become arbitrarily large. If the integration range of �
was finite, we would need additional conditions to ensure

orthogonality; cf. [49], Eq. (11.4.5). Despite the orthogo-
nality, k is not restricted to be of integer value.
Inserting the solution (41) for the matter-dependent part

of the wave function into the Wheeler-DeWitt equation
(24), we arrive at (37). To obtain the gravitational part of
the wave function, we proceed as before and find (39) for
the gravitational part of the wave function.
For positive energy k2 > 0, the gravitational part of the

wave function is thus oscillating. No further complications
arise, and the full solution is given by

�kð�;�Þ ¼ c1

ffiffiffiffiffiffiffi
j�j

q
J�ðkj�jÞ½b1eið

ffiffi
6

p
k=�Þ�

þ b2e
�ið ffiffi

6
p

k=�Þ��: (42)

For negative energy, however, the gravitational part be-
comes exponential. To ensure that the boundary condition
� ! 0 as � ! �1 is satisfied for the entire wave func-
tion, we have to set b1 ¼ 0. Thus, for imaginary k the
gravitational part of the wave function decays exponen-
tially for � ! �1, whereas the matter part remains finite;
see Eq. (41). The gravitational part alone ensures in this
way that the wave function vanishes as � ! �1. No
additional condition arises for ’k. The full solution for
imaginary k ! ik is thus

�kð�;�Þ ¼ b2e
ð ffiffi

6
p

k=�Þ�½c1J�ðikj�jÞ þ c2Y�ðikj�jÞ�;
(43)

and ’k and ’n are not orthogonal in this case.
Notice that the functions�kð�;�Þ given in (42) and (43)

fulfil as well the DeWitt criterion as they vanish for � ¼ 0
and � ¼ 0.

2. Phantom scalar field

The classical model with the phantom-driven general-
ized Chaplygin gas has a classically forbidden region given
by a > amax ¼ 1. We therefore impose the boundary con-
dition � ! 0 as � ! 1. In this limit, � becomes purely
imaginary and large. We shall set here � :¼ i� and � ! 1
(� now being real). We are thus looking for a combination
of Bessel functions which vanish for a large imaginary
index.
The wave function for positive energies, that is, k2 > 0,

can be written as

’kð�; j�jÞ ¼
ffiffiffiffiffiffiffi
j�j

q
½c1Ji�ðikj�jÞ þ c2Yi�ðikj�jÞ�: (44)

As in this case the argument of the Bessel functions is
purely imaginary, it is rather convenient to rewrite the wave
function in terms of the linearly independent modified
Bessel functions [49]:

’kð�; j�jÞ ¼
ffiffiffiffiffiffiffi
j�j

q
½~c1Ii�ðkj�jÞ þ ~c2Ki�ðkj�jÞ�; (45)

where ~c1 and ~c2 are arbitrary constants. It can be shown
that the modified Bessel function Ki�ðkj�jÞ goes asymp-

11Recall that we use ~a ¼ a
amax

and drop the tilde.
12In the quantum mechanics of a repulsive r�2 potential,
r1=2J�ðkrÞ is the unique solution which vanishes at r ¼ 0; cf.
Eq. (3.3) in [44].
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totically to zero as � ! 1 by using

Ki� ¼
ffiffiffi
2

p ð�2 � x2Þ�1=4 exp

�
��

2
�

�
� ½constþOðð�2 � x2Þ�1=2Þ�; �> x> 0; (46)

cf. [56], Eq. (7.13.2(19)). Indeed, the modulus of the
function Ki�ðkj�jÞ is oscillatory and its local extremum
goes to zero as � ! 1. Therefore, the implementation of
the boundary condition gives

’kð�Þ ¼ ~c2

ffiffiffiffiffiffiffi
j�j

q
Ki�ðkj�jÞ: (47)

On the other hand, the wave function for negative energies,
that is, k2 < 0, can be written as

’kð�; j�jÞ ¼
ffiffiffiffiffiffiffi
j�j

q
½c1Ji�ð~kj�jÞ þ c2Yi�ð~kj�jÞ�; (48)

where ~k ¼ ik and is positive. Here again it is more conve-
nient to rewrite the general matter wave function in terms
of Hankel functions in order to impose the boundary
condition. We then rewrite the previous wave function as

’kð�; j�jÞ ¼
ffiffiffiffiffiffiffi
j�j

q
½d1Hð1Þ

i� ð~kj�jÞ þ d2H
ð2Þ
i� ð~kj�jÞ�; (49)

where d1 and d2 are arbitrary constants to be fixed by the

boundary condition. It can be checked that Hð1Þ
i� ð~kj�jÞ

diverges for large � because

Hð1Þ
i� ðxÞ¼

ffiffiffi
2

p
�

ð�2þx2Þ�1=4 exp

�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þx2

p
� i�arcsinh

�
�

x

��

�exp

�
�

2
�� i

�

4

�
½constþOðð�2þx2Þ�1=2Þ�;

�;x>0; (50)

cf. [56], Eq. (7.13.2(22)). On the other hand, it can be

shown that Hð2Þ
i� ð~kj�jÞ vanishes at large values of �. This

can be shown by combining the following properties of the

Hankel functions: Hð2Þ
i� ðxÞ ¼ expð���ÞHð2Þ

�i�ðxÞ and

Hð2Þ
�i�ðxÞ ¼ ðHð1Þ

i� ðxÞÞ?, where 
 denotes complex conjuga-

tion, and the asymptotic expansion of Hð1Þ
i� ðxÞ for large

order as shown above. Therefore, the wave function that
fulfils the boundary condition for negative energies reads

’kð�; j�jÞ ¼ d2

ffiffiffiffiffiffiffi
j�j

q
Hð2Þ

i� ð~kj�jÞ: (51)

Before proceeding further, it is worthwhile to point out
the following. The ordinary scalar field is defined on the
entire real line. The phantom field, on the other hand, is
restricted to the interval j�j 2 ½0;�?�. Orthogonality
therefore does not hold straightaway but follows only if
Eq. (32) is satisfied in the boundaries in which� is defined.
To obtain orthogonality, additional conditions would be
necessary. As we cannot require that ’k vanishes at �?,
as this would be in conflict with the requirement that the
wave function follows the classical trajectory, we have to

demand that its derivative with respect to � vanish there.
This would require an analytic expression of the zeros of
the first derivative of the modified Bessel function Ki� and
the second Hankel function. To our knowledge, such an
expression does not exist. Also, there is no physical moti-
vation for this additional condition.

The Ck have to satisfy
�2

6
€Ck þ k2Ck ¼ 0. The solution is

given by Eq. (39): (i) For positive energy, the imposition of
the boundary condition leaves b1 and b2 as arbitrary con-
stants, and therefore we need to impose the boundary
condition on the matter-dependent part in this case; see
Eq. (47). (ii) For negative energy, the imposition of the
boundary condition picks up the exponentially decreasing
function. The decay of the wave function for large � is thus
already guaranteed through the purely gravitational part of
the wave function. In principle, there is no need to impose
the boundary condition on the matter-dependent part in this
case, as long as the general solution for the matter part is
finite. However, it is not the case, so we have as well to
impose the boundary condition on the matter part. This

implies that only the second kind of Hankel functionHð2Þ
i� is

present on the matter part [see Eq. (51)].
In summary, the physical solutions are

�kð�;�Þ ¼ ðb1eið
ffiffi
6

p
k=�Þ� þ b2e

�ið ffiffi
6

p
k=�Þ�Þ

ffiffiffiffiffiffiffi
j�j

q
Ki�ðkj�jÞ;

k2 > 0;

�kð�;�Þ ¼ d2 exp

�
�

ffiffiffi
6

p
�

~k�

� ffiffiffiffiffiffiffi
j�j

q
Hð2Þ

i� ð~kj�jÞ;
k2 < 0: (52)

These restrictions have to be taken into account when
constructing wave packets (which will not be attempted
here). Before concluding this subsection, we remark that
the functions �kð�;�Þ given in (52) fulfil the DeWitt
criterion as well, since they approach zero for � ¼ 0 and
� ¼ 0.

B. Smoothing the big-démarrage singularity

As a third model with the same quantum structure, we
consider the big-démarrage singularity. The equations for
this singularity as it occurs for � � 1 are just the same as
for the big freeze generated by a phantom GCG presented
above. The solution is also given by Eq. (31). The differ-
ence lies in the classically forbidden region and thus in the
boundary condition to be employed. Whereas in the pre-
viously studied phantom model we found a future singu-
larity at a ¼ amax, this model has a past sudden singularity
at a ¼ amin ¼ 1. We therefore require the wave function to
satisfy � ! 0 as � ! �1. But as � ! �1, � ! 1

2 .

We split our analysis for positive and negative energies.
For k2 > 0, the boundary condition on the matter part of
the wave function is c1 ¼ 0; that is, we are left with the first
Bessel function, while the gravitational part will be oscil-
latory. On the other hand, for k2 < 0, the boundary condi-
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tion on the gravitational part of wave function implies
b1 ¼ 0, while no other boundary condition has to be
imposed on the matter sector of the wave function. In
summary, we obtain

�kð�;�Þ ¼ ðb1eið
ffiffi
6

p
k=�Þ� þ b2e

�ið ffiffi
6

p
k=�Þ�Þ

ffiffiffiffiffiffiffi
j�j

q
J�ðikj�jÞ;

k2 > 0;

�kð�;�Þ ¼ exp

� ffiffiffi
6

p
�

k�

� ffiffiffiffiffiffiffi
j�j

q
½c1J�ð~kj�jÞ þ c2Y�ð~kj�jÞ�;

k2 < 0; (53)

where ~k ¼ ik.
The solution is thus similar to the one found for the

standard scalar GCG presented in the previous subsection.
But note that � is restricted to a finite interval here.

Furthermore, as a consequence of the fact that the phan-
tom scalar field has compact range, the matter-dependent
part of the wave function ’k is not orthogonal for different
k. To obtain this, one has to require the condition (32).

Here as well we notice that the functions�kð�;�Þ given
in (53) fulfil the DeWitt criterion as they vanish at � ¼ 0
and � ¼ 0.

C. Other boundary conditions

The Schrödinger equation with inverse-square potential
has been studied by various authors [44,45]. They obtain as

a solution the Hankel function of the first kind, Hð1Þ
� for

k2 < 0 and ~V� > 1
4 ; cf. Eq. (3.6) in [44]. Therefore, their

solution is different from the ones we have obtained in the
previous subsections. This is due to the boundary condition
that is imposed in quantum mechanics:� ! 0 as r ! 1, r
being the radial coordinate in the Schrödinger equation. In
the quantum-cosmological model, this would correspond
to the condition � ! 0 as j�j ! 1. Whereas the vanish-
ing of the wave function at infinity is a sensible require-
ment in quantum mechanics, it is not well-motivated in
quantum cosmology. To demand a square-integrable wave
function makes sense only in a Hilbert space with a proba-
bility interpretation and a (time) conserved probability. It is
not obvious that we have such a structure in quantum
cosmology: The Wheeler-DeWitt equation is timeless.

Applying nevertheless this boundary condition to the
quantum-cosmological model with GCG mimicked by a
standard scalar field,13 we find ’kð�;�Þ¼
c1

ffiffiffiffiffiffiffij�jp
Hð1Þ

� ði~kj�jÞ, with ~k2¼�k2 and � purely imaginary
as ~V� > 1

4 . This wave function corresponds to the choice

c2 ¼ ic1. Requiring in addition orthogonality as in [44],
we would arrive at an energy spectrum given by

Enð�Þ ¼ � @
2�2

0

2
exp

�
2�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~V� � 1

4

q �
; n 2 Z; (54)

where �0 is an arbitrary real constant. This can be done
only for k2 < 0. This is a similar nonuniqueness as in the
quantum mechanical case [44].
Now we can impose two different types of boundary

condition on the total wave function �:
(1) Ck vanishes at the singularity; i.e. at � 	 0, and

’kð�;�Þ is bounded at � 	 0 and � 	 0, or
(2) Ck vanishes well inside the forbidden region; i.e.

� ! �1, and ’kð�;�Þ is bounded for � ! �1
and � 	 0. We next impose both conditions
separately.

The equation for the gravitational part of the general
solution for the wave function obtained through a Born-
Oppenheimer approximation [see Eq. (38)] can then be
solved in the vicinity of the singularity, i.e. for � 	 0. It
satisfies

€C k � 
ð1� 	�ÞCk ¼ 0; (55)

where the constants 
, 	, and c read, respectively,


 ¼ 6�2
0

�2
exp

�
4�nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c� 1

p
�
; 	 ¼ 48�nc

ð4c� 1Þ3=2 ;

c ¼ 2

@
2
a60V‘

� ffiffiffi
3

p
2

�j1þ �j
��2

:

(56)

Therefore, the gravitational part of the wave function for
� 	 0 reads [49]

Ckð�Þ ¼ b1Ai

��



	2

�
1=3 � ð	
Þ1=3�

�

þ b2Bi

��



	2

�
1=3 � ð	
Þ1=3�

�
; (57)

whereAiðzÞ and BiðzÞ denote Airy functions. Imposing that
the wave function Ck vanishes at the singularity (� ¼ 0)
implies

b2 ¼ �b1
Ai½ð 


	2Þ1=3�
Bi½ð 


	2Þ1=3�
: (58)

It can be proven as well that ’kð�;�Þ¼c1
ffiffiffiffiffiffiffij�jp

Hð1Þ
� ði~kj�jÞ

vanishes for � 	 0 and � 	 0. Therefore, we can con-
clude that the DeWitt criterion is compatible (in this case)
with the boundary condition used in [44,45].
The boundary condition � ! 0 as � ! �1 cannot be

imposed on the previous wave function (57). This is so
because the wave function (57) is valid only around � 	 0.
In order to impose the boundary condition � ! 0 as � !
�1, we have to consider the wave function for � ! �1.
In this limit, the energy spectrum (54) reduces to14

13Notice that the boundary condition imposed in [44,45] cannot
be applied in our model with a phantom scalar field. The reason
is that the scalar field is bounded in this case, so we cannot take
the limit j�j ! 1 in ’kð�;�Þ.

14In taking this limit, notice that Enð�Þ can become complex.
However, Enð�Þ given in (59) is always positive.
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Enð�Þ ¼ � @
2�2

0

2
: (59)

Consequently,

Ckð�Þ ¼ b1 exp

� ffiffiffi
6

p
�0

�
�

�
þ b2 exp

�
�

ffiffiffi
6

p
�0

�
�

�
: (60)

Now the condition Ck ! 0 as � ! �1 implies b2 ¼ 0.

On the other hand, ’kð�;�Þ ¼ c1
ffiffiffiffiffiffiffij�jp

Hð1Þ
� ði~kj�jÞ is

bounded for � ! �1 and � 	 0. Therefore, we can con-
clude that the condition� ! 0 as � ! �1 is fulfilled and
compatible with the boundary condition used in [44,45].

In summary, as the wave function remains finite, the
singularity would be avoided with the boundary conditions
1 and 2 as well. But we emphasize again that the condition
� ! 0 as j�j ! 1 is perhaps not obligatory in the
quantum-cosmological case. It is presented here to com-
pare our results to results presented elsewhere in the
literature.

VI. CONCLUSIONS AND OUTLOOK

What are the main results of our paper? We have shown
how the classical singularities of particular cosmological
models describing dark-energy features can be avoided in
quantum cosmology. The framework is quantum geome-
trodynamics, and restriction has been made to a class of
models (containing a generalized Chaplygin gas) which
could be of relevance for the description of dark energy.
The wave function � is defined on a two-dimensional
configuration space consisting of the scale factor a and
the scalar field � representing the gas. After employing a
Born-Oppenheimer type of approximation, we arrive at an
effective stationary Schrödinger equation with singular (in
the sense of quantum mechanics) potentials. The occur-
rence of such potentials in quantum mechanics signals an
essential nonuniqueness of the solutions. The same hap-
pens here. Requiring that the wave function go to zero in
the classically forbidden region still leaves a whole class of
solutions which encode singularity avoidance in the sense
of a vanishing wave function (DeWitt criterion). This is
different from our earlier papers [18,24] in which we dealt
with regular potentials and where appropriate normaliz-
ability assumptions singled out singular-free solutions (cf.
also [19]). The case of the big-brake singularity in [24]
contains a potential that behaves like the Coulomb poten-
tial in the vicinity of the classical singularity; as in quan-
tum mechanics, no ambiguity remains after normal-
izability is being assumed.

Our analysis has been performed in detail only for the
case of the r�2 potential. A similar discussion can be made
for the r�4 potential leading to Mathieu functions; since
the results are analogous to those of the r�2 potential, we
do not present them here. We expect that a similar,

although much more complicated, analysis can be per-
formed for other singular potentials as well. It would be
desirable to have a general classification of singularities
with respect to singularity avoiding states at hand.
We want to emphasize again one important conceptual

aspect of this (and earlier) work. The singularities in these
models do generally occur for a big universe, that is, for a
value of the scale factor much bigger than the Planck scale.
Singularity avoidance by quantum gravity then necessarily
entails quantum effects for a big universe. Such quantum
effects have been discussed earlier in the case of a classi-
cally recollapsing quantum universe [57]; the quantum
effects occur there near the (nonsingular) region of the
classical turning point as a consequence of the boundary
conditions. We thus see that quantum cosmology may be of
direct relevance for the future of our Universe. As dis-
cussed at length in [57], the occurrence of such quantum
effects possesses essential importance for understanding
the arrow of time. It would be of great interest to study the
question of entropy increase in the present models.
There are many further open questions. In quantum

mechanics, the remaining ambiguity of the solutions and
the ensuing spectra point to new physics at short distances.
The ambiguity must therefore be fixed either by reference
to experimental results or by knowledge of the deeper
theory. How is the situation in quantum cosmology?
Experiments do not yet seem available, but can the ambi-
guity be fixed by theoretical means? One possible project
would be to investigate whether prominent boundary con-
ditions such as the no-boundary [51] or tunneling [52]
conditions are able to fix it. Perhaps the ambiguity can be
avoided only by going to a more fundamental theory such
as string theory. On the other hand, it may as well be
imaginable that cosmological models leading to such sin-
gular matter potentials have to be excluded—an interesting
selection criterion for equations of state.
An essential ingredient in our whole analysis is the

demand that the wave function go to zero in classically
forbidden regions. How this relates in general to the hyper-
bolic structure of the Wheeler-DeWitt equation is not fully
understood. Here we have avoided this problem by going to
the Born-Oppenheimer approximation. In general, one
would expect that certain quantization conditions on the
physical parameters (masses, coupling constants, a cosmo-
logical constant) may appear [41,58–60]. It would also be
very interesting to establish a connection with a group-
theoretical generalization of quantum geometrodynamics
where it was shown that not only time but even the ordinary
three-dimensional space is absent at the most fundamental
level, leading to singularity avoidance in a natural way
[61]. We hope that we can address some of these open
issues in future publications.
Finally, let us point out that a future sudden singu-

larity has been recently investigated in [62]. The analy-
sis was carried out in the loop quantum cosmology
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(LQC) framework.15 In this model, matter is modeled by a
scalar field which rolls down (standard scalar field) or up
(phantom scalar field) through an unbounded exponential
potential. In the framework of LQC, this scalar field be-
haves such that its effective energy density is finite; that is,
there is a balance between its kinetic energy and its poten-
tial, while the effective pressure blows up in a finite future
cosmic time. It was then concluded in [62] that such a
singularity cannot be avoided by means of the effective
Friedmann equation in LQC. As it is mentioned in [62], the
sudden singularity that appears for the phantom scalar field
in the context of the modified Friedmann equation in LQC
corresponds to a big-rip singularity in the standard relativ-
istic case. For such a big-rip singularity, it was shown in
[18] that it can be avoided in the sense that wave packets
necessarily disperse when they approach the region of the
classical big-rip singularity. It would be interesting to see if
this sort of big-rip singularity can be avoided as well by
employing the DeWitt criterion that the wave function be
zero at the classical singularity.
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APPENDIX: JUSTIFICATION OF THE
GRAVITATIONALWAVE FUNCTION

APPROXIMATION

In our models, we constructed the potential Vð�Þ such
that it corresponds to the polytropic equation of state for a
GCG. The potential therefore depends on �, and this
dependence carries over to the matter-dependent part of
the wave function. The Born-Oppenheimer approximation
can be understood as an expansion scheme with respect to
�.
The derivatives of ’k with respect to � are of nonzero

order in �. This comes from _’k ¼ d’k

d�2
d�2

d� . In the vicinity of

the singularity, � 	 0 and d�2

d� ¼ � 16
@
2

a6
0

�2
V‘

j1þ�j2 . Recall that

V‘ ¼ jAj1=ð1þ�Þ
2 and a0 ¼ j BA j1=3ð1þ�Þ. Recall also that we use

�0 to denote the value of � at � ¼ 0. Therefore

d�2

d�
¼ � 8

@
2�2

��������B
2

A

��������1=ð1þ�Þ 1

j1þ �j2 : (A1)

From Eq. (39) we see that Ck �Oð�0Þ, _Ck �Oð��1Þ, and
€Ck �Oð��2Þ.
To obtain a consistent approximation scheme, such that

in

€C k’k�Oð��2Þ; _Ck _’k�Oð��1Þ; Ck €’k�Oð�1Þ
(A2)

only the first term is kept and the others neglected, we have

to assume that j B2

A j1=ð1þ�Þ � �2, i.e. d�
2

d� �Oð�0Þ.

[1] V. Sahni and A.A. Starobinsky, Int. J. Mod. Phys. D 9, 373
(2000).

[2] T. Padmanabhan, Phys. Rep. 380, 235 (2003).
[3] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559

(2003).
[4] J. Frieman, M. Turner, and D. Huterer, Annu. Rev. Astron.

Astrophys. 46, 385 (2008).
[5] E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330

(2009).
[6] R. Durrer and R. Maartens, Gen. Relativ. Gravit. 40, 301

(2008).
[7] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.

Phys. D 15, 1753 (2006).
[8] R. Durrer and R. Maartens, arXiv:0811.4132.
[9] G. F. R. Ellis, arXiv:0812.0240.
[10] D. L. Wiltshire, Phys. Rev. Lett. 99, 251101 (2007).
[11] D. L. Wiltshire, Int. J. Mod. Phys. D 17, 641 (2008).

[12] A. Shafieloo, V. Sahni, and A.A. Starobinsky,
arXiv:0903.5141.

[13] C. Kiefer, Quantum Gravity (Oxford University Press,
Oxford, 2007), 2nd ed.

[14] C. Kiefer and B. Sandhöfer, arXiv:0804.0672v2.
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Classical Quantum Gravity 19, 4863 (2002).
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