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We study anisotropic cosmology in Hořava’s gravity theory and obtain Kasner-type solutions, valid for

any number, d, of spatial dimensions. The corresponding exponents satisfy two relations, one involving

the marginal coupling �. Also, Hořava’s (super)renormalizable theory predicts (super)stiff matter whose

equation of state is p ¼ w�, with w � 1. We discuss briefly the implications of these results for the nature

of cosmological collapse.
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I. INTRODUCTION

Recently, Hořava has proposed [1] a candidate theory for
gravity based on anisotropic scaling of space and time
coordinates:

xi ! lxi; t ! lzt (1)

where z is the scaling exponent. He has constructed an
action for the metric fields invariant under the above scal-
ing and also under foliation preserving diffeomorphic
transformations. The action is required to have no more
than two time derivatives. The kinetic part of the action is
then universal and is characterized by a marginal coupling
�. The potential part has numerous terms containing vari-
ous powers and spatial derivatives of curvatures of the
spatial metric. Hořava has invoked ‘‘the principle of de-
tailed balance’’ to constrain such terms, but this seems
unnecessary and may even be problematic. The action
reduces to the Einstein action in the IR if � ! 1 and z !
1. The theory then has full space-time diffeomorphism
symmetry and may, therefore, be a candidate for a renor-
malizable Einstein theory of gravity. Hořava’s theory may
also acquire an anisotropic Weyl symmetry at � ¼ 1

d ,

where d is the number of spatial dimensions.
Such a theory has many appealing properties. For ex-

ample, it is ghost-free since there are no more than two
time derivatives. By construction, it is power-counting
renormalizable in the UV if z ¼ d and is superrenormaliz-
able if z > d, so it is believed to be UV complete. It
contains many higher powers and derivatives of curvature,
hence it may be able to resolve singularities. It singles out
time, so the causal structure in the UV is likely to be
modified, which may have nontrivial implications for black
hole physics. In such a theory, the speed of light generi-
cally diverges in the UV, so the horizon problem may
perhaps be solved without requiring inflation. See [1,2]
for more details.

Various aspects of such a theory are being actively
studied. See, for example, [2–20]. In this paper, we focus
on implications of such a theory in early universe cosmol-

ogy where differences from Einstein’s theory are likely to
be manifest. Such implications have also been studied in
[5,6,8,9,13,14] for a d ¼ 3 homogeneous isotropic
Friedmann-Robertson-Walker universe. It is found that
scale invariant cosmological perturbations can be gener-
ated without requiring inflation if the scale factor aðtÞ
evolves as �tn with n > 1

3 ; it is also found that there can

be a bounce in the early universe if the spatial curvature is
nonzero. The scale invariance of perturbations is due to the
modifications of dispersion relations arising from aniso-
tropic scaling symmetry and, hence, is likely to be a
generic feature of Hořava’s theory. The bounce is due to
the nonzero spatial curvature of the Friedmann-Robertson-
Walker universe and due to higher powers of the curvature
in the action. The bounce is thus a possible but nongeneric
feature of Hořava’s theory. For example, it is absent for a
spatially flat universe.
Our main motivation here is to find the implications of

Hořava’s theory which differ from those of Einstein’s
theory and which are not crucially dependent on the spatial
curvature. We find that the generic equation of state for
matter in the UV is p

� ¼ w ¼ z
d . This is independent of

whether the spatial curvature is zero or nonzero. Thus, in
the early universe, w ¼ 1 for renormalizable theory
whereas w> 1 for superrenormalizable theory. The corre-
sponding matter is sometimes referred to as (super)stiff.
We consider the general action given in [6] and study the

evolution of a homogeneous anisotropic universe with d
spatial dimensions. We obtain an anisotropic Kasner-type
solution in the limit where the universe is collapsing to zero
size. The exponents in the corresponding scale factors
satisfy two relations, one of them involving �. The mar-
ginal coupling � may be different from 1 in the UV, and
may even be close to 1

d , where the theory may acquire a

Weyl symmetry. Such a behavior of � and the presence of
(super)stiff matter have interesting implications for the
nature of collapse, which we explain briefly.
This paper is organized as follows. In Sec. II we present

the setup. In Sec. III we discuss the dispersion relation and
the consequent equation of state. In Sec. IV we present the
equations of motion and some solutions, and briefly dis-*krama@imsc.res.in
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cuss their implications. In Sec. V we conclude with a brief
summary and a few comments.

II. ANSATZ FOR ACTION AND METRIC

In Hořava’s theory, the fields are the lapse function N,
the shift vector Ni, and the spatial metric gij. The scaling

dimensions of various quantities in momentum units are

½xi� ¼ �1; ½t� ¼ �z;

½N� ¼ ½gij� ¼ 0; ½Ni� ¼ z� 1:

The action S ¼ SK þ SV is required to contain no more
than two time derivatives, and to be invariant under the
scaling in Eq. (1) and foliation preserving diffeomorphism.
The kinetic part SK of the action is then universal and may
be written as

SK ¼ 1

2�2

Z
dtddxN

ffiffiffi
g

p ðKijK
ij � �K2Þ (2)

where �2 is a parameter with dimension ½�2� ¼ z� d, � is
a dimensionless parameter, the spatial indices i; j; � � � ¼
1; 2; � � � ; d are to be lowered or raised using gij or its

inverse gij,

Kij ¼ 1

2N
ð _gij �riNj �rjNiÞ; K ¼ gijKij;

and the covariant derivatives, as well as curvature tensors
below, are all with respect to gij. For z ¼ d, the parameter

� becomes dimensionless and the theory is power-counting
renormalizable; for z > d it is superrenormalizable [1].
Our interest is in the d ¼ 3 case, but most of the expres-
sions below are valid for any value of d.

The potential part SV of the action contains various
powers and spatial derivatives of the Riemann tensor
Rijkl, or equivalently of the Ricci tensor Rij in the d ¼ 3

case. It suffices our purposes to write SV symbolically as

SV ¼
Z

dtddxN
ffiffiffi
g

p �
�þ �Rþ Xn�

n¼2

�nR
n

þ Xp�;q�

p;q¼1

�pqRrpRq

�
; (3)

where the first sum denotes various powers of the curvature
tensor and the second denotes various derivatives acting on
various powers of the curvature tensor. The upper limits of
ðn; p; qÞ depend on the value of z. For the renormalizable
case, for example, z ¼ d and n� ¼ z, p� þ 2q� þ 2 ¼ 2z.

In [1], Hořava invokes the principle of detailed balance
which will constrain the above form for SV . For example,
in the d ¼ 3 case, SV will not contain R3 terms and the
coefficients of various terms in SV depend only on three
new parameters. By construction, the resulting action is not
the most general one. However, quantum corrections may
not obey the principle of detailed balance and may induce

other possible terms. This principle may even be problem-
atic since the corresponding static spherically symmetric
solutions reduce to the IR ones only on scales beyond the
cosmological horizon, and not on smaller scales where
Einstein’s theory has been well tested. Rectifying this
problem requires going beyond the detailed balance. See
[5–7] and, in particular, [10] for detailed discussions of
these issues.
For these reasons, we will not invoke detailed balance in

this paper, and consider the general form for the action SV .
The most general form of SV for z ¼ d ¼ 3 is given, for
example, in [6], where the corresponding equations of
motion are also obtained. These equations are very long
and, hence, are not presented here but will be used for the
present cosmological study. Note that, for such a study, one
can set N ¼ 1 and Ni ¼ 0 in the equations of motion with
no loss of generality, and, also, that these equations are
applicable for any value of d, as we later explain.
Here, we consider only a spatially curved, homogene-

ous, isotropic universe, or a spatially flat, homogeneous,
anisotropic universe. The line element of a spatially
curved, homogeneous, isotropic universe may be written as

ds2 ¼ �dt2 þ a2d�2
d;k̂

(4)

where aðtÞ is the scale factor, d�d;k̂ is the line element of a

d-dimensional space of constant curvature, and k̂ ¼ þ1,
�1, 0 for positive, negative, or zero curvature. The Hubble
parameter H is defined by H ¼ _a

a , where an overdot de-

notes the time derivative.
The line element of a spatially flat, homogeneous, an-

isotropic universe may be written as

ds2 ¼ �dt2 þXd
i¼1

a2i ðdxiÞ2; (5)

where aiðtÞ are the scale factors. The corresponding

Hubble parameters hi are defined by hi ¼ _ai
ai
. Also, define

the geometric mean a of the scale factors by ad ¼ Q
iai.

ThenH ¼ _a
a ¼ 1

d

P
ihi is the average of the Hubble parame-

ters hi.
With the above definitions, the conservation equation for

a matter source with pressure p and density � is given in
both of the above cases by

_�þ dHð�þ pÞ ¼ 0: (6)

If the equation of state is given by p ¼ w�, then we have

� ¼ �0a
�dð1þwÞ, where �0 is an initial value.

III. (SUPER)STIFF MATTER

Consider now matter sources, e.g. radiation, and their
equations of state. The matter action which is invariant
under the scaling in Eq. (1) will lead to a modified disper-
sion relation in the UV, typically of the form !2 � k2z

[1,2]. From the standard statistical mechanical methods
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using such a dispersion relation, it follows that the depen-

dence of free energy F on temperature T is of the form F�
T1þðd=zÞ [2,17]. For renormalizable theories, z ¼ 1 in the
IR and z ¼ d in the UV. It then follows that F� T1þd at
low temperatures and F� T1þ1 at high temperatures. As
noted in [2], similar free-energy behavior at high tempera-
tures appears also in string theory. We further note here that
similar free-energy behavior, at both low and high tem-
peratures, appears also in the context of a particular version
of the generalized uncertainty principle [21].

With free energy F� T1þðd=zÞ, it follows upon using
thermodynamical relations that the corresponding equation
of state is given by p ¼ w�, where w ¼ z

d . Thus for

radiation in d ¼ 3, we have z ¼ 1 and w ¼ 1
3 in the IR.

We have z ¼ d in the UV for renormalizable theories,
which then implies that w ¼ 1,1 the corresponding matter
sometimes referred to as stiff matter. Also, z > d for super-
renormalizable theories, which then implies that w can be
>1, the corresponding matter sometimes referred to as
superstiff matter.

Such an UV dispersion relation, namely !2 � k2z, is
ubiquitous in Hořava’s theory and arises from an under-
lying principle: it is a consequence of invariance under the
anisotropic scaling in Eq. (1). Also, it is independent of
whether spatial curvature is zero or nonzero. Thus,
Hořava’s theory can be taken to predict that the early
universe, and more generally the UV regime, is dominated
by matter whose equation of state is given by p ¼ w�,
where w ¼ z

d ¼ 1 for renormalizable theories and >1 for

superrenormalizable theories.2

IV. EQUATIONS OF MOTION, SOLUTIONS, AND
THEIR IMPLICATIONS

Consider now the equations of motion. They are given in
[6] for d ¼ 3. Consider, for any d, the general form of the
contributions of various terms in the action to the equations
of motion. For the cases of interest here, namely, where the
line element is given by Eq. (4) or (5), we observe the
following:

(i) A matter source with an equation of state p ¼ w�

will contribute terms / a�dð1þwÞ in the equations of
motion; see Eq. (6).

(ii) Consider terms of the form Rn in SV . For the iso-
tropic case, it is easy to see that they contribute a

term / k̂na�2n in the equations of motion. It thus
follows that such terms act as sources with equations

of state p ¼ w�, where w ¼ 2n
d � 1 and � ¼

Cnk̂
na�2n. The constant Cn depends on the index

structure of the Rn terms and their coefficients in SV .

For the spatially flat case, k̂ ¼ 0 and the correspond-
ing contributions all vanish.
Note that n ¼ 1 for the R term and w ¼ 2

d � 1 ¼ � 1
3

for d ¼ 3; n ¼ 2 for the R2 term and w ¼ 4
d � 1 ¼ 1

3

for d ¼ 3; and, formally, n ¼ 0 for the cosmological
constant term and w ¼ �1 for any value of d. For
the term Rn� with the highest power of curvature, we
have n� ¼ z ¼ d for the renormalizable case and

w ¼ 2n�
d � 1 ¼ 1 for any value of d.

(iii) Rijkl for a constant curvature space is given in terms
of gij, and the scale factor which depends on t only.

Hence covariant derivatives acting on curvature ten-
sors will all vanish. Therefore the terms in the second
sum in Eq. (3) do not contribute to the equations of
motion.

(iv) The kinetic part SK of the action is universal for any
values of d and z. Hence, the corresponding terms in
the equations of motion are just those given in [6].

Using observations (i)–(iv) above and the expressions
given in [6], we can now write the equations of motion.

A. Isotropic case

For the isotropic case, the metric is given in Eq. (4), and
the equations of motion may be written as

dð�d� 1ÞH2 ¼ 2�2
X

�; (7)

ð�d� 1Þð _H þ dH2Þ ¼ �2
Xð�� pÞ; (8)

whereH ¼ _a
a and

_H¼ €a
a�ð _aaÞ2. The sum

P
in the equations

above denotes contributions from the matter source, and
also those from Rn terms in SV for which p ¼ ð2nd � 1Þ �
and �¼Cnk̂

na�2n, where the constant Cn depends on the
index structure of the Rn terms and their coefficients in SV .
See [6] for explicit expressions for the d ¼ 3 case.
We will assume in this paper that �d > 1, since this is

the case in Einstein’s theory for which � ¼ 1, and also that
� is not arbitrarily close to 1

d . Replacing �2 by ð�d�1
d�1 Þ�2

then renders Eqs. (7) and (8) identical to those in Einstein’s
theory.
The evolution of the scale factor is then straightforward

to understand. Let a ! 0ð1Þ in the limit t ! 0ð1Þ. The
evolution is then dictated by those sources for which w is
largest (smallest). If the total coefficient of the dominant

sources is positive, then it follows that aðtÞ � t2=dð1þwÞ.
If the spatial curvature is nonzero, then sources arising

from curvature terms can have negative coefficients. Then
the total coefficient of the dominant sources can be nega-
tive, and this will generically lead to a bounce in the
evolution of aðtÞ. The details, and even the presence itself,
of the bounce depend on the nature and strength of other

1That w ¼ 1 for radiation in the UV is also pointed out in [18]
which appeared while this paper was being written.

2The idea that the early universe must be dominated by w � 1
matter also appears in different contexts. For example, see
[24,25] for the w ¼ 1 case; see [26] and references therein for
the w> 1 case.
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sources present and can only be obtained by further analy-
sis incorporating these data.

Let z ¼ d ¼ 3. Hořava’s theory then predicts the exis-
tence of stiff matter in the UV for whichw¼1. Assume the
total coefficient of the sources with w¼1, which are the
dominant ones in the limit a!0, to be positive. This will
be the case for a spatially flat universe for which there are
no contributions from curvature terms. It then follows that

there is no bounce and that aðtÞ� t1=3 in the limit t ! 0.
We nowmake a remark. It has been shown in [6,8,13,14]

that, in Hořava’s theory, the scale invariant primordial
perturbation spectrum can be generated in the UV with
an additional scalar field and without requiring inflation.
Scale invariance arises, essentially, from the dispersion
relation for the scalar field in the UV which is of the
form !2 � k6. For the desired dynamics of the perturba-
tions thus generated, it is also required that H2a6 be an
increasing function of t, or equivalently that

R1 dt
a3

con-

verge, which is taken to imply that the scale factor a
evolves as �tn with n > 1

3 . See [6,8,13,14] for details.

However, as described above, it is likely that aðtÞ � t1=3

in the UV. Although this violates the requirement n > 1
3 ,

there may be no adverse effect on scale invariance of the
spectrum since H2a6 may still be an increasing function of
t because of the presence of other sources in Eq. (7) which
will become important as t increases. This is plausible but,
nevertheless, it is desirable to study in detail the effects of

aðtÞ � t1=3 in the UV on the scale invariance of the spec-
trum obtained in [6,8,13,14] in Hořava’s theory without
requiring inflation.

B. Anisotropic case

For the spatially flat anisotropic case, the metric is given
in Eq. (5). There are no contributions from the Rn terms,
and the equations of motion may be written as

�d2H2 �X
i

ðhiÞ2 ¼ 2�2�; (9)

ð�d� 1Þð _hi þ dHhiÞ ¼ �2ð�� pÞ; (10)

where hi ¼ _ai
ai
, H ¼ 1

d

P
ihi, and _hi ¼ €ai

ai
� ð _aiaiÞ2. Note that

summing Eq. (10) over i gives

ð�d� 1Þð _H þ dH2Þ ¼ �2ð�� pÞ: (11)

We have H ¼ _a
a from the definition ad ¼ Q

iai. It then

follows that3

hi �H ¼ Aia
�d; (12)

dð�d� 1ÞH2 ¼ 2�2�þ A2a�2d; (13)

where Ai are initial values satisfying
P

iAi ¼ 0 and A2 ¼P
iðAiÞ2. Once the equation of state pð�Þ is given, then, in

principle, �ðaÞ can be obtained from Eq. (6), aðtÞ from
Eq. (13), and aiðtÞ from Eq. (12). Note that the initial
values Ai encode anisotropic initial conditions, e.g. during
a collapse, and also that Ai may be thought of as a source

with equation of state p ¼ w�, where w ¼ 1 and �0 ¼
A2

2�2 ; see Eqs. (6) and (13).

Consider now the dynamics of the evolution, assuming
the equation of state to be p ¼ w�. Equation (6) then

implies that � ¼ �0a
�dð1þwÞ, where �0 > 0 is an initial

value. The evolution in the limit a ! 1, namely, the large

universe limit, is similar to the standard one where a�
t2=dð1þwÞ. The effect of � is unimportant unless � is arbi-
trarily close to 1

d .

Consider a universe collapsing to zero size, i.e. a ! 0,

as t ! 0. Let the scale factors ai � t�
i
in this limit. We

study the following cases:

w> 1:

In the limit a ! 0, 2�2�� a�dð1þwÞ � A2a�2d in
Eq. (13) sincew> 1. It is then straightforward to show that

a� t2=dð1þwÞ; ai ¼ cie
ctðw�1Þ=ðwþ1Þ

t2=dð1þwÞ (14)

where ci and c are constants. Thus, since tðw�1Þ=ðwþ1Þ ! 0

in the limit t ! 0, it follows that the exponents �i in ai �
t�

i
are all equal, and are independent of the initial values

Ai. Hence, the collapse is isotropic and stable under per-
turbations [26],

w � 1:

In the limit a ! 0, the right-hand side of Eq. (13)
becomes B2a�2d, where B2 ¼ A2 if w< 1 and B2 ¼
2�2�0 þ A2 if w ¼ 1. It is then straightforward to show
that

a� t1=d; ai � t�
i
; �i ¼ 1

d
� Ai

B

�
�� 1

d

�
1=2

:

(15)

This is a Kasner-type solution. The exponents �i depend
on initial values Ai and, since

P
iA

i ¼ 0, satisfy the rela-
tions

X
i

�i ¼ 1; X 	 X
i

ð�iÞ2 ¼ 1

d
þ

�
�� 1

d

�
A2

B2
: (16)

For w< 1 we have B2 ¼ A2, hence X ¼ � is the only
possible value. For w ¼ 1 we have B2 ¼ 2�2�0 þ A2,

hence 0< A2

B2 < 1 and 1
d < X < �. Clearly X ! � if

2�2�0 
 A2. Also X ! 1
d if 2�2�0 � A2, which is the

only possibility in Einstein’s theory, or if � ! 1
d , which

is a new possibility in Hořava’s theory and is valid for any
values of �0 and A2.

3Equations (10) and (11) give Eq. (12). Using
P

ihi ¼ dH
gives the constraint

P
iAi ¼ 0. Substituting hi in Eq. (9) then

gives Eq. (13).
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Kasner-type solutions, in particular, the value of X and
the dependence of �i on initial values, provide an insight
into the stability of the cosmological collapse process
under generic curvature and/or anisotropic perturbations:
namely, an insight into whether the collapse will be iso-
tropic or anisotropic, whether it will be smooth or will
exhibit chaotic oscillatory behavior, etc.

Since�i depend on the initial values Ai, the collapse will
be generically anisotropic. Consider the d ¼ 3 case. The
exponents �i must satisfy the constraints in Eq. (16). If
X ¼ 1, then one of the �i must be negative. Then, under
curvature perturbations, the collapse will not be smooth
and will exhibit chaotic behavior. If X is sufficiently close
to 1

3 , then no �i can be negative and the collapse will be

stable and non-oscillatory under perturbations.
In Einstein’s theory � ¼ 1 and, hence, smaller values of

X may result only through smaller values of A2

2�2�0
, which

necessarily requires stiff matter with w ¼ 1. Stability also
results if superstiff matter with w> 1 is present as follows
from Eq. (14). See [26] and the references therein for a
thorough discussion of these issues.

In Hořava’s theory, on the other hand, � is typically
different from 1 in the UV. This theory may acquire an
anisotropic Weyl symmetry if � ¼ 1

d , so it is possible that

� ! 1
d in the UV. If so, then X may be naturally small even

without stiff matter. But (super)stiff matter with w � 1 is
also naturally present in this theory. This makes it more
likely that the collapse process is stable and non-
oscillatory.

However, spatial curvature terms of high order are also
allowed in Hořava’s theory. As explained in remark (ii) in
Sec. IV, this order is closely linked to the scaling exponent
z, to which is also linked the presence of (super)stiff matter.
Curvature terms typically lead to destabilizing effects
under curvature perturbations, and our preliminary analy-
sis indicates that they may be comparable to the stabilizing
effects of (super)stiff matter. However, there is also a
stabilizing effect that results if � is close to 1

d in the UV,

but no comparable, �-dependent, destabilizing curvature
effects seem to be present. It is therefore possible that the
sum total of all these effects in Hořava’s theory results in a
stable and non-oscillatory collapse. Clearly, further analy-
sis is necessary but it is complicated and quite involved,
and is beyond the scope of the present work.

V. CONCLUSION

We now summarize briefly and make a few comments.
Our main motivation for the present study is to find the
implications of Hořava’s theory which differ from those of
Einstein’s theory and which are not crucially dependent on
the spatial curvature. The implications of Hořava’s theory
we find which differ from those of Einstein’s theory are as
follows: (1) The UV regime in the (super)renormalizable

case is dominated by (super)stiff matter, namely, matter
with w � 1. (2)

P
ið�iÞ2, where �i are the Kasner expo-

nents, can be different from and smaller than 1 even
without stiff matter present. These two implications are
generic. (3) Equations of motion contain curvature terms of

the form Cnk̂
na�2n, where n � d for the renormalizable

case. The constants Cn can be positive or negative. The
curvature terms may hence lead to a bounce in the evolu-
tion of the scale factor aðtÞ. The bounce is possible but
nongeneric since it depends on the sign and the magnitude

of Cnk̂
n as well as the nature and strength of other sources

present.
We now make a few comments. Hořava’s theory is

believed to be UV complete. Also, it contains higher
powers and derivatives of curvature. It is then reasonable
to expect that this theory will also resolve the singularities.
The big bang singularity is indeed absent if aðtÞ bounces
back. But the bounce is not a generic feature. If there is no
bounce, then, as can be inferred from the present solutions,
the big bang singularity is present. Note that a black hole
singularity is also present in all the static spherically
symmetric solutions to Hořava’s theory studied so far
(see, e.g., [7,10–12,15]), although these solutions do differ
from those in Einstein’s theory.
It is possible that, regarding the presence or absence

singularities, this is the most one can see using classical
action in Hořava’s theory and that quantization of the
action is necessary to see any further.
There is a similar situation in string/M theory. No clas-

sical string/M theory action so far has led to the generic
absence of singularities. However, it is likely that when the
temperatures become comparable to string theory scales,
the classical description of the universe, and similarly of
black holes, must be abandoned and a string theoretic
description should be used; see [27,28]. But the details of
such a description, or of how exactly the singularities get
resolved, are not fully known at present. However, due to
entropic reasons, the universe at this stage seems likely to
be dominated by stiff matter for which w ¼ 1 [24,25].4

In this context, note that Hořava’s theory also predicts
generically the presence of stiff matter in the early uni-
verse. The presence of such matter and/or the scaling
arguments using Eq. (1) lead to the high temperature
behavior of the free energy F� T2 [2]. This behavior
may be taken to signify that the spectral dimension of the
spacetime in the UV is 1þ 1. This is shown to be the case
for Hořava’s theory in [2]. Such an UV spectral dimension
is also observed in many candidate theories for quantum

4The nature and quantum mechanical properties of stiff matter,
and those of a universe dominated by stiff matter, as well as
further evolution of such a universe are studied in a series of
papers in [24]. A possible string/M theory scenario of how such a
universe may arise is also given in [25]. Also, the properties of
stars made up of stiff matter and their similarities to black holes
are studied in [29].

ANISOTROPIC COSMOLOGYAND (SUPER)STIFF MATTER . . . PHYSICAL REVIEW D 79, 124031 (2009)

124031-5



gravity, e.g. causal dynamical triangulations, quantum
Einstein gravity, spin foam theory, and string theory. This
may perhaps be the case also for loop quantum gravity. It is
indeed argued in [5] that two-dimensional effective gravi-
tational theories in the UV may be a generic feature of UV
complete theories of gravity. See [5] for more discussions
and an extensive list of references.

If these similarities are more than just coincidences, then
it may be that there are also similarities in the ways in
which singularities get resolved in any of these theories

and in Hořava’s theory. It is therefore important to study if
singularities can be resolved by quantizing the action in
Hořava’s theory. Such a resolution, besides being impor-
tant on its own, may also provide insights into the theories
mentioned above.
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