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We introduce a parametrized high-density equation of state (EOS) in order to systematize the study of

constraints placed by astrophysical observations on the nature of neutron-star matter. To obtain useful

constraints, the number of parameters must be smaller than the number of EOS-related neutron-star

properties measured, but large enough to accurately approximate the large set of candidate EOSs. We find

that a parametrized EOS based on piecewise polytropes with 3 free parameters matches, to about 4% rms

error, an extensive set of candidate EOSs at densities below the central density of 1:4M� stars. Adding

observations of more massive stars constrains the higher-density part of the EOS and requires an

additional parameter. We obtain constraints on the allowed parameter space set by causality and by

present and near-future astronomical observations with the least model dependence. Stringent constraints

on the EOS parameter space are associated with the future measurement of the moment of inertia of PSR

J0737-3039A combined with the maximum known neutron-star mass. We also present in an appendix a

more efficient algorithm than has previously been used for finding points of marginal stability and the

maximum angular velocity of stable stars.
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I. INTRODUCTION

Because the temperature of neutron stars is far below the
Fermi energy of their constituent particles, neutron-star
matter is accurately described by the one-parameter equa-
tion of state (EOS) that governs cold matter above nuclear
density. The uncertainty in that EOS, however, is notori-
ously large, with the pressure p as a function of baryon
mass density � uncertain by as much as an order of
magnitude above nuclear density. The phase of the matter
in the core of a neutron star is similarly uncertain: Current
candidates for the EOS include nonrelativistic and relativ-
istic mean-field models; models for which neutron-star
cores are dominated by nucleons, by hyperons, by pion
or kaon condensates, and by strange quark matter (free up,
down, and strange quarks); and one cannot yet rule out the
possibility that the ground state of cold matter at zero
pressure might be strange quark matter and that the term
‘‘neutron star’’ is a misnomer for strange quark stars.

The correspondingly large number of fundamental pa-
rameters needed to accommodate the models’ Lagrangians
has meant that studies of astrophysical constraints (see, for
example, [1–5] and references therein) present constraints
by dividing the EOS candidates into an allowed and a
ruled-out list. A more systematic study, in which astro-
physical constraints are described as constraints on the
parameter space of a parametrized EOS, can be effective
only if the number of parameters is smaller than the
number of neutron-star properties that have been measured
or will have been measured in the next several years. At the
same time, the number of parameters must be large enough
to accurately approximate the EOS candidates.

A principal aim of this paper is to show that, if one uses
phenomenological rather than fundamental parameters,
one can obtain a parametrized EOS that meets these con-
ditions. We exhibit a parametrized EOS, based on specify-
ing the stiffness of the star in three density intervals,
measured by the adiabatic index � ¼ d logp=d log�. A
fourth parameter translates the pð�Þ curve up or down,
adding a constant pressure—equivalently fixing the pres-
sure at the endpoint of the first density interval. Finally, the
EOS is matched below nuclear density to the (presumed
known) EOS. An EOS for which � is constant is a poly-
trope, and the parametrized EOS is then piecewise poly-
tropic. A similar piecewise-polytropic EOS was previously
considered by Vuille and Ipser [6]; and, with different
motivation, several other authors [7–10] have used piece-
wise polytropes to approximate neutron-star EOS candi-
dates. In contrast to this previous work, we use a small
number of parameters chosen to fit a wide variety of
fundamental EOSs. (We take a set of 34 candidate EOSs,
described below, which is an expansion of the set used in
[5] and includes a variety of high-density exotic composi-
tions as well as standard nuclear matter.) Also, we system-
atically explore a variety of astrophysical constraints. Like
most of the previous work, we aim to model equations of
state containing nuclear matter (possibly with various
phase transitions) rather than pure quark stars, whose
EOS is predicted to be substantially different.
As we have noted, enough uncertainty remains in the

pressure at nuclear density, that one cannot simply match
to a fiducial pressure at �nuc. Instead of taking as one
parameter the pressure at a fiducial density, however, one
could match to the pressure of the known subnuclear EOS
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at, say, 0.1 �nuc and then use as one parameter a value of �0

for the interval between 0:1�nuc and �nuc. Neutron-star
observables are insensitive to the EOS below �nuc, because
the fraction of mass at low density is small. But the new
parameter �0 would indirectly affect observables by
changing the value of the pressure at and above nuclear
density, for fixed values of the remaining �i. By choosing
instead the pressure at a fixed density �1 > �nuc, we obtain
a parameter more directly connected to physical observ-
ables. In particular, as Lattimer and Prakash [5] have
pointed out, neutron-star radii are closely tied to the pres-
sure somewhat above nuclear density, and the choice p1 ¼
pð�1Þ is recommended by that relation.

In general, to specify a piecewise-polytropic EOS with
three density intervals above nuclear density, one needs six
parameters: two dividing densities, three adiabatic indices
�i, and a value of the pressure at an endpoint of one of the
intervals. Remarkably, however, we find (in Sec. IV)
that the error in fitting the collection of EOS candidates
has a clear minimum for a particular choice of dividing
densities. With that choice, the parametrized EOS has three
free parameters, �1, �2, and p1, for densities below
1015 g=cm3 (the density range most relevant for masses
�1:4M�), and four free parameters (an additional �3) for
densities between 1015 g=cm3 and the central density of
the maximum-mass star for each EOS.

With the parametrization in hand, we examine in Sec. V
astrophysical constraints on the EOS parameter space be-
yond the radius-p1 relation found by Lattimer and Prakash
[5]. Our emphasis in this first study is on present and very
near-future constraints: those associated with the largest
observed neutron-star mass and spin, with a possible ob-
servation (as yet unrepeated) of neutron-star redshift, with
a possible simultaneous measurement of mass and radius,
and with the expected future measurement of the moment
of inertia of a neutron star with known mass. (We do not
consider other observables, such as those associated with
glitches and cooling, which depend not only on the EOS
but also on dynamics, transport coefficients, and thermo-
dynamic derivatives. The latter quantities are generally
much more uncertain than the EOS and related observables
such as the stellar radius, and are always more model
dependent.) A companion paper [11] will investigate con-
straints obtainable with gravitational-wave observations in
a few years.

The constraints associated with the largest observed
mass, spin, and redshift have a similar form, each restrict-
ing the parameter space to one side of a surface: For
example, if we take the largest observed mass (at a 90%
confidence level) to be 1:7M�, then the allowed parameters
correspond to EOSs whose maximum mass is at least
1:7M�. We can regard Mmax as a function on the 4-
dimensional EOS parameter space. The subspace of
EOSs for which Mmax ¼ 1:7M� is then described by a 3-
dimensional surface, and constraint is a restriction to the

high-mass side of the surface. Similarly, the observation of
a 716 Hz pulsar restricts the EOS parameter space to one
side of a surface that describes EOSs for which the maxi-
mum spin is 716 Hz. Thus we can produce model-
independent extended versions of the multidimensional
constraints seen in [12].
The potential simultaneous observation of two proper-

ties of a single neutron star (for example, moment of inertia
and mass) would yield a significantly stronger constraint: It
would restrict the parameter space not to one side of a
surface but to the surface itself. And a subsequent obser-
vation of two different parameters for a different neutron
star would then restrict one to the intersection of two
surfaces. We exhibit the result of simultaneous observa-
tions of mass and moment of inertia (expected within the
next decade for one member of the binary pulsar J0737-
3039 [13,14]) and of mass and radius. Gravitational-wave
observations of binary inspiral can again measure two
properties of a single star: both mass and an observable
roughly described as the final frequency before plunge (the
departure of the waveform from a point-particle inspiral);
and related work in progress examines the accuracy with
which one can extract EOS parameters from interferomet-
ric observations of gravitational waves in the inspiral and
merger of a binary neutron-star system [11].
Conventions: We use cgs units, denoting rest-mass

density by �, and energy density =c2 by �. We define
rest-mass density as � ¼ mBn where mB ¼ 1:66�
10�24 g and n is the baryon number density. In Sec. III
and Appendix A, however, we set c ¼ 1 to simplify the
equations and add a footnote on restoring c.

II. CANDIDATES

A test of how well a parametrized EOS can approximate
the true EOS of cold matter at high density is how well it
approximates candidate EOSs. We consider a wide array of
candidate EOSs, covering many different generation meth-
ods and potential species. Because the parametrized EOS is
intended to distinguish the parts of parameter space al-
lowed and ruled out by present and future observations, the
collection includes some EOSs that no longer satisfy
known observational constraints. Many of the candidate
EOSs were considered in Refs. [5,12,14]; and we call them
by the names used in those papers.
For plain npe� nuclear matter, we include:
(i) two potential-method EOSs (PAL6 [15] and SLy

[16]);
(ii) eight variational-method EOSs (APR1-4 [17], FPS

[18], and WFF1-3 [19]);
(iii) one nonrelativistic (BBB2 [20]) and three relativ-

istic (BPAL12 [21], ENG [1] and MPA1 [22])
Brueckner-Hartree-Fock EOSs; and

(iv) three relativistic mean-field theory EOSs (MS1-2
and one we call MS1b, which is identical to MS1
except with a low symmetry energy of 25 MeV
[23]).
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We also consider models with hyperons, pion and kaon
condensates, and quarks, and will collectively refer to these
EOSs as K=�=H=q models:

(i) one neutron-only EOS with pion condensates (PS
[24]);

(ii) two relativistic mean-field theory EOSs with kaons
(GS1-2 [25]);

(iii) one effective-potential EOS including hyperons
(BGN1H1 [26]); eight relativistic mean-field the-
ory EOSs with hyperons (GNH3 [27], and seven
variants H1-7 [12]; one relativistic mean-field the-
ory EOS with hyperons and quarks (PCL2 [28]);
and

(iv) four hybrid EOSs with mixed APR nuclear matter
and color-flavor-locked quark matter (ALF1-4 with
transition density �c and interaction parameter c
given by �c ¼ 2n0, c ¼ 0; �c ¼ 3n0, c ¼ 0:3;
�c ¼ 3n0, c ¼ 0:3; and �c ¼ 4:5n0, c ¼ 0:3, re-
spectively [29]).

The tables are plotted in Fig. 1 to give an idea of the
range of EOSs considered for this parametrization.

III. PIECEWISE POLYTROPE

A polytropic EOS has the form,

pð�Þ ¼ K��; (1)

with � the rest-mass density and � the adiabatic index, and
with energy density � fixed by the first law of thermody-

namics,1 d �
� ¼ �pd 1

� . For p of the form (1), the first law

has the immediate integral

�

�
¼ ð1þ aÞ þ 1

�� 1
K���1; (2)

where a is a constant; and the requirement lim�!0�=� ¼ 1

implies a ¼ 0 and the standard relation � ¼ �þ 1
��1p.

The parametrized EOSs we consider are piecewise poly-
tropes above a density �0, satisfying Eqs. (1) and (2) on a
sequence of density intervals, each with its own Ki and �i:
An EOS is piecewise polytropic for � � �0 if, for a set of
dividing densities �0 < �1 < �2 < � � � , the pressure and
energy density are everywhere continuous and satisfy

pð�Þ ¼ Ki�
�i ; d

�

�
¼ �pd

1

�
; �i�1 � � � �i:

(3)

Then, for � � 1,

�ð�Þ ¼ ð1þ aiÞ�þ Ki

�i � 1
��i ; (4)

with ai ¼ �ð�i�1Þ
�i�1

� 1� Ki

�i�1�
�i�1
i�1 .

The specific enthalpy2 h :¼ ð�þ pÞ=�, sound velocity

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp=d�

p
, and internal energy e :¼ �=�� 1, are

given in each density interval by

hð�Þ ¼ 1þ ai þ �i

�i � 1
Ki�

�i�1;

vsð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�ip

�þ p

s
;

eð�Þ ¼ ai þ Ki

�i � 1
��i�1:

(5)

Each piece of a piecewise-polytropic EOS is specified
by three parameters: the initial density, the coefficient Ki,
and the adiabatic index �i. However, when the EOS at
lower density has already been specified up to the chosen
�i, continuity of pressure restricts Kiþ1 to the value

Kiþ1 ¼ pð�iÞ
��iþ1

i

: (6)

Thus each additional region requires only two additional
parameters, �i and �iþ1. Furthermore, if the initial density
of an interval is chosen to be a fixed value for the parame-
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FIG. 1 (color online). Pressure versus rest mass density for the
set of candidate EOS tables considered in the parametrization.

1In this section, for simplicity of notation, c ¼ 1. To rewrite
the equations in cgs units, replace p and K in each occurrence by
p=c2 and K=c2. Both � and � have units g=cm3.

2A note on terminology: When the entropy vanishes, the
specific enthalpy, h ¼ ð�þ pÞ=�, and Gibbs free energy, g ¼
ð�þ pÞ=�� Ts, coincide. For nonzero entropy, it is the term
gdM0 ¼ �dN that appears in the first law of thermodynamics,
where � ¼ gmB is the chemical potential.
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trization, specifying the EOS on the density interval re-
quires only a single additional parameter.

IV. FITTING THE CANDIDATES

To fit the true neutron-star EOS, we must ensure that a
wide variety of candidate EOSs are well fit by some set of
parameter values of our parametrized EOS. In this section
we describe the fit we use and the results of that fit.

There is general agreement on the low-density EOS for
cold matter, and we adopt the version (SLy) given by
Douchin and Haensel [16]. Substituting an alternative
low-density EOS from, for example, Negele and
Vautherin [30], alters by only a few percent the observables
we consider in examining astrophysical constraints, both
because of the rough agreement among the candidate EOSs
and because the low-density crust contributes little to the
mass, moment of inertia, or radius of the star.

Each choice of a piecewise-polytropic EOS above nu-
clear density is matched to this low-density EOS as fol-
lows: The lowest-density piece of the piecewise-polytropic
pð�Þ curve is extended to lower densities until it intersects
the low-density EOS, and the low-density EOS is used at
densities below the intersection point. This matching
method yields a monotically increasing p ¼ pð�Þ without
introducing additional parameters. It omits EOSs with
values of p1 and �1 that are incompatible, i.e., for which
the slope of the logp vs log� curve is too shallow to reach
the pressure p1 from the low-density part of the EOS.
However it still accommodates a much larger region of
parameter space than that spanned by the candidate EOSs.
(The precise choice of matching algorithm has little influ-
ence on the final fit for the reasons given in the previous
paragraph.)

The accuracy with which a piecewise polytrope
f�i; Ki;�ig, approximates a candidate EOS is measured
by the rms residual of the fit to m tabulated points �j, pj:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

�X
i

X
j

�i<�j��iþ1

ðlogpj � logKi þ �i log�jÞ2
�vuuut : (7)

In each case, we compute the residual only up to �max, the
central density of the maximum-mass nonrotating model
based on the candidate EOS. Because astrophysical obser-
vations can depend on the high-density EOS only up to the
value of �max for that EOS, only the accuracy of the fit
below �max is relevant.

The accuracy of a choice of parameter space is measured
by the average residual of its fits to each EOS in the
collection. For each EOS, we use a Levenberg-Marquardt
algorithm to minimize the residual (7) over the parameter
space. Even with a robust algorithm, the nonlinear fitting
with varying dividing densities is sensitive to initial con-
ditions. Multiple initial parameters for free fits are con-
structed using fixed-region fits of several possible dividing

densities, and the global minimum of the resulting resid-
uals is taken to indicate the best fit for the candidate EOS.
We begin with a single polytropic region in the core,

specified by two parameters: the index �1 and a pressure p1

at some fixed density. Here, with a single polytrope, the
choice of that density is arbitrary; for more than one
polytropic piece, we will for convenience take that density
to be the dividing density �1 between the first two poly-
tropic regions. Changing the value of p1 moves the poly-
tropic pð�Þ curve up or down, keeping the logarithmic
slope �1 ¼ d logp=d log� fixed. The low-density SLy
EOS is fixed, and the density �0 where the polytropic
EOS intersects SLy changes as p1 changes. The polytropic
index K1 is determined by Eq. (6). This is referred to as a
one free piece fit. We then consider two-piece and three-
piece fits: two polytropic regions within the core, specified
by the four parameters fp1;�1; �1;�2g, as well as three
polytropic regions specified by the six parameters
fp1;�1; �1;�2; �3;�3g, where, in each case, p1 � pð�1Þ.
Again changing p1 translates the piecewise-polytropic
EOS of the core up or down, keeping its shape fixed.
The accuracy of each parametrization (one, two, or three

pieces), measured by the rms residual of Eq. (7), is por-
trayed in Table I. The table lists the average and maximum
rms residuals over the set of 34 candidate EOSs. (The
‘‘fixed’’ fit is described below.)
For nucleon EOSs, the four-parameter fit of two free

polytropic pieces models the behavior of candidates well;
but this kind of four-parameter EOS does not accurately fit
EOSs with hyperons, kaon or pion condensates, and/or
quark matter. Many require three polytropic pieces to
capture the stiffening around nuclear density, a subsequent
softer phase transition, and then final stiffening. On the
other hand, the six parameters required to specify three free
polytropic pieces exceeds the bounds of what may be
reasonably constrained by the small set of model-
independent astrophysical measurements. An alternative
four-parameter fit can be made to all EOSs if the transition
densities are held fixed for all candidate EOSs (see below).
The hybrid quark EOS ALF3, which incorporates a

QCD correction parameter for quark interactions, exhibits
the worst fit to a one-piece polytropic EOS with residual
0.111, to the three-piece fixed-region EOS with residual
0.042, and to the three-piece varying region EOS with
residual 0.042. It has a residual from the two-piece fit of
0.044, somewhat less than the worst fit EOS, BGN1H1, an
effective-potential EOS that includes all possible hyperons
and has a two-piece fit residual of 0.056.
A good fit is found for three polytropic pieces with fixed

divisions: between the first and second pieces at �1 ¼
1014:7 g=cm3 ¼ 1:85�nuc and a division between the sec-
ond and third pieces fixed at �2 ¼ 1015:0 g=cm3. The EOS
is specified by choosing the adiabatic indices f�1;�2;�3g in
each region, and the pressure p1 at the first dividing
density, p1 ¼ pð�1Þ. A diagram of this parametrization is
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shown in Fig. 2. For this four-parameter EOS, best-fit
parameters for each candidate EOS give a residual of
0.043 or better, with the average residual over 34 candidate
EOSs of 0.013. Note that the density of departure from the
fixed low-density EOS is still a fitted parameter for this
scheme.

The dividing densities for our parametrized EOS were
chosen by minimizing the rms residuals over the set of 34
candidate EOSs. For two dividing densities, this is a two-
dimensional minimization problem, which was solved by

alternating between minimizing average rms residual for
upper or lower density while holding the other density
fixed. The location of the best dividing points is fairly
robust over the subclasses of EOSs, as illustrated in Fig. 3.
With the dividing points fixed, taking the pressure p1 to

be the pressure at �1 ¼ 1:85�nuc, is indicated by the em-
pirical work of Lattimer and Prakash [5] that finds a strong
correlation between pressure at fixed density (near this
value) and the radius of 1:4M� neutron stars. This choice
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FIG. 2. The fixed-region fit is parametrized by adiabatic in-
dices f�1;�2;�3g and by the pressure p1 at the first dividing
density.

TABLE I. Average residuals resulting from fitting the set of candidate EOSs with various types of piecewise polytropes. Free fits
allow dividing densities between pieces to vary. The fixed three-piece fit uses 1014:7 g=cm3 or roughly 1:85�nuc and 1015:0 g=cm3 or
3:70�nuc for all EOSs. Tabled are the rms residuals of the best fits averaged over the set of candidates. The set of 34 candidates includes
17 candidates containing only npe� matter and 17 candidates with hyperons, pion or kaon condensates, and/or quark matter. Fits are
made to tabled points in the high-density region between 1014:3 g=cm3 or 0:74�nuc and the central density of a maximum-mass
spherical star calculated using that table.

Type of fit All npe� K=�=h=q

Mean rms residual

One free piece 0.0386 0.0285 0.0494

Two free pieces 0.0147 0.0086 0.0210

Three fixed pieces 0.0127 0.0098 0.0157

Three free pieces 0.0071 0.0056 0.0086

Standard deviation of rms residual

One free piece 0.0213 0.0161 0.0209

Two free pieces 0.0150 0.0060 0.0188

Three fixed pieces 0.0106 0.0063 0.0130

Three free pieces 0.0081 0.0039 0.0107
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FIG. 3. Subsets of EOSs with and without kaons, hyperons,
meson condensates, or quarks, show a fairly robust choice of
dividing densities whose fit to the candidate EOSs minimizes
residual error. The mean plus 1 standard deviation of residuals
for each subset of candidate EOSs is plotted against the choice of
lower and upper dividing densities �1 and �2. The left curves
show mean residual versus �1 with �2 fixed at 10

15:0 g=cm3. The
right three curves show mean residual versus �2, with �1 fixed at
1014:7 g=cm3.
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of parameter allows us to examine (in Sec. VE) the relation
between p1 and the radius; and we expect a similar corre-
lation between p1 and the frequency at which neutron-star
inspiral dramatically departs from point-particle inspiral
for neutron stars near this mass.

Since there are not many astrophysical constraints on the
EOS, it is desirable to use one of the four-parameter fits

(two free pieces or three fixed). Observations of pulsars
that are not accreting indicate masses below 1:45M� (see
Sec. V), and the central density of these stars is below �2

for almost all EOSs. Then only the three parameters
fp1;�1;�2g of the fixed piece parametrization are required
to specify the EOS for moderate mass neutron stars. This
class of observations can then be treated as a set of con-
straints on a 3-dimensional parameter space. Similarly,
because maximum-mass neutron stars ordinarily have
most matter in regions with densities greater than the first
dividing density, their structure is insensitive to the first
adiabatic index. The three-piece parametrization does a
significantly better job above �2 because phase transitions
above that density require a third polytropic index �3. If the
remaining three parameters can be determined by pulsar
observations, then observations of more massive, accreting
stars can constrain �3.
The best-fit parameter values of the candidate EOSs are

shown in Fig. 4 and listed in Table III of Appendix C. The
worst fits of the fixed-region fit are the hybrid quark EOSs
ALF1 and ALF2, and the hyperon-incorporating EOS
BGN1H1. For BGN1H1, the relatively large residual is
due to the fact that the best-fit dividing densities of
BGN1H1 differ strongly from the average best dividing
densities. Although BGN1H1 is well fit by three pieces
with floating densities, the reduction to a four-parameter fit
limits the resolution of EOSs with such structure. The
hybrid quark EOSs, however, have more complex structure
that is difficult to resolve accurately with a small number of
polytropic pieces. Still, the best-fit polytrope EOS is able to
reproduce the neutron-star properties predicted by the
hybrid quark EOS.
In Appendix C, Table III compares neutron-star proper-

ties for each EOS to their values for the best-fit piecewise
polytrope. The mean error and standard deviation for each
characteristic is also listed.

V. ASTROPHYSICAL CONSTRAINTS ON THE
PARAMETER SPACE

Adopting a parametrized EOS allows one to phrase each
observational constraint as a restriction to a subset of the
parameter space. In Subsecs. VA, VB, VC, and VD, we
find the constraints imposed by causality, by the maximum
observed neutron-star mass and the maximum observed
neutron-star spin, and by a possible observation of gravi-
tational redshift. We then examine, in Subsec. VE, con-
straints from the simultaneous measurement of mass and
moment of inertia and of mass and radius. We exhibit in
Subsec. V F the combined constraint imposed by causality,
maximum observed mass, and a future moment of inertia
measurement of a star with known mass.
In exhibiting the constraints, we show a region of the

4-dimensional parameter space large enough to
encompass the 34 candidate EOSs considered above.

FIG. 4. Parametrized EOS fits to the set of 34 candidate EOS
tables. There are 17 EOSs with only ordinary nuclear matter
ðn; p; e;�Þ; 9 have only hyperons in addition to ordinary matter;
3 include meson condensates plus ordinary matter; 5 include
quarks plus other matter (PCL2 also has hyperons). �2 < 3:5 and
�3 < 2:5 for all EOSs with hyperons, meson condensates, and/or
quark cores. The shaded region corresponds to incompatible
values of p1 and �1, as discussed in the text.
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The graphs in Fig. 4 display the ranges 1033:5 dyne=cm2 <
p1 < 1035:5 dyne=cm2, 1:4< �1 < 5:0, 1:0< �2 < 5:0,
and 1:0< �3 < 5:0. Also shown is the location in parame-
ter space of the best fit to each candidate EOS. The shaded
region in the top graph corresponds to incompatible values
of p1 and �1 mentioned in Sec. IV.

To find the constraints on the parametrized EOS im-
posed by the maximum observed mass and spin, one finds
the maximum mass and spin of stable neutron stars based
on the EOS associated with each point of parameter space.
A subtlety in determining these maximum values arises
from a break in the sequence of stable equilibria—an island
of unstable configurations—for some EOSs. The unstable
island is typically associated with phase transitions in a
way we now describe.

Spherical Newtonian stars described by EOSs of the

form p ¼ pð�Þ are unstable when an average value �� of
the adiabatic index falls below 4=3. The stronger-than-
Newtonian gravity of relativistic stars means that instabil-

ity sets in for larger values of ��, and it is ordinarily this
increasing strength of gravity that sets an upper limit on
neutron-star mass. EOSs with phase transitions, however,
temporarily soften above the critical density and then
stiffen again at higher densities. As a result, configurations
whose inner core has density just above the critical density
can be unstable, while configurations with greater central
density can again be stable. Models with this behavior are
considered, for example, by Glendenning and Kettner [31],
Bejger et al. [8], and by Zdunik et al. [7] (these latter
authors, in fact, use piecewise-polytropic EOSs to model
phase transitions).

For our parametrized EOS, instability islands of this
kind can occur for �2 & 2, when �1 * 2 and �3 * 2. A
slice of the 4-dimensional parameter space with constant
�1 and �3 is displayed in Fig. 5. The shaded region corre-
sponds to EOSs with islands of instability. Contours are
also shown for which the maximummass for each EOS has
the constant value 1:7M� (lower contour) and 2:0M�
(upper contour).

An instability point along a sequence of stellar models
with constant angular momentum occurs when the mass
is maximum. On a mass-radius curve, stability is lost
in the direction for which the curve turns counterclockwise
about the maximum mass and is regained when it turns
clockwise. In the bottom graph of Fig. 5, mass-radius
curves are plotted for six EOSs, labeled A–F, associated
with six correspondingly labeled EOSs in the top
figure. The sequences associated with EOSs B, C, and
E have two maximum masses (marked by black dots in
the lower figure) separated by a minimum mass. As
one moves along the sequence from larger to smaller
radius—from lower to higher density, stability is tempo-
rarily lost at the first maximum mass, regained at the
minimum mass, and permanently lost at the second maxi-
mum mass.

It is clear from each graph in Fig. 5 that either of the two
local maxima of mass can be the global maximum. On the
lower boundary (containing EOSs A and D), the lower-
density maximum mass first appears, but the upper-density
maximum remains the global maximum in a neighborhood
of the boundary. Above the upper boundary (containing
EOS F), the higher-density maximum has disappeared, and

FIG. 5. The region in parameter space where two stable
neutron-star sequences can occur is shaded in the top figure.
Contours of constant maximum mass are also shown. The higher
central density maximum-mass contour is solid while the lower
central density maximum-mass contour is dashed. Mass-radius
curves are plotted for several EOSs in the bottom figure.
Although difficult to see, EOS C does in fact have a second
stable sequence.
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near the upper boundary the lower-density maximum is the
global maximum.

A. Causality

For an EOS to be considered physically reasonable, the
adiabatic speed of sound vs cannot exceed the speed of
light. An EOS is ruled out by causality if vs > 1 for any
density below the central density �max of the maximum-
mass neutron star for that EOS. (If vs > 1 only above �max,
the EOS is astrophysically indistinguishable from one
altered to have vs < 1 above �max and thus should not be
ruled out.)

We exhibit the causality constraint in two ways, first by
simply requiring that each piecewise polytrope be causal at
all densities and then by requiring only that it be causal
below �max. The first, unphysically strong, constraint,
shown in Fig. 6, is useful for an intuitive understanding
of the constraint: The speed of sound is a measure of the
stiffness of the EOS, and requiring causality eliminates the
largest values of �i and p1.

Figure 7 shows the result of restricting the constraint to
densities below �max, with the speed of sound given by
Eq. (5). A second surface is shown to account for the
inaccuracy with which a piecewise-polytropic approxima-
tion to an EOS represents the speed of sound. In all but one
case (BGN1H1) the fits to the candidate EOSs overpredict
the maximum speed of sound, but none of the fits to the
candidate EOSs mispredict whether the candidate EOS is
causal or acausal by more than 11% (fractional difference
between fit and candidate). We adopt as a suitable causality
constraint a restriction to a region bounded by the surface
vs;max ¼ 1þmeanþ 1� ¼ 1:12, corresponding to the

mean plus 1 standard deviation in the error between
vs;max for the candidate and best-fit EOSs.

In the lower parts of each graph in Fig. 7, where p1 <
1035 dyne=cm2, the bounding surface has the character of
the first causality constraint, with the restriction on each of
the three variables p1, �2, and �3 becoming more stringent

FIG. 6. Causality constraints are shown for two values of �1.
For each EOS in the parameter space the maximum speed of
sound over all densities is used. The shaded surface separates the
EOS parameter space into a region behind the surface allowed by
causality (labeled vs;max < 1) and a region in which correspond-

ing EOSs violate causality at any density (labeled vs;max > 1).

FIG. 7. Causality constraint as in Fig. 6. However, here, only
the maximum speed of sound up to the central density of the
maximum-mass star is considered. A second, outlined surface
shows a weaker constraint to accommodate the expected error in
the speed of sound associated with a piecewise-polytropic ap-
proximation to an EOS. With � the standard deviation in vs;max

between an EOS and its parametrized representation, as mea-
sured by the collection of candidate EOSs, the outlined surface
depicts vs;max ¼ 1þmeanþ 1� ¼ 1:12 constraint.
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as the other parameters increase, and with �3 restricted to
be less than about 3. In this low-pressure part of each graph,
the surface is almost completely independent of the value
of �1: Because the constraint takes the form �1p=ð�þ
pÞ � c2 (for p 	 �) and p < p1 is so low, the constraint
rules out values of �1 only at or beyond the maximum �1

we consider.
In the upper part of each graph, where p1 >

1035 dyne=cm2, unexpected features arise from the fact
that we impose the causality constraint only below the
maximum density of stable neutron stars—below the cen-
tral density of the maximum-mass star.

The most striking feature is the way the constraint
surface turns over in the upper part of the top graph, where
p1 > 1035 dyne=cm2, in a way that allows arbitrarily large
values of p1. This occurs because, when p1 is large, the
density of the maximum-mass star is small, and a violation
of causality typically requires high density. That is, when
the density is low, the ratio p=ð�þ pÞ in Eq. (5) is small.
As a result, in the top graph, vs remains too small to violate
causality before the maximum density is reached. In the
bottom graph, with �1 ¼ 3:8, �1 is now large enough in
Eq. (5) that the EOS becomes acausal just below the
transition to �2. This is the same effect that places the
upper limit on p1 seen in the second graph of Fig. 6.

A second feature of the upper parts of each graph is the
exact independence of the bounding surface on �3. The
reason is simply that in this part of the parameter space the
central density of the maximum-mass star is below �2,
implying that no stable neutron stars see �3.

Finally, we note that in both graphs, for small �2 (the
right of the graph), the EOSs yield the sequences men-
tioned above, in which an island of instability separates
two stable sequences, each ending at a local maximum of
the mass. Requiring vs;max to satisfy causality for both

stable regions rules out EOSs below the lower part of the
bifurcated surface.

B. Maximum mass

A stringent observational constraint on the EOS parame-
ter space is set by the largest observed neutron-star mass.
Unfortunately, the highest claimed masses are also subject
to the highest uncertainties and systematic errors. The most
reliable measurements come from observations of radio
pulsars in binaries with neutron-star companions. The
masses with tightest error bars (about 0:01M�) cluster
about 1:4M� [32]. Recent observations of millisecond
pulsars in globular clusters with non-neutron-star compan-
ions have yielded higher masses: Ter 5I and Ter 5J [33],
M5B [34], PSR J1903þ 0327 [35], and PSR J0437-4715
[36] all have 95% confidence limits of about 1:7M�, and
the corresponding limit for NGC 6440B [37] is about
2:3M�. However these systems are more prone to system-
atic errors: The pulsar mass is obtained by assuming that
the periastron advance of the orbit is due to general rela-

tivity. Periastron advance can also arise from rotational
deformation of the companion, which is negligible for a
neutron star but could be much greater for pulsars which
have white dwarf or main sequence star companions. Also
the mass measurement is affected by the inclination angle,
which is known only for the very nearby PSR J0437-4715.
And with the accumulation of observations of these eccen-
tric binary systems (now about a dozen) it becomes more
likely that the anomalously high figure for NGC 6440B is a
statistical fluke. Figure 8 shows the constraint on the EOS
placed by the existence of 1:7M� neutron stars, which we
regard as secure. Also shown in the figure are the surfaces
associated with maximum masses of 2:0M� and 2:3M�.
Since all of the candidate high-mass pulsars are spinning

slowly enough that the rotational contribution to their
structure is negligible, the constraint associated with their
observed masses can be obtained by computing the maxi-
mum mass of nonrotating neutron stars. Corresponding to
each point in the parameter space is a sequence of neutron
stars based on the associated parametrized EOS; and a
point of parameter space is ruled out if the corresponding
sequence has maximum mass below the largest observed
mass. We exhibit here the division of parameter space into
regions allowed and forbidden by given values of the
largest observed mass.
We plot contours of constant maximum mass in Fig. 8.

Because EOSs below a maximum-mass contour produce
stars with lower maximum masses, the parameter space
below these surfaces is ruled out. The error in the maxi-
mum mass between the candidate and best-fit piecewise-
polytropic EOSs is jmeanj þ 1� ¼ 1:7% (the magnitude
of the mean error plus 1 standard deviation in the error over
the 34 candidate EOSs), so the parameters that best fit the
true EOS are unlikely to be below this surface.

FIG. 8. The above surfaces represent the set of parameters that
result in a constant maximum mass. An observation of a massive
neutron star constrains the equation of state to lie above the
corresponding surface. �1 is set to the least constraining value at
each point. The lower shaded surface representsMmax ¼ 1:7M�;
the middle and upper (outlined) surfaces represent Mmax ¼
2:0M� and Mmax ¼ 2:3M�, respectively.
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The surfaces of Fig. 8 have minimal dependence on �1,
indicating that the maximum mass is determined primarily
by features of the EOS above �1. In Fig. 8 we have set �1 to
the least constraining value in the range we consider—to
the value that gives the largest maximum mass at each
point in fp1;�2;�3g space. Varying �1 causes the contours
to shift up, constraining the parameter space further, by a
maximum of 100:2 dyne=cm2. The dependence of the con-
tour on �1 is most significant for large values of p1 where
the average density of a star is lower. The dependence on
�1 decreases significantly as p1 decreases.

As discussed above, some of the EOSs produce sequen-
ces of spherical neutron stars with an island of instability
separating two stable sequences, each with a local maxi-
mum of the mass. As shown in Fig. 5, this causes a contour
in parameter space of constant maximum mass to split into
two surfaces, one surface of parameters which has this
maximum mass at the lower �c local maximum and an-
other surface of parameters which has this maximum mass
at higher �c branches. Since such EOSs allow stable mod-
els up to the largest of their local maxima, we use the least
constraining surface (representing the global maximum
mass) when ruling out points in parameter space.

C. Gravitational redshift

We turn next to the constraint set by an observed redshift
of spectral lines from the surface of a neutron star. We
consider here only stars for which the broadening due to
rotation is negligible and restrict our discussion to spheri-

cal models. The redshift is then z ¼ ð1� 2M=RÞ�1=2 � 1,
and measuring it is equivalent to measuring the ratioM=R.
With no independent measurement of mass or radius, the
associated constraint again restricts the parameter space to
one side of a surface, to the EOSs that allow a redshift as
large as the largest observed shift.3 For spherical models,
the configuration with maximum redshift for a given EOS
is ordinarily the maximum-mass star. By increasing p1, �2,
or �3, one stiffens the core, increasing the maximum mass,
but also increasing the radius at fixed mass. The outcome
of the competition usually, but not always, yields increased
redshift for larger values of these three parameters; that is,
the increased maximum mass dominates the effect of in-
creased radius at fixed mass for all but the largest values of
p1.

Cottam, Paerels, and Mendez [39] claim to have ob-
served spectral lines from EXO 0748-676 with a gravita-
tional redshift of z ¼ 0:35. With three spectral lines
agreeing on the redshift, the identification of the spectral
features with iron lines is better founded than other claims

involving only a single line. The identification remains in
doubt, however, because the claimed lines have not been
seen in subsequent bursts [40]. There is also a claim of a
simultaneous mass-radius measurement of this system us-
ing Eddington-limited photospheric expansion x-ray bursts
[41] which would rule out many EOSs. This claim is
controversial, because the 95% confidence interval is too
wide to rule out much of the parameter space, and we
believe the potential for systematic error is understated.
However, the gravitational redshift is consistent with the
earlier claim of 0.35. Thus we treat z ¼ 0:35 as a tentative
constraint. We also exhibit the constraint that would be
associated with a measurement of z ¼ 0:45.
Our parametrization can reproduce the maximum red-

shift of tabulated EOSs to 3.0% (meanþ 1�). Figure 9
displays surfaces of constant redshift z ¼ 0:35 and z ¼
0:45 for the least constraining value of �1 ¼ 5 in the range
we consider. Surfaces with different values of �1 are
virtually identical for p1 < 1034:8 dyne=cm2, but diverge
for higher pressures when �1 is small ( & 2:5). In the
displayed parameter space, points in front of the z ¼
0:35 surface, corresponding to stiffer EOSs in the inner
core, are allowed by the potential z ¼ 0:35 measurement.
From the location of the z ¼ 0:35 and z ¼ 0:45 surfaces, it
is clear that, without an upper limit on �1 & 2:5, an ob-
served redshift significantly higher than 0:35 is needed to
constrain the parameter space. In particular, most of the
parameter space ruled out by z ¼ 0:35 is already ruled out
by the Mmax ¼ 1:7M� constraint displayed in Fig. 8.

D. Maximum spin

Observations of rapidly rotating neutron stars can also
constrain the EOS. The highest uncontroversial spin fre-
quency is observed in pulsar Ter 5AD at 716 Hz [42].
There is a claim of 1122 Hz inferred from oscillations in

FIG. 9. Surfaces in the EOS parameter space for which the
maximum redshift of stable spherical neutron stars has the values
0.35 (shaded surface) and 0.45 (outlined surface). A measured
redshift from the surface of a neutron star would exclude the
region of parameter space behind the corresponding surface. �1

is fixed at 5.0, the least constraining in the range we considered.

3One could also imagine a measured redshift small enough to
rule out a class of EOSs. The minimum redshift for each EOS,
however, occurs for a star whose central density is below nuclear
density. Its value, z 
 5� 10�4, thus depends only on the EOS
below nuclear density. (See, for example, Haensel et al. [38].)
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x-ray bursts from XTE J1239-285 [43], but this is contro-
versial because the statistical significance is relatively low,
the signal could be contaminated by the details of the burst
mechanism such as fallback of burning material, and the
observation has not been repeated.

The maximum angular velocity of a uniformly rotating
star occurs at the Kepler or mass-shedding limit, �K, with
the star rotating at the speed of a satellite in circular orbit at
the equator. For a given EOS, the configuration with maxi-
mum spin is the stable configuration with highest central
density along the sequence of stars rotating at their Kepler
limit. An EOS thus maximizes rotation if it maximizes the
gravitational force at the equator of a rotating star—if it
allows stars of large mass and small radius. To allow high-
mass stars, the EOS must be stiff at high density, and for
the radius of the high-mass configuration to be small, the
EOS must be softer at low density, allowing greater com-
pression in the outer part of the star [44,45]. In our pa-
rameter space, a high angular velocity then restricts one to
a region with large values of �2 and �3, and small values of
p1 and �1.

As with the maximum mass, the maximum frequency is
most sensitive to the parameter p1, but the frequency
constraint complements the maximum-mass constraint by
placing an upper limit on p1 over the parameter space,
rather than a lower limit.

To calculate the maximum rotation frequencies for our
parametrized EOS, we used the open-source code RNS for
axisymmetric rapid rotation in the updated form RNS 2.0

[46]. For a given EOS, the model with maximum spin is
ordinarily close to the model with maximum mass, but that
need not be true for EOSs that yield two local mass
maxima. The resulting calculation of maximum rotation
requires some care, and the method we use is described in
Appendix B. The error incurred in using the parametrized
EOS instead of a particular model is 2.7% (meanþ 1�).

Spin frequencies of 716 Hz and even the possible
1122 Hz turn out to be very weak constraints because
both are well below the Kepler frequencies of most
EOSs. Thus we plot surfaces of parameters giving maxi-
mum rotation frequencies of 716 Hz in Fig. 10 and 1200 Hz
and 1500 Hz in Fig. 11. The region of parameter space
above the maximum observed spin surface is excluded. In
the top figure, maximum-mass stars have central densities
below �2 so there is no dependence on �3. In the bottom
figure the least constraining value of �1 ¼ 5 is fixed. The
surface corresponding to a rotation of 716 Hz only con-
strains the parameter space that we consider (p1 <
1035:5 dyne=cm3) if �1 & 2:5. The minimum observed
rotation rate necessary to place a firm upper limit on p1

is roughly 1200 Hz for �1 ¼ 5. The surface fmax ¼
1500 Hz for �1 ¼ 5 is also displayed in Fig. 11 to demon-
strate that much higher rotation frequencies must be ob-
served in order to place strong limits on the parameter
space.
Because it is computationally expensive to use RNS to

evaluate the maximum rotation frequency for a wide range
of values in a four-parameter space, one can also use an
empirical formula. Haensel and Zdunik [47] found that the
maximum stable rotation for a given EOS can be found
from the maximum-mass spherically symmetric model for
that EOS with mass Ms and radius Rs:

�
�max

104 s�1

�

 �

�
Ms

M�

�
1=2

�
Rs

10 km

��ð3=2Þ
: (8)

In other words the maximum rotation is proportional to the
square root of the average density of the star.
The original calculation of Haensel and Zdunik gave

� ¼ 0:77. An overview of subsequent calculations is given
by Haensel et al. in [48], reporting values of � ¼
0:76–0:79 for a range of EOS sets and calculation methods

FIG. 10. The above surface represents the set of parameters
that result in a maximum spin frequency of 716 Hz for the top
surface. For high values of p1 there is no dependence on �3. The
wedge at the back right is the shaded region of Fig. 4, corre-
sponding to incompatible values of p1 and �1.

FIG. 11. The above surfaces represent the set of parameters
that result in a maximum spin frequency of 1200 Hz for the top
surface and 1500 Hz for the bottom surface. That is, observations
of such high spin frequencies would constrain the EOS to lie
below the corresponding surface. For these surfaces �1 ¼ 5, the
least constraining value.
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including those of [49–51]. If we calculate maximum
rotations with RNS as described above, using the 34 tabu-
lated EOSs, we find � ¼ 0:786� 0:030. The correspond-
ing best-fit parametrized EOSs give � ¼ 0:779� 0:027.

E. Moment of inertia or radius of a neutron star
of known mass

The moment of inertia of the more massive component,
pulsar A, in the double pulsar PSR J0737-3039 may be
determined to an accuracy of 10% within the next few
years [13] by measuring the advance of the system’s peri-
astron, and implications for candidate EOSs have been
examined in [14,52,53]. As noted earlier, by finding both
mass and moment of inertia of the same star one imposes a
significantly stronger constraint on the EOS parameter
space than the constraints associated with measurements
of mass or spin alone: The latter restrict the EOS to the
region of parameter space lying on one side of a surface,
the region associated with the inequality Mmaxðp1;�iÞ>
Mobserved or with �maxðp1;�iÞ>�observed. The simulta-
neous measurement, on the other hand, restricts the EOS
to a single surface. That is, in an n-dimensional parameter
space, the full n-dimensional set of EOSs which allow a
1:338M� model, and those EOSs for which that model has
moment of inertia Iobserved form the (n� 1)-dimensional
surface in parameter space given by Iðp1;�i;M ¼
1:338M�Þ ¼ Iobserved. (We use here the fact that the
44 Hz spin frequency of pulsar A is slow enough that the
moment of inertia is nearly that of the spherical star.)
Moreover, for almost all EOSs in the parameter space,
the central density of a 1:338M� star is below the transition
density �2. Thus the surfaces of constant moment of
inertia have negligible dependence on �3, the adiabatic
index above �2, and the EOS is restricted to the two-
dimensional surface in the p1-�1-�2 space given by
Iðp1;�1;�2;M ¼ 1:338M�Þ ¼ Iobserved.

This difference in dimensionality means that, in princi-
ple, the simultaneous equalities that give the constraint
from observing two features of the same star are dramati-
cally stronger than the inequalities associated with mea-
surements of mass or spin alone. In practice, however, the
two-dimensional constraint surface is thickened by the
error of the measurement. The additional thickness asso-
ciated with the error with which the parametrized EOS can
reproduce the moment of inertia of the true EOS is smaller,
because the parametrized EOS reproduces the moment of
inertia of the 34 candidate EOSs to within 2.9% (jmeanj þ
1�).

In Fig. 12 we plot surfaces of constant moment of inertia
that span the range associated with the collection of can-
didate EOSs. The lower shaded surface represents I ¼
1:0� 1045 g cm2. This surface has very little dependence
on �1 because it represents a more compact star, and thus
for a fixed mass, most of the mass is in a denser state � >
�1. The structures of these stars do depend on �3, and the

corresponding dependence of I on �3 is shown by the
separation between the two shaded surfaces in Fig. 12.
The middle outlined surface represents I ¼ 1:5�
1045 g cm2, and is almost a surface of constant p1. The
top outlined surface represents I ¼ 2:0� 1045 g cm2. This
surface has little dependence on �2, because a star with an
EOS on this surface would be less compact and thus most
of its mass would be in a lower-density state � < �1.
If the mass of a neutron star is already known, a mea-

surement of the radius constrains the EOS to a surface
of constant mass and radius, Rðp1;�iÞ ¼ Robserved,
Mðp1;�iÞ ¼ Mobserved in the 4-dimensional parameter
space. The thickness of the surface is dominated by the

FIG. 12. The above surfaces represent the set of parameters
that result in a star with a mass of 1:338M� and a fixed moment
of inertia, i.e., possible near-future measurements of PSR J0737-
3039A. I ¼ 1:0� 1045 g cm2 for the shaded surfaces, whose
separation corresponds to varying �3. I ¼ 1:5� 1045 g cm2 for
the middle outlined surface. I ¼ 2:0� 1045 g cm2 for the top
outlined surface. The wedge at the back right is the shaded
region of Fig. 4, corresponding to incompatible values of p1 and
�1.

FIG. 13. The above surfaces represent the set of parameters
that result in a star with a mass of 1:4M� and a fixed radius.
R ¼ 9 km for the shaded surfaces, whose separation corresponds
to varying �3. R ¼ 12 km for the middle outlined surface. R ¼
16 km for the top outlined surface. The wedge at the back right is
the shaded region of Fig. 4, corresponding to incompatible
values of p1 and �1.
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uncertainty in the radius and mass measurements, since our
parametrization produces the same radius as the candidate
EOSs to within 1.5% (jmeanj þ 1�). We plot in Fig. 13
surfaces of constant radius for a 1:4M� star that span the
range of radii associated with the collection of candidate
EOSs. As with the moment of inertia, the radius depends
negligibly on �3 as long as the radius is greater than 11 km.
For smaller radii, the variation with �3 is shown by the
separation between the surfaces in Fig. 13.

Very recently analyses of time-resolved spectroscopic
data during thermonuclear bursts from two neutron stars in
low-mass x-ray binaries were combined with distance
estimates to yield M ¼ 1:4M� and R ¼ 11 km or M ¼
1:7M� and R ¼ 9 km for EXO 1745-248 [54] and M ¼
1:8M� and R ¼ 10 km for 4U 1608-52 [55], both with
error bars of about 1 km in R. These results are more model
dependent than the eventual measurement of the moment
of inertia of PSR J0737-6069A, but the accuracy of the
measurement of I remains to be seen.

F. Combining constraints

The simultaneous constraints imposed by causality, a
maximum observed mass of 1:7M�, and a future measure-
ment of the moment of inertia of PSR J0737-3039A,
restrict the parameter space to the intersection of the
allowed regions of Figs. 7, 8, and 12. We show in Fig. 14
the projection of this jointly constrained region on the
p1-�2-�3 subspace. This allows one to see the cutoffs
imposed by causality that eliminate large values of �2

and �3 and (in the top figure) the cutoffs imposed by the
existence of a 1:7M� model that eliminates small values of
�2 and �3.

We noted above that measuring the moment of inertia of
a 1:338M� star restricts the EOS at densities below �2 to a
2-dimensional surface in the p1-�1-�2 space. In the full 4-
dimensional parameter space, the corresponding surfaces
of constant M and I of Fig. 14 are then three dimensional
and independent of �3. Their projections onto the p1-�2-�3

subspace are again three-dimensional and independent of
�3, their thickness due to the unseen dependence of the
mass and moment of inertia on �1. For small moments of
inertia there is negligible dependence on �1 so the allowed
volume in Fig. 14 is thin. The thickness of the allowed
volume increases as the moment of inertia increases be-
cause the dependence on �1 also increases.

In Fig. 15 we show the more stringent joint constraints
associated with the existence of neutron stars with masses
larger than 1:7M�. We again show the constraints for three
values of the moment of inertia that span the full range
associated with the collection of candidate EOSs. For I ¼
1:0� 1045 g cm2 and a mass observation of at least 1:7M�,
�3 is required to lie in a small range, while �2 is uncon-
strained. For larger observed masses, the constraint is even
more stringent. If our parametrization is accurate, stars

with a mass greater than roughly 1:9M� cannot exist if
J0737-3039A has a moment of inertia of I ¼ 1:0�
1045 g cm2 unless our parameter space is widened to in-
clude larger values of �2.
For a moderate moment of inertia, I ¼ 1:5�

1045 g cm2, �3 is less constrained but �2 is more con-
strained. If higher mass stars are confirmed, then the al-
lowed region in parameter space is significantly
constrained. In particular, a 2:3M� star would roughly
require that 3< �2 < 4 and �3 < 3.
A large moment of inertia, I ¼ 2:0� 1045 g cm2, is

constrained by the causality constraint. However, the
maximum-mass constraint cannot rule out small values
of �2 and �3 unless masses greater than 2:3M� are
observed.
The allowed range for p1 as a function of the moment of

inertia of J0737-3039A is shown in Fig. 16. The entire
shaded range is allowed for a 1:7M� maximum mass. The
medium and darker shades are allowed for a 2:0M� maxi-
mummass. Only the range with the darker shade is allowed
if a 2:3M� star is confirmed. It should be noted that for
small moments of inertia, this plot overstates the uncer-

FIG. 14. The figure portrays the joint constraint imposed by
causality (vs;max < 1þmeanþ 1�), the existence of a 1:7M�
neutron star, and by a future measurement of the moment of
inertia I of J0737-3039A. Each thick shaded surface is the
volume in �2-�3-p1 space allowed by the joint constraint for
the labeled value of I.
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tainty in the allowed parameter range. As shown in Fig. 14,
the allowed volume in �2-�3-p1 space for a small moment
of inertia observation is essentially 2 dimensional. If the

moment of inertia is measured to be this small, then the
EOS would be better parametrized with the linear combi-
nation � logðp1Þ þ ��2 instead of two separate parameters
logðp1Þ and �2.

VI. DISCUSSION

We have shown how one can use a parametrized
piecewise-polytropic EOS to systematize the study of ob-
servational constraints on the EOS of cold, high-density
matter. We think that our choice of a four-parameter EOS
strikes an appropriate balance between the accuracy of
approximation that a larger number of parameters would
provide and the number of observational parameters that
have been measured or are likely to be measured in the next
several years. The simple choice of a piecewise polytrope,
with discontinuities in the polytropic index, leads to suit-
able accuracy in approximating global features of a star.
But the discontinuity reduces the expected accuracy with
which the parametrized EOS can approximate the local
speed of sound. One can largely overcome the problem by
using a minor modification of the parametrized EOS in
which a fixed smoothing function near each dividing den-
sity is used to join the two polytropes.
We see that high-mass neutron stars are likely to provide

the strongest constraints from a single measurement. The
work dramatizes the significantly more stringent con-
straints associated with measurements like this, if two (or

FIG. 15. The allowed values of �2 and �3 depend strongly on
the moment of inertia of PSR J0737-3039A. In the top, middle,
and bottom figures, respectively, I has the values 1:0�
1045 g cm2, I ¼ 1:5� 1045 g cm2, and I ¼ 2:0� 1045 g cm2.
In each figure the upper curves are the vs;max ¼ 1 (dotted line)

and vs;max ¼ 1þmeanþ 1� ¼ 1:12 (solid line) causality con-

straints. Shading indicates a range of possible maximum-mass
constraints, with increasing maximum mass leading to a smaller
allowed area. All shaded areas are allowed for a 1:7M� maxi-
mum neutron-star mass. The medium and dark shades are
allowed if a 2:0M� star is confirmed. Only the darkest shade
is allowed if a 2:3M� star is confirmed.

FIG. 16. The allowed range of p1 as a function of the moment
of inertia of J0737-3039A when combined with causality
(vs;max ¼ 1þmeanþ 1�) and observed mass constraints. All

shaded areas are allowed by a 1:7M� maximum mass. The
medium and dark shades are allowed if a 2:0M� star is con-
firmed. Only the darkest shade is allowed if a 2:3M� star is
confirmed.
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more) physical features of the same star can be measured,
and an n-dimensional parameter space is reduced by
one (or more) dimension(s), to within the error of
measurement.

The effect of EOS-dependent tidal deformation can
modify the gravitational waves produced by inspiraling
neutron stars. This modification is largely dependent on
the radius of the neutron star. Flanagan and Hinderer [56]
investigate constraints on an EOS-dependent tidal parame-
ter, the Love number, from observations of early inspiral. A
companion to this paper [11] uses the parametrized EOS in
numerical simulations to examine the future constraint
associated with expected gravitational-wave observations
of late inspiral in binary neutron stars.

Finally, we note that the constraints from observations of
different neutron-star populations constrain different den-
sity regions of the EOS. For moderate mass stars such as
those found in binary pulsar systems, the EOS above �2 ¼
1015:0 g=cm3 is unimportant. For near-maximum-mass
stars, the EOS below �1 ¼ 1014:7 g=cm3 has little effect
on neutron-star properties. This general behavior is inde-
pendent of the details of our parametrization.
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of this work and F. Özel for comments that led to correc-
tions in one of our tables. J. Lattimer and M. Alford
generously provided EOS tables from [5,29]. Other tables
are from the LORENE C++ library (http://www.lore-
ne.obspm.fr). The work was supported in part by NSF
Grants No. PHY-0503366 and No. PHY-0555628, by
NASA Grant No. ATP03-0001-0027, and by the Penn
State Center for Gravitational-wave Physics under NSF
cooperative agreement PHY-0114375.

APPENDIX A: EVALUATING MASS, RADIUS, AND
MOMENT OF INERTIA

The moment of inertia of a rotating star is the ratio I ¼
J=�, with J the asymptotically defined angular momen-
tum. In finding the moment of inertia of spherical models,
we use Hartle’s slow-rotation equations [57], adapted to
piecewise polytropes. The metric of a slowly rotating star
has to order � the form

ds2 ¼ �e2�ðrÞdt2 þ e2	ðrÞdr2 � 2!ðrÞr2sin2
d�dt

þ r2d
2 þ r2sin2
d�2: (A1)

Here� and 	 are the metric functions of the spherical star,
and the frame dragging !ðrÞ is obtained from the t�
component of the Einstein equation in the form

1

r4
d

dr

�
r4j

d �!

dr

�
þ 4

r

dj

dr
�! ¼ 0; (A2)

with �! ¼ ��! and jðrÞ ¼ e��ð1� 2m
r Þ1=2. The angular

momentum is obtained from !, which has outside the star
the form ! ¼ 2J=r3.
In adapting these equations, we roughly follow

Lindblom [58], replacing r as a radial variable by a gen-
eralization � :¼ h� 1 of the Newtonian enthalpy.4

Because � is monotonic in r, one can integrate outward
from its central value to the surface, where � ¼ 0. The
enthalpy, unlike � and p, is smooth at the surface for a
polytropic EOS.
For the piecewise polytropes of Sec. III, the equation of

state given in terms of � is

�ð�Þ ¼
�

�� ai
Kiðni þ 1Þ

�
ni
; (A3)

pð�Þ ¼ Ki

�
�� ai

Kiðni þ 1Þ
�
niþ1

; (A4)

�ð�Þ ¼ �ð�Þ
�
1þ ai þ ni�

ni þ 1

�
; (A5)

where ni ¼ 1=ð�i � 1Þ is the polytropic index.
With � as the indendent variable, the equations govern-

ing star and field take the form

ð�þ 1Þe� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=R

p
; (A6)

dr

d�
¼ � rðr� 2mÞ

mþ 4�r3pð�Þ
1

�þ 1
; (A7)

dm

d�
¼ 4�r2�ð�Þ dr

d�
; (A8)

d �!

d�
¼ �

dr

d�
; (A9)

d�

d�
¼

�
� 4�

r
þ 4�ð�þ pÞðr�þ 4 �!Þ

1� 2m=r

�
dr

d�
; (A10)

where � :¼ d �!=dr.
The integration to find the mass, radius, and moment of

inertia for a star with given central value � ¼ �c is equiva-

4Lindblom, however, uses logh instead of h� 1 as his radial
variable. The variable � is also used by Haensel and Potekhin
[9].
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lent to that described in Hartle [57], with � replacing r as
the independent variable.

APPENDIX B: STABILITYOF ROTATINGMODELS

For each central energy density �c, the maximum angu-
lar velocity among all uniformly rotating equilibria is the
Kepler or mass-shed limit �K. As in the spherical case,
these equilibrium models may be unstable to collapse, and
stability is governed by a turning-point criterion [59]: The
critical points that form the line of marginal stability are
extrema of mass M and baryon mass Mb along sequences
of constant J; and also of M and J along sequences of
constant Mb. Figure 17 shows a parametrized EOS whose
maximally rotating stable star is at the intersection of the
instability line and the Kepler limit.

Searches to determine the marginal stability line, as in
[60], have covered the set of models with sequences of
constant rest mass Mb, extremizing J on each one, or vice
versa—a computationally expensive procedure. A more
efficient way uses the following fact: In the 2-dimensional
space of equilibria, the gradients rJ and rMb are parallel
at points of marginal stability. To see this, consider a
sequence of configurations of constant J. The tangent to
the sequence is orthogonal to rJ at all points of the
sequence; and it is orthogonal to rMb at a point P of
marginal stability, because P is a turning point, where
Mb is an extremum. Because the space of equilibria is 2
dimensional, rMb and rJ are parallel: dMb ^ dJ ¼ 0.
Choosing the central energy density �c and axis ratio r as
parameters on the surface of equilibria, we can write the

condition for a point of marginal stability in the form

@Mb

@�c

@J

@r
� @J

@�c

@Mb

@r
¼ 0: (B1)

The maximally rotating model for a given EOS may be
determined, without finding sequences of constant J
and Mb, by considering a sequence of central energy
densities �c. First, increase the axis ratio r until the
Kepler limit is found, as in the example program MAIN.C

of RNS V2.0. Second, vary �c and r around this point to
estimate the partial derivatives of Eq. (B1). The sign of
@ðMb; JÞ=@ð�c; rÞ will change as the Kepler limit sequence
crosses the marginal stability line.

APPENDIX C: ANALYTIC FITS TO TABULATED
EOSS

A. Low-density equation of state

We use an analytic form of the (SLy) low-density EOS
that closely matches its tabulated values. With rms residual
less than 0.03, pð�Þ for SLy is approximated between � ¼
103 g=cm3 and � ¼ 1014 g=cm3 by four polytropic pieces.
The four regions correspond roughly to a nonrelativistic
electron gas, a relativistic electron gas, neutron drip, and
the density range from neutron drip to nuclear density.
Using the notation of Sec. III, the analytic form of the
SLy EOS is set by the values of Ki, �i, and �i listed in
Table II.

B. Comparison table

Table III compares neutron-star properties for each EOS
to their values for the best-fit piecewise polytrope. The
parameters for the three-piece polytropic core EOS, the
corresponding residuals, as well as the observable proper-
ties of these EOSs and the error in using the best-fit
parametrized EOS instead of the tabulated EOS are listed
in Table III. The parametrized EOS systematically over-
estimates the maximum speed of sound.

stable
unstable

mass shed

0

14.6 14.8 15.0 15.2 15.4 15.6

1.6

1.8

2.0

2.2

2.4

log c in g cm3

M
b

M

FIG. 17. The family of rotating models for a fixed EOS ex-
tends from the spherical sequence to the Kepler (mass-shed)
limit� ¼ �K . The surface is projected into theMb-�c plane and
ruled by lines of constant J. The line of marginal stability is the
roughly vertical curve through points of maximum Mb on each
constant J line.

TABLE II. An analytic representation of pð�Þ for the SLy EOS
below nuclear density uses polytropes specified by the constants
listed here. �i is dimensionless, �i is in g=cm3, and Ki is in cgs
units for which the corresponding value of p is in units of
dyne=cm2. The last dividing density is the density where the
low-density EOS matches the high-density EOS and depends on
the parameters p1 and �1 of the high-density EOS.

Ki �i �i

6:801 10� 10�9 1.584 25

1:061 86� 10�6 1.287 33 2:440 34� 107

5:326 97� 101 0.622 23 3:783 58� 1011

3:998 74� 10�8 1.356 92 2:627 80� 1012
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