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We investigate the geometrical properties of static vacuum p-brane solutions of Einstein gravity in

D ¼ nþ pþ 3 dimensions, which have spherical symmetry of Snþ1 orthogonal to the p directions and

which are invariant under the translation along them. The solutions are characterized by the mass density

and p number of tension densities. The causal structure of the higher-dimensional solutions is essentially

the same as that of the five-dimensional ones. Namely, a naked singularity appears for most solutions

except for the Schwarzschild black p-brane and the Kaluza-Klein bubble. We show that some important

geometric properties such as the area of Snþ1 and the total spatial volume are characterized only by the

three parameters (the mass density, the sum of tension densities, and the sum of tension density squares),

rather than individual tension densities. These geometric properties are analyzed in detail in this parameter

space and are compared with those of the five-dimensional case.
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I. INTRODUCTION

Recently, the physical meaning of the two parameters in
static vacuum hypercylindrical solutions in five dimen-
sions [1] was correctly interpreted in Ref. [2]. In the
analogy of weak field solutions for a cylindrical matter
source distributed uniformly along the fifth direction, the
author identified the two parameters as ‘‘mass’’ and ‘‘ten-
sion’’ densities.1 It is also pointed out that the well-known
Schwarzschild black string solution corresponds to the
case in which the tension-to-mass ratio is exactly one-
half. This means that the Schwarzschild black string,
which was believed to be a family of solutions character-
ized by the mass density only, is indeed a special case of a
wider class of solutions characterized by tension density as
well. Note also that in five-dimensional spacetime, there is
another class of stationary solutions which is characterized
by the mass and ‘‘momentum’’ densities along the extra
directions [4,5]. The Schwarzschild black string back-
ground is known to be unstable under small gravitational
perturbations along the fifth direction—the so-called
Gregory-Laflamme (GL) instability [6,7]. Therefore,
studying the physical role of tension might give a better
understanding about what really causes the GL instability.

In Ref. [8] the geometric properties of this class of
spacetimes with arbitrary tension in five dimensions were
investigated in detail. Some of the main properties are as
follows.
(i) The solutions are classified by the tension-to-mass

ratio a. The event horizon exists only when the
tension density is half of the mass density, i.e. a ¼
1=2. Only in this case can the spacetime be called a
black string. All spacetimes having values of the
tension-to-mass ratio other than 1=2 and 2 have a
naked singularity at the ‘‘center.’’

(ii) Even though there is a naked singularity instead of
an event horizon, light radiated from it is infinitely
redshifted, provided that a < 2.

(iii) The geometry of some subspaces behaves interest-
ingly. For a < 1=2 or a > 2 the area of an S2 sphere
monotonically decreases down to zero as one ap-
proaches the naked singularity from infinity, as
usual. For 1=2< a< 2, however, it bounces up
and increases again to infinity at the naked singu-
larity, as in the geometry of a wormhole spacetime.

(iv) On the other hand, the proper length of a segment
along the fifth direction shrinks down to zero for
a > 1=2, but expands to infinity for a < 1=2 as one
approaches the naked singularity.

(v) Although the S2 area and the segment length com-
pete with each other, the total area of the segment
S2 � L turns out to decrease monotonically down to
zero at the singularity, except for a ¼ 1=2. For the
case of a ¼ 1=2 the area of S2 becomes finite at the
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1They are indeed gravitational mass and tension densities

rigorously defined at asymptotic infinity [3].
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horizon and the scale factor of the fifth direction is
constant.

The geodesic motions in this spacetime were also studied
in Ref. [9].

In this paper we investigate how much these features
change if the spacetime dimensionality becomes higher
than five. For the case of a < 1=2, for instance, since the
area of an S2 sphere shrinks to zero whereas the proper
length along the fifth direction diverges, one may expect
that the total area might not shrink down to zero if one
increases the number of extra dimensions enough. In addi-
tion, since there will be more tension parameters as the
number of extra dimensions increases, one may wonder if
there are more black brane solutions in addition to higher-
dimensional Schwarzschild black branes.

Higher-dimensional spacetime solutions having transla-
tional symmetry along extra dimensions and spherical
symmetry on slices perpendicular to them have been dis-
covered by many authors in the literature in different
contexts [10–15]. For instance, much more general solu-
tions, even in the presence of dilatonic scalar fields and
antisymmetric forms, were found in Refs. [11,12,14]. (See
also references therein.) However, a full, detailed analysis
of the geometry and a correct interpretation of the ‘‘ten-
sion’’ parameter have not yet been done, as far as we know.

In Sec. II, we study the geometric properties of the trans-
spherical vacuum solutions in D ¼ nþ pþ 3 dimensions
in detail. In Sec. III, we analyze the causal structure of the
solution. Finally, in Sec. IV, we summarize our results and
discuss their physical implications.

II. GEOMETRIC PROPERTIES OF SOLUTIONS

We consider static solutions for the vacuum Einstein
equations inD ¼ nþ pþ 3 dimensions, which are invari-
ant under translations along the extra p dimensions and are
spherically symmetric on the ðnþ 2Þ dimensions trans-
verse to the p dimensions. The most general form of the
metric with the symmetries may be written as

ds2 ¼ g��dx
�dx�

¼ �H0ð�Þdt2 þGð�Þðd�2 þ �2d�2
ðnþ1ÞÞ

þXp
i¼1

Hið�Þdz2i : (1)

Here H0, G, and Hi are functions of the isotropic coordi-
nate � only. This class of spacetime solutions will be
characterized by the p number of tension densities �i along
zi and the ADMmass densityM associated with the spatial
and time translation symmetries, respectively [3]. Inter-
estingly, it turns out that the exponents in the metric
component functions depend only on the dimensionless
tension-to-mass ratio ai defined as

�i ¼ aiM: (2)

For convenience, we define the sums of ai and a2i by

a ¼ Xp
i¼1

ai; �a2 ¼ Xp
i¼1

a2i ; (3)

where i runs over spatial extra dimensions. Note that these
definitions for a and �a restrict values of �a such that �a �
ja= ffiffiffiffi

p
p j, as shown by the shaded region in Fig. 1 below. The

solutions in these general higher dimensions were found by
several authors [11,12,14] and can be expressed as

H0ð�Þ ¼
��������1�m=�n

1þm=�n

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ=n

p
½2ðpþn�aÞ=ðpþnþ1Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ1�ðaþ1Þ2=ðpþnþ1Þ

p
�
;

Gð�Þ ¼
�
1þ m

�n

�
4=n

��������1�m=�n

1þm=�n

��������2=n½1�ðaþ1Þ=ðpþnþ1Þð
ffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ1�ðaþ1Þ2=ðpþnþ1Þ

p
Þ�
;

Hið�Þ ¼
��������1�m=�n

1þm=�n

��������
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ=n

p
½2ðai�ðaþ1Þ=ðpþnþ1ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ1�ðaþ1Þ2=ðpþnþ1Þ

p
�

(4)

by using the ADM mass and ADM tensions. Here the
integration constant m is related to the ADM mass M by

m ¼
�

n

nþ 1

�
�a2 þ 1� ðaþ 1Þ2

pþ nþ 1

��
1=2 4�GDM

�ðnþ2Þ
; (5)

where �q ¼ q�q=2=�ðq=2þ 1Þ, and GD is the
D-dimensional Newton constant. Note that the quantity
inside the square root in Eq. (5) is positive definite for all
real values of ai. The solutions (4) are described by pþ
1-independent parameters, m and ai. It is interesting to see
that the functions H0, G, and

Q
i�1Hi depend only on the

sums of ai and a2i (i.e., a and �a2), not on the individual
values of ai. The double-Wick rotations t ! izi and zi !
it of the metric (1) also satisfy the vacuum Einstein
equation.
Let us analyze geometrical properties of the spacetime

solutions described above and see how they depend on the
spacetime dimensionality. First of all, one sees that these
spacetimes become flat as either � ! 1 or � ! 0. The
same happens in 4D Schwarzschild and Reissner-
Nordstrom solutions written in isotropic coordinates.
From the form of solutions, we find that the component
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functions of the metric, H0, G, and Hi, show different
behaviors as � ! K, depending on the sign of their ex-
ponents. Here

K ¼ jmj1=n: (6)

Note that the region with 0< �<K is another copy of the
spacetime region covered by K < �<1, as in the case of
the five-dimensional one [8].2 Although arbitrary values of
m (e.g.,M) are allowed, we assume non-negative values of
ADM mass density for the discussions below. Thus, m ¼
Kn.

Note also that the case of uniform tensions with ai ¼
1=ðnþ 1Þ for all i corresponds to the well-known
Schwarzschild black p-brane in higher dimensions,

ds2 ¼ �
�
1� Kn=�n

1þ Kn=�n

�
2
dt2 þGðd�2 þ �2d�ðnþ1ÞÞ

þ Xp
j¼1

dz2j ; (7)

where the event horizon is located at � ¼ K. The other
well-known special cases are given by ðai ¼ nþ 1; aj�i ¼
1Þ, the Kaluza-Klein bubble solution,

ds2 ¼ �dt2 þGðd�2 þ �2d�ðnþ1ÞÞ þ
�
1� Kn=�n

1þ Kn=�n

�
2
dz2i

þXp
j�i

dz2j ; (8)

which are related to the Schwarzschild black p-brane

solution mentioned above through the double-Wick rota-
tion. Notice also that the metric becomes singular at � ¼
K. It turns out that this is a coordinate singularity for the
case of the Schwarzschild black p-brane and the Kaluza-
Klein bubble.3 Otherwise, it is a curvature singularity, as
will be shown below in detail.
By investigating the spatial geometries of several space-

like hypersurfaces, we classify the solutions in the parame-
ter space of ai. Note first that, in 4þ 1 dimensions with
n ¼ 1 ¼ p, the area of S2 diverges if 1=2< a< 2 and is
finite if a ¼ 1=2 or 2, whereas it vanishes if a > 2 or a <
1=2 [8]. In general, the area of the Snþ1 sphere at the
z1; � � � ; zp ¼ constant surface is given by

Anþ1ð�Þ ¼ �ðnþ2Þð
ffiffiffiffi
G

p
�Þnþ1

¼ �ðnþ2Þ�nþ1

�
1� Kn

�n

�½ðnþ1Þ=n�ð1��Þ

�
�
1þ Kn

�n

�½ðnþ1Þ=n�ð1þ�Þ
: (9)

Here � is defined as

� ¼ aþ 1

pþ nþ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ 1� ðaþ1Þ2

pþnþ1

q : (10)

As � ! 1, this area increases as usual. However, as � !
K, one can see that the property is crucially dependent on
the signature of the exponent ð1� �Þ. The area of the � ¼
K surface has a nonvanishing finite value if 1� � ¼ 0. As
shown by the thick curve in Fig. 1, this equation gives the
hyperbola defined by the following equation on a and �a
space:

ðnþ 1Þ2 þ p

ðnþ pþ 1Þ2 ðaþ 1Þ2 � �a2 ¼ 1; (11)

with a restriction of a >�1. Note that this hyperbola
intersects with the line �a ¼ a=

ffiffiffiffi
p

p
one time if n � ðpþ

1Þ=ðp� 1Þ and two times if 1 � n < ðpþ 1Þ=ðp� 1Þ. On
the hyperbola, the area of the � ¼ K surface becomes

Anþ1 ¼ 41þð1=nÞ�ðnþ2ÞKnþ1

¼ ��1=n
ðnþ2Þ

�
16n�GDM

nþ pþ 1

�ðnþ1Þ=nðaþ 1Þðnþ1Þ=n: (12)

Therefore we see that, while only the cases of a ¼ 1=2 and
2 in five dimensions give a nonvanishing finite area A2, all
solutions whose gravitational tensions are properly bal-
anced in accordance with Eq. (11) have a nonvanishing
finite area Anþ1. Namely, in the parameter space of
p-dimensional ai, this region is given as the intersection
of the ðp� 1Þ-dimensional sphere

Pp
i¼1 a

2
i ¼ �a2 and a

FIG. 1 (color online). Schematic phase diagram of higher-
dimensional p-brane solutions in ða; �aÞ. The horizontal and
vertical axes stand for a and �a, respectively. The definitions of
a and �a allow their values on the shaded region satisfying �a �
ja= ffiffiffiffi

p
p j. The dark shaded region is for physical parameters based

on the strong energy condition. As � goes to K, the area of the
ðnþ 2Þ-dimensional sphere Anþ1, the volume Vp for extra p

dimensions, and the total volume A become nonvanishing finite
values on the thick curve, on the vertical black line, and on the
dashed curve, respectively.

2This can be easily seen by the coordinate transformation � !
K2=�.

3The conical singularity in the case of the Kaluza-Klein bubble
is removed by compactifying the zi coordinate, e.g., zi � zi þð22þ2=n�KÞ= ffiffiffi

n
p

.
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ðp� 1Þ-dimensional plane
Pp

i¼1 ai ¼ a for each ða; �aÞ on
the hyperbola (11) in the shaded region in Fig. 1.

If 1� �< 0, the behavior of the area is basically the
same as the case of 1=2< a< 2 in five dimensions.

Namely, as � decreases to K from infinity, this area de-
creases only up to its minimum point � ¼ �m given by

�m ¼
�
4�GDM

�ðnþ2Þ

�
1=n

�
nðaþ 1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ2 þ p

ðpþ nþ 1Þ2 ðaþ 1Þ2 � ð �a2 þ 1Þ
s �

1=n
; (13)

and then starts to increase up to infinity instead of decreas-
ing down monotonically. Therefore, this spatial geometry
looks like a wormhole. However, we point out that the � ¼
K surface can be reached from the throat (i.e., � ¼ �m) in a
finite affine time. For n � ðpþ 1Þ=ðp� 1Þ, the value of
�m does not have a maximum. On the other hand, for n <
ðpþ 1Þ=ðp� 1Þ, it does have maximum. In Fig. 1, the
corresponding parameter space is designated by the lower
right end of the thick curve in the shaded region.

On the other hand, if 1� �> 0 this area monotonically
decreases and shrinks to zero at � ¼ K, as in the cases of
a > 2 or a < 1=2 in five dimensions. In Fig. 1, the corre-
sponding parameter space is designated by the upper left
end of the thick curve in the shaded region.

In the special case of string configurations (i.e., p ¼ 1),
a and �a become the same, and Anþ1 diverges as � goes toK
in the region given by

1

nþ 1
< a< nþ 1: (14)

At � ¼ K, Anþ1 takes a nonvanishing finite value for the
cases of a ¼ 1

nþ1 or a ¼ nþ 1. For the cases of a <

1=ðnþ 1Þ or a > nþ 1, it vanishes. For n ¼ 1 we recover
the five-dimensional results.

Now let us consider the spatial geometry in extra p
dimensions. Note first that, if ai ¼ �i=M ¼ 1=ðnþ 1Þ for
all i, all scale factors of the extra space are constant since
all Hi ¼ 1. This case corresponds to the Schwarzschild
black p-brane. For given values of tension-to-mass ratios
fa1; a2; � � � ; ai�1; aiþ1; � � � ; apg, the zi direction becomes

flat if

ai ¼
1þ a1 þ a2 þ � � � þ ai�1 þ aiþ1 þ � � � þ ap

pþ n
;

(15)

or equivalently, ai ¼ aþ1
pþnþ1 . For other values of tension

ratios, we see thatHi in Eq. (4) becomes singular as � goes
to K. Namely, as � decreases to K, the proper length of a
unit segment with �zi ¼ 1 at the � ¼ constant surface
shrinks to zero if ai >

aþ1
pþnþ1 , but it infinitely expands if

ai <
aþ1

pþnþ1 . However, we point out that all these cases do

not necessarily correspond to singular spatial geometry in
extra p dimensions. Consider a Kaluza-Klein bubble solu-
tion along the z1 direction, in whichH1ð�Þ vanishes at � ¼
K with Hi�1ð�Þ ¼ 1. We can easily check that there exists
no curvature singularity in this case. Indeed, the � ¼ K
surface turns out to be a fixed point whose conical singu-
larity can be removed by compactifying the zi coordinate
suitably, as mentioned before. Hence, the z1 direction
becomes a circle. In general, if p � 2, one can find many
solutions where some extra directions become circles in
this way. However, all those solutions contain curvature
singularities at � ¼ K, except for the case of the Kaluza-
Klein bubble solutions. To summarize, we find that the
regular spatial geometry in extra p dimensions happens
only for the Schwarzschild black p-brane and Kaluza-
Klein bubble solutions.
It is interesting to see how the total spatial volume A for

a given � behaves as � ! K. The total volume for the � ¼
constant surface per unit length of zi with respect to an
asymptotic observer is given by

A ¼ Anþ1Vp; (16)

where Vp is the spatial volume of extra p dimensions,

Vp ¼ Yp
i¼1

Z ziþ1

zi

ffiffiffiffiffiffi
Hi

p
dzi ¼

�
1� Kn=�n

1þ Kn=�n

�½ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ=n

p
�½ðnþ1Þa�p=ðpþnþ1Þ�=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ1�½ðaþ1Þ2=ðpþnþ1Þ

p
�
: (17)

We see that the spatial volume Vp becomes unit when a ¼ p=ðnþ 1Þ, which is designated by the vertical line in Fig. 1. It is
interesting to see that the total volume Vp could be finite if the divergence in a certain direction is precisely canceled out by
the shrinking of some other directions. As � decreases to K, Vp monotonically decreases to zero for a > p=ðnþ 1Þ and
monotonically increases to infinity for a < p=ðnþ 1Þ.

The total spatial volume of the � ¼ constant section is given by
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A ¼ �ðnþ2Þ�nþ1

�
1þ Kn

�n

�
2ðnþ1Þ=n��������1� Kn=�n

1þ Kn=�n

��������ðnþ1Þ=n½1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n=ðnþ1Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ1�ðaþ1Þ2=ðpþnþ1Þ

p
�
: (18)

Thus the behavior of the total volume is determined by the exponent of ½1� Kn=�n�,
ðpþ nþ 1Þ½ðnþ 1Þ �a2 þ 1� � ðnþ 1Þðaþ 1Þ2

nðpþ nþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ 1� ðaþ1Þ2

pþnþ1

q
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ 1� ðaþ1Þ2

pþnþ1

q
þ ffiffiffiffiffiffiffi

n
nþ1

p Þ ; (19)

which vanishes on a hyperbola (the dashed curve given in
Fig. 1). From the definitions of a and �a, the numerator of
Eq. (19) can be reexpressed in the sum of squared terms,
given by

ðnþ 1ÞXp
i¼1

Xp
j¼iþ1

ðai � ajÞ2 þ
Xp
i¼1

½ðnþ 1Þai � 1�2: (20)

Equation (20) is non-negative for all real values of ai. It
vanishes only when

a1 ¼ a2 ¼ . . . ¼ ap ¼ 1

nþ 1
: (21)

The total volume with this set of ai becomes

A ¼ 22ðnþ1Þ=n�ðnþ2ÞKnþ1: (22)

This case of uniform tensions is exactly the same as the
case in which all extra p directions are regular, as men-
tioned above. In addition, we point out that the geometry of
the sphere is regular since this case satisfies Eq. (11) as
well. In fact, the solution with parameters in Eq. (21)
corresponds to the Schwarzschild black p-brane (7) in
higher dimensions.

Since either Anþ1 or Vp diverges, depending on the

values of the tensions, one may expect that the total volume
A also diverges. However, we claim that this never happens
for any value of the tension parameters. This is because the
exponent of ½1� Kn=�n� takes a positive value for all
cases except for the case of uniform tensions, so that the
total volume A vanishes as � ! K. This happens because,
even if the volume of the sphere diverges for certain values

of parameters ai, Vp shrinks more strongly for those val-

ues. Similarly, for the case in which Vp diverges, Anþ1

shrinks more strongly. The idea of making the total volume
A divergent by arbitrarily adding expanding extra dimen-
sions does not work. This is because, as p increases, both
the expanding rate in Vp and the shrinking rate in Anþ1

change as well so that the net effect always gives vanishing
total volume.
So far, we have not restricted the values of ai. However,

their physical ranges may be given by some energy con-
ditions. Note that the strong energy condition in five-
dimensional spacetime restricts the value of the tension
[8]. In d-dimensional spacetimes, this extends as follows:

T00 þ 1

d� 2

�
�T00 þ

Xp
Tzizi

�
� 0 ) ðd� 3ÞM � X

�i:

(23)

Although we do not know whether the gravitational ten-
sions satisfy the same condition, we assume that the same
restriction holds as in the case of matter fields. Therefore,
the physical range of a may be given as

0 � a � d� 3 ¼ pþ n; (24)

where the first inequality comes from the positivity theo-
rem for gravitational tension, ai � 0 [3].
Note that there exists a coordinate singularity at � ¼ K.

Let us see whether this singularity is genuine or not. The
Kretschmann invariant for the metric (4) is

R����R
���� ¼ 16nK2n�4þ2nð�n � KnÞ�ð4=nÞð1þn��1ÞðKn þ �nÞ�ð4=nÞð1þnþ�1Þf2½1þ 4�2

1 þ �4
1 þ nð3þ ð5�2

1 þ 2�2Þ
þ �2

1ð�2
1 þ 4�2ÞÞ þ n2ð2þ ð�2

1 þ 3�2Þ þ 2�1ð�1�2 þ 2�3ÞÞ þ n3ð�2 þ �2
2 þ �4Þ�K2n�2n � 4ð1þ nÞ

� ð�1ð1þ �2
1Þ þ n�1ð1þ 2�2Þ þ n2�3ÞðK3n�n þ Kn�3nÞ þ ð1þ nÞð2þ nÞð�2

1 þ n�2ÞðK4n þ �4nÞg;
(25)

where �q ¼ Pp
i¼0ð�iÞq with q ¼ 1, 2, 3, 4. Here �i with

i ¼ 0; 1; . . . ; p is half of the exponent of 1�Kn=�n

1þKn=�n in Hi. We

see that the right-hand side of the first line becomes sin-
gular as � ! K since 1þ n� �1 ¼ 1þ n� �> 0.
Thus, there occurs a curvature singularity at � ¼ K, unless
the term inside the curly brackets cancels this divergence.
We find that such a cancellation happens only for the cases

satisfying all the following conditions:

�1 ¼ �2 ¼ �3 ¼ �4 ¼ 1: (26)

By solving these algebraic equations above, we obtain
either

�0 ¼ 1; �1 ¼ �2 ¼ � � � ¼ �p ¼ 0; (27)
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or (i ¼ 1; 2; . . . ; p)

�i ¼ 1;

�0 ¼ �1 ¼ �2 ¼ � � � ¼ �i�1 ¼ �iþ1 ¼ � � � ¼ �p ¼ 0:

(28)

The first case (27) corresponds to the Schwarzschild black
p-brane. The second case corresponds to the p number of
different Kaluza-Klein bubble solutions, which are related
to the Schwarzschild black p-brane by the double-Wick
rotations in Eq. (1). For the nonsingular cases, the value of
the Kretschmann invariant becomes

R����R
���� ¼ 32nðnþ 1Þ2K2n

�2ðnþ2Þ

�
1þ Kn

�n

��½4ðnþ2Þ=n�
:

(29)

III. CAUSAL STRUCTURE

Let us consider the causal structure of these spacetime
solutions. It is enough to consider the zi ¼ constant surface
with fixed angles. Then, the metric becomes

ds2 ¼ �H0dt
2 þGd�2 ¼ �H0ðdtþ d��Þðdt� d��Þ:

(30)

Here a tortoise coordinate �� is defined as

�� ¼
Z �

ffiffiffiffiffiffi
G

H0

s
d� ¼

Z �
d�

�
1þ Kn

�n

�
2=n

��������1� Kn=�n

1þ Kn=�n

��������1=n½1�ð
ffiffiffiffiffiffiffiffiffiffiffi
nðnþ1Þ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2þ1�ðaþ1Þ2=ðpþnþ1Þ

p
Þ�
: (31)

The ingoing and outgoing null coordinates are defined by

v ¼ tþ ��; u ¼ t� ��; (32)

respectively.
In order to see the causal properties of the � ¼ K

surface, let us consider whether the null rays can escape
from the surface or not. The geodesic motion of an out-
going light in ðv; �Þ coordinates becomes

d�

dv
¼ 1

2

ffiffiffiffiffiffi
H0

G

s
� j�� Kj�q (33)

in the vicinity of the � ¼ K surface. Here q is given by

q ¼ 1

n

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

�a2 þ 1� ðaþ1Þ2
pþnþ1

vuut �
� �1; (34)

where the equality holds only for ai ¼ 1=ðnþ 1Þ for all
positive i. The elapsed value v for a light traveling from
� ¼ K þ 	 to � ¼ �0 outside becomes

�v ¼ 2
Z �0

Kþ	

ffiffiffiffiffiffi
G

H0

s
d�

�
�
lnj �0�K

	 j for ai ¼ 1
nþ1 ; 8i;

lnj�0 � Kjqþ1 � 	qþ1 for ai �
1

nþ1 ; 9i:
(35)

For the case of ai ¼ 1=ðnþ 1Þ, which corresponds to the
Schwarzschild black brane, �v ! 1 as 	 ! 0. This im-
plies that the light cannot escape from the � ¼ K surface,
and consequently, the � ¼ K surface is indeed an event
horizon. On the other hand,�v takes a finite value for other
cases. Therefore, the light can actually escape from the
� ¼ K surface in a finite time. In this sense, the surface is
not an event horizon and, in fact, is interpreted as a naked
singularity because of the curvature singularity there. The
Penrose diagram for the spacetime at zi ¼ constant is
given in Fig. 2. Figure 2(a) is for the case in which all
tension-to-mass ratios are 1=ðnþ 1Þ, which corresponds to
the Schwarzschild black brane. The surface of � ¼ K is
indeed an event horizon. The region of 0<�<K is not
the inside of the � ¼ K surface, but it is another copy of
the spacetime, as is well known in the isotropic coordinate

FIG. 2 (color online). Penrose diagram at a zi ¼ constant slice. The angular coordinates are suppressed here. Figure (a) is for the
case in which all tension-to-mass ratios are 1=ðnþ 1Þ, which corresponds to the Schwarzschild black brane. Figure (b) is for the case
having a naked singularity at the � ¼ K surface.
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system. The inside region can be obtained by analytic
continuation of the spacetime covered by 0< �<1, re-
vealing a spacelike singularity at the center. The case of the
Kaluza-Klein bubble is not shown here. Figure 2(b) is for
the other case. Here the � ¼ K surface becomes a timelike
singularity (i.e., a naked singularity), and the spacetime
cannot be analytically continued beyond this surface like
the spacetime around the spacelike singularity at the center
in Fig. 2(a).

IV. CONCLUSIONS

We have investigated the geometrical properties of static
vacuum p-brane solutions of Einstein gravity in nþ pþ 3
dimensions, which have a spherical symmetry of Snþ1

orthogonal to the p directions and which are invariant
under the translation along them.

The solutions are characterized by ðpþ 1Þ parameters
that are mass densityM and p-number of tension densities.
Interestingly, some important geometric properties such as

the area of Sðnþ1Þ and the total spatial volume (18) are
characterized only by the three parameters ðM;a; �aÞ, not by
the individual values of tension ratios ai, where a and �a2

are the summations of tension-to-mass ratios and of their
squares, respectively, as defined in Eq. (3). The surface
area of the Snþ1 sphere shows interesting behavior, de-
pending on the values of a and �a. There are three classes.

Namely, (i) ðnþ1Þ2þp
ðpþnþ1Þ2 ðaþ 1Þ2 � �a2 > 1: As � decreases,

this area does not decrease monotonically, but increases
again as � approaches K. In other words, the spatial
geometry of the zi ¼ constant surface behaves like a

wormhole geometry. (ii) ðnþ1Þ2þp
ðpþnþ1Þ2 ðaþ 1Þ2 � �a2 ¼ 1: This

case is designated by the thick curve (Anþ1) in Fig. 1. The
Schwarzschild black p-brane and the Kaluza-Klein bubble
solutions belong to this class. The area monotonically
decreases to a nonvanishing finite value at � ¼ K.

(iii) ðnþ1Þ2þp
ðpþnþ1Þ2 ðaþ 1Þ2 � �a2 < 1: This area monotonically

decreases to zero at � ¼ K.
The spatial volume Vp of unit extra p directions takes a

nonvanishing finite value only when a ¼ p=ðnþ 1Þ. As �
decreases to K, it monotonically increases to infinity for
a < p=ðnþ 1Þ and monotonically decreases to zero for
a > p=ðnþ 1Þ. Although each Anþ1 and Vp behaves var-

iously as � goes toK, the total volume A ¼ Anþ1Vp always

shrinks to zero except for the case of ai ¼ 1=ðnþ 1Þ for all
i. It is interesting to see that this value is independent of the
number of extra dimensions p. For such an exceptional
case, A takes a finite value and it corresponds to the
Schwarzschild p-brane solution. The curvature square di-
verges at � ¼ K except for the cases of the Schwarzschild
black p-brane (7) and Kaluza-Klein bubble (8). This cur-
vature singularity at the surface � ¼ K turns out to be
naked.

Some geometrical properties explicitly depend on each
value of the tension. In particular, the spatial geometry for

each zi direction is dependent on ai, in addition to a and �a.
The proper length along zi becomes neither shrinking nor
expanding as � approaches K if the ith tension takes a
specific value which is determined by the values of other
tensions, as in Eq. (15). The regular spatial geometry in all
extra p dimensions happens only for the Schwarzschild
black p-brane and Kaluza-Klein bubble solutions.
We have seen that the causal structure of the higher-

dimensional solutions is essentially the same as those of
the five-dimensional solutions [8]. Namely, only the solu-
tions where the values of the tensions are equal to the mass
divided by the number of angular coordinates, i.e.M=ðnþ
1Þ, have an event horizon located at � ¼ K. As is well
known, for these Schwarzschild black p-brane solutions,
the spacetime can be continued beyond the � ¼ K surface
and a spacelike curvature singularity appears inside the
event horizon, as shown in Fig. 2. The Kaluza-Klein bubble
solution, where one of the tensions is given by the mass
times the number of angular coordinates and all other
tensions are equal to the mass, do not possess an event
horizon and the signature of this spacetime changes across
the � ¼ K surface.4 Other than these two cases, the curva-
ture singularity appears at the � ¼ K surface and light can
escape from this surface toward spatial infinity.
Consequently, this singularity is naked in nature.
Investigation of such singular spacetimes might be

physically meaningless. However, studying the geometri-
cal structure of such singular spacetimes in detail may be
very important for the following reason. It is interesting to
see that the Schwarzschild black brane is so special for
geometrical properties in the whole solution space. This
fact was already pointed out in Refs. [12,13]. In particular,
when one considers spherically symmetric perturbations
with translational symmetries along extra directions un-
touched, the Schwarzschild black brane solution is singled
out because it is stable under such perturbations, whereas
all other solutions possessing naked singularities are cata-
strophically unstable [13,16].5

On the other hand, the spacetimes we considered may be
formed from the higher-dimensional trans-spherical distri-
bution of normal matter. Our study shows that a slight
deviation of tension and mass densities from those evolv-
ing to the Schwarzschild black brane will end up with a
spacetime configuration possessing a naked singularity.
Assuming that the cosmic censorship conjecture is valid
in higher dimensions as well, we do not expect the develop-
ment of a naked singularity. This observation may indicate

4In order to see this, we need to analytically continue the
spacetime region covered by K < �<1 beyond the � ¼ K
surface. Note that, in the isotropic coordinate system, � < K
does not describe the inside of the � ¼ K surface.

5Note, however, that even the Schwarzschild black brane
solution becomes unstable as some perturbations that depend
on the extra-dimensional coordinates are turned on, the so-called
Gregory-Laflamme instability [7].
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that some quantum effect becomes important right before
forming a naked singularity during the gravitational col-
lapse. In fact, Kobayashi and Tanaka [17] showed numeri-
cally that the naked singularity existing at some static
spacetimes near the Schwarzschild one in parameter space
becomes null if the Gauss-Bonnet gravity term is added in
five dimensions. It is interesting to see how much various
quantum effects change the formation of a naked singular-
ity in trans-spherical gravitational collapse. Finally, it is
also interesting to study how much the geometrical prop-
erties are modified if the angular momentum or charge is
taken into consideration. These interesting issues deserve
future work.
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