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We have studied the perturbation of a spinning dilaton black hole in 2þ 1 dimensions by a massless

scalar field. The wave equations of a massless scalar field is shown to be exactly solvable in terms of

hypergeometric functions. The quasinormal frequencies are computed for slowly spinning black holes.

The stability of the black hole is discussed. The asymptotic form of the quasinormal frequencies are

evaluated. The area spectrum of the quantum black holes are evaluated by using the asymptotic

quasinormal frequencies and is shown to be equally spaced.
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I. INTRODUCTION

The low-energy string effective actions contain many
scalar fields including the dilaton, axion, and modulie
fields, which couples to gravity in a nontrivial manner.
Hence, the black holes in string theory have modified
properties compared to its counterparts in Einstein’s grav-
ity alone. There are many works in the literature on black
holes in string theory [1]. In this paper we focus on a
spinning black hole in gravity coupled to a dilaton with a
cosmological constant in 2þ 1 dimensions. The action
corresponding to this black hole is the low-energy string
effective action in 2þ 1 dimensions.

Low dimensional gravity provides a simpler setting to
investigate properties of black holes in a complex theory
such as Einstein-dilaton gravity. The well-known Banados,
Teitelboim, and Zanalli (BTZ) black hole in 2þ 1 dimen-
sions [2], which has attracted much interest, has provided
insights into many aspects of black hole physics. The first
dilaton black hole in 2þ 1 dimensions was derived by
Chan and Mann in [3]. It was static and was electrically
charged. A class of spinning dilaton black holes in 2þ 1
dimensions were derived by Chan and Mann in [4]. One of
such black holes corresponds to the low-energy string
action, which will be the focus of the current paper.
Modifications of the BTZ black hole by a dilaton field
was also considered [5]. In an interesting paper, Chen
generated new class of dilaton solutions applying T duality
to known solutions in 2þ 1 dimensions [6]. Rotating
dilaton solutions were also derived by compactification
of 4D cylindrical solutions by Fernando [7].

Quasinormal modes (QNM’s) arise when a black hole is
perturbed by an external field. These are damped modes
with complex frequencies. Such frequencies depend only
on the black hole parameters. The study of QNM’s has a
long history, and there has been extensive work done to
compute QNM frequencies and to analyze them in various
black hole backgrounds. A good review is Kokkotas et al.
[8]. QNM’s have attracted lot of attention due to the

conjecture relating anti-de Sitter (AdS) space and confor-
mal field theory (CFT) [9]. It is conjectured that the imagi-
nary part of the QNM’s, which gives the time scale to
decay the black hole perturbations, corresponds to the
time scale of the CFT on the boundary to reach thermal
equilibrium. There are many works on AdS black holes on
this subject [10–16].
On the other hand, if signals due to QNM’s are detected

by the gravitational wave detectors, one may be able to
identify the charges of black holes and obtain a deeper
understanding of the black holes in nature. A review on
QNM’s and gravitational wave astronomy written by
Ferrari and Gualtieri discuss such possibilities [17].
QNM’s also have been studied in relation to the quantum

area spectrum of the black hole horizon. Bekenstein is the
first to propose that upon a suitable quantization process
the area of a black hole horizon would lead to a discrete
spectrum and are evenly spaced [18,19]. Hod made an
interesting conjecture that the asymptotic QNM frequency
and the fundamental area unit in a quantized black hole
area indeed are related [20]. Following Hod’s work, Dreyer
applied the asymptotic QNM frequency to obtain the black
hole entropy in loop quantum gravity [21]. Because of
these developments, there have been many works to com-
pute asymptotic QNM frequencies [22] and area spectrums
in various types of black holes [23–30].
Most of the computations done to evaluate QNM fre-

quencies are numerical due to the nature of the differential
equations [31]. However, in 2þ 1 dimensions, there have
been several papers where QNM’s are computed exactly.
The well-known BTZ black hole [2] has been studied with
exact results [32–35]. The QNM’s of the neutral scalars
and charged scalars around the static charged dilaton black
hole in 2þ 1 dimensions were computed exactly by the
current author in [36,37]. The Dirac QNM’s for the static
charged dilaton black hole was computed in [38]. In this
paper we take a step further by studying QNM’s of a
massless scalar around a spinning dilaton black hole in 2þ
1 dimensions. Here, we show that the wave equation can be
solved exactly even for a spinning dilaton black hole. We
have computed QNM frequencies for a slowly spinning*fernando@nku.edu
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black hole and given directions to compute QNM frequen-
cies exactly for a general spinning black hole. We will also
compute the area spectrum of these black holes.

We have organized the paper as follows: In Sec. II an
introduction to the geometry of the spinning dilaton black
hole is given. The massless scalar perturbation of the black
hole is given in Sec. III. The general solution to the wave
equation for the rotating black hole is given in Sec. IV. A
solution with boundary conditions is given in Sec. V. QNM
frequencies of the black hole is computed and analyzed in
detail in Sec. VII. The area spectrum and the quantized
entropy of the quantum dilaton black hole is computed in
Sec. VII. Finally, the conclusion and future directions are
given in Sec. VIII.

II. SPINNING DILATON BLACK HOLE

In this section we will present the geometry and other
properties of the spinning dilaton black hole. The Einstein-
Maxwell-dilaton action, which lead to these black holes
considered by Chan and Mann [4], is given as follows:

S ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ½R� 4ð5�Þ2 � e�4a�F��F
��

þ 2eb���: (1)

Here, � is treated as the cosmological constant, � is the
dilaton field, and F�� is the Maxwell’s field. The black

hole considered here is neutral ignoring the Maxwell’s
field. �> 0 corresponds to AdS space and �< 0 corre-
sponds to the de Sitter space. A family of spinning black
hole solutions characterized by the mass M, angular mo-
ment J was presented in [4], with the metric given by

ds2 ¼ �
�

8�rN

ð3N � 2ÞN þ �r1�ðN=2Þ
�
dt2

þ dr2

½ 8�rN

ð3N�2ÞN þ ð�� 2��2

ð3N�2ÞN�Þr1�ðN=2Þ�

� �r1�ðN=2Þdtd�þ
�
rN � �2

4�
r1�ðN=2Þ

�
d�2; (2)

M ¼ N

2

�
2��2

ð3N � 2ÞN�

�
4

N
� 3

�
� �

�
; J ¼ 3N � 2

4
�;

(3)

� ¼ �M

N
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N2
þ

�
4

N
� 3

�
2��2

ð3N � 2ÞN

s
: (4)

Here, �, � are integration constants related to the mass M
and the angular momentum J of the black hole. To avoid
closed-time-like coordinates, the integration constant �
must be chosen to be negative. The dilaton field is

� ¼ k lnðrÞ; (5)

where

k ¼ �1
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nð2� NÞ

p
; (6)

bk ¼ N � 2: (7)

It was stated in the paper in [4] that positive mass (M> 0)
black holes exist if �> 0 and 2 � N � 2=3. If such con-
ditions are satisfied, the metric in Eq. (2) admits an event
horizon rh as
�
4

N
� 3

�
4�

ð3N � 2ÞN rð3N=2Þ�1
h

¼ M

N

�
2

N
� 1

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M2

N2
þ

�
4

N
� 3

�
8��2

ð3N � 2ÞN

s

�
�
1

N
� 1

�
: (8)

Note that this is for N � 4=3. If N ¼ 4=3, rh is given by

3�r2h ¼
3M

2
���2

2M
: (9)

In this paper, we will focus on a special class of black
holes with the values b ¼ 4a ¼ 4, N ¼ 1, and k ¼ �1=4.
Such values lead to the low-energy string effective action

S ¼
Z

d3x
ffiffiffiffiffiffiffi�g

p ½R� 4ð5�Þ2 � e�4�F��F
�� þ 2e4���:

(10)

The above action in Eq. (9) is related to the low-energy
string action in 2þ 1 dimensions by a conformal trans-
formation

gString�� ¼ e4�gEinstein�� : (11)

The spinning black hole solution corresponding to the
action in Eq. (9) is given by

ds2 ¼ �fðrÞdt2 þ dr2

hðrÞ � 4Jrd�dtþ pðrÞ2d�2; (12)

where

fðrÞ ¼ ð8�r2 � ðMþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 32�J2

p
ÞrÞ; (13)

hðrÞ ¼ ð8�r2 � 2MrÞ
4r2

; (14)

pðrÞ2 ¼
�
r2 þ ð�Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 þ 32�J2
p Þ
8�

r

�
: (15)

The dilaton field is given by

� ¼ �1
2 lnðrÞ: (16)

Note that in deriving the above metric from the one in
Eq. (2), the value of � ¼ 4J is substituted to the metric.
Also, a simple coordinate transformation has been done to
r as r ! r2. Also, the constant � in the metric of Eq. (12) is
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computed by Eq. (4) as

� ¼ �M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 32�J2

p
(17)

and has been substituted to the metric to eliminate too
many constants in the theory. The black hole has a horizon
given by

rh ¼ M

4�
: (18)

There is a singularity at r ¼ 0. The scalar and
Kretschmann scalars diverge only at r ¼ 0. Note that in
the presence of a nontrivial dilaton, the space-geometry of
the black hole does not behave as either de Sitter (�< 0)
or anti-de Sitter (�> 0) [4]. An important thermodynam-
ical quantity corresponding to a black hole is the Hawking
temperature TH. It is given by

TH ¼ 1

4�

�
1

16�2
þ J2

M�ðMþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 32�J2

p Þ
��1=2

:

(19)

The angular velocity at the horizon of the black hole is

�h ¼ 2J

rh þ r0
: (20)

Here,

r0 ¼ ð�Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 32�J2

p Þ
8�

: (21)

When the angular moment J approaches zero, the above
metric reaches the metric of the nonspinning dilaton black
hole discussed in [36]. It is interesting to observe that the
horizon of the nonspinning dilaton black hole and the
spinning black hole are the same.

III. MASSLESS SCALAR PERTURBATION OF THE
SPINNING DILTON BLACK HOLES

In this section, we will develop the equations for a
massless scalar field in the background of the spinning
dilaton black hole. The general equation for a massless
scalar field in curved space-time can be written as

5� 5�� ¼ 0: (22)

Using the anzatz,

� ¼ e�i!teim� �ðrÞffiffiffiffiffiffiffiffiffi
pðrÞp : (23)

Equation (22) becomes the Schrödinger-type equation

d2�ðrÞ
dr2�

þ
�
!2 �!

4mJr

pðrÞ2 � VðrÞ
�
�ðrÞ ¼ 0: (24)

Here, VðrÞ is given by

VðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞhðrÞp
pðrÞ3=2

d

dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞhðrÞ

q d

dr

�
1ffiffiffiffiffiffiffiffiffi
pðrÞp

��

þm2fðrÞ
pðrÞ2 (25)

and r� is the tortoise coordinate computed as

dr� ¼ pðrÞdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞhðrÞp : (26)

Here, gðrÞ is given by

gðrÞ ¼ fðrÞpðrÞ2 þ 4r2J2 ¼ r2ð8�r2 � 2MrÞ: (27)

When J ) 0, the potential VðrÞ simplifies to

VðrÞJ¼0 ¼ �M2

4r
� 2m2Mffiffiffi

r
p þ 8m2�þ 4�2 (28)

and r� approaches

dr� ¼ 2rdr

8�r2 � 2Mr
; (29)

which agrees with the potential and the tortoise coordinate
in [39] for a neutral nonspinning dilaton black hole. The
potentials are plotted in Fig. 1.

IV. GENERAL SOLUTION TO THE MASSLESS
SCALAR WAVE EQUATION FOR SPINNING

BLACK HOLES

To find exact solutions to the wave equation for the
massless scalar, we will revisit the Eq. (22) in Sec. III.
Using the anzatz

� ¼ e�i!teim�RðrÞ (30)

and rewriting Eq. (22) leads to the radial equation

10 20 30 40 50 60
r

10

20

30

40

V

FIG. 1. The behavior of the potentials VðrÞ and VJ¼0ðrÞ with r
for � ¼ 1 M ¼ 4, J ¼ 2, and m ¼ 2. The dark curve represents
VðrÞ and the light curve represents VJ¼0ðrÞ.
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d

dr

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞhðrÞ

q dRðrÞ
dr

�

þ
�
!2pðrÞ2 �m2fðrÞ � 4!mrJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gðrÞhðrÞp
�
RðrÞ ¼ 0: (31)

Here,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðrÞhðrÞ

q
¼ 4�r2 �Mr ¼ tðrÞ: (32)

The function tðrÞ has two roots given by r ¼ M=ð4�Þ ¼ rh
and r ¼ 0.

After substituting the functions in Eq. (31), the radial
equation is simplified to be

d

dr

�
tðrÞdRðrÞ

dr

�
þ

�
a1r

tðrÞ þ
a2r

2

tðrÞ
�
RðrÞ ¼ 0: (33)

Here,

a1 ¼ M

�
�!2

8�
þm2

�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ 32�J2

p �
!2

8�
þm2

�

� 4!mJ

a2 ¼ !2 � 8�m2: (34)

Now, a new variable is introduced as

z ¼ r� rh
r

: (35)

Note that in the new coordinate system, z ¼ 0 corresponds
to r ¼ rh and z ¼ 1 corresponds to r ¼ 1. With the new
coordinate, Eq. (33) becomes

zð1� zÞd
2R

dz2
þ ð1� zÞ dR

dz
þ PðzÞR ¼ 0: (36)

Here,

PðzÞ ¼ A

z
þ B

�1þ z
þ C; (37)

where

A ¼ ða1 þ a2rhÞ
16r2h�

2
; B ¼ 8m2��!2

16�2
; C ¼ 0;

(38)

Now, if RðzÞ is redefined as

RðzÞ ¼ z	ð1� zÞ
FðzÞ; (39)

the radial equation given in Eq. (36) becomes

zð1� zÞd
2F

dz2
þ ð1þ 2	� ð1þ 2	þ 2
ÞzÞ dF

dz

þ
� �A
z
þ �B

�1þ z
þ �C

�
F ¼ 0; (40)

where

�A ¼ Aþ 	2 �B ¼ Bþ 
� 
2 �C ¼ �ð	þ 
Þ2:
(41)

The Eq. (40) resembles the hypergeometric differential
equation, which is of the form [40]

zð1� zÞ d
2F

dz2
þ ðc� ð1þ aþ bÞzÞ dF

dz
� abF ¼ 0: (42)

One can compare the coefficients of Eqs. (40) and (42), to
obtain the following identities:

c ¼ 1þ 2	; (43)

aþ b ¼ 2	þ 2
; (44)

�A ¼ Aþ 	2 ¼ 0;) 	 ¼ ffiffiffiffiffiffiffiffi�A
p

; (45)

�B ¼ Bþ 
� 
2 ¼ 0;) 
 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4B

p
2

; (46)

ab ¼ � �C ¼ ð	þ 
Þ2; (47)

From Eqs. (44) and (47),

a ¼ b ¼ 	þ 
: (48)

By substituting the values of 	 and 
 from Eqs. (45) and
(46), the values of a, b, and c can be determined in terms of
the parameters in the theory. With such values, the solution
to the hypergeometric function FðzÞ is given by [40]

Fða; b; c; zÞ ¼ �ðcÞ
�ðaÞ�ðbÞ�

�ðaþ nÞ�ðbþ nÞ
�ðcþ nÞ

zn

n!
; (49)

with a radius of convergence being the unit circle jzj ¼ 1.
Hence, the general solution to the radial part of the charged
scalar wave equation is given by

RðzÞ ¼ z	ð1� zÞ
Fða; b; c; zÞ; (50)

with a, b, and c given in the above equations. The general
solution for the massless wave scalar equation is

�ðz; t; �Þ ¼ z	ð1� zÞ
Fða; b; c; zÞeim�e�i!t: (51)

Hence, the wave equation for a general value of J can be
solved exactly in terms of hypergeometric functions.

V. SOLUTION TO THE WAVE EQUATION FOR
SLOWLY SPINNING BLACK HOLES WITH

BOUNDARY CONDITIONS

In this section we will obtain solutions to the massless
scalar with the boundary condition that the wave is purely
ingoing at the horizon. The solutions are analyzed closer to
the horizon and at infinity to obtain exact results for the
wave function. This is similar to the approach followed in
[37] but we will describe the details here for the sake of
completeness.
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In order to facilitate computations, we will restrict our-
selves to small values of J; that is we will assume J � M.
In order to solve for 	 and 
 in Eqs. (45) and (46), we will
further simplify the expressions for a2, �h, and A by
expanding them around J. By eliminating the J2 terms,
those functions are approximated as

a2 � 2Mm2 � 4!mJ; (52)

�h � 2J

rh
; (53)

leading to

A � !ð�16Jm�þM!Þ
16M�2

� ð!� 2Jm
rh
Þ2

16�2

¼ ð!�m�hÞ2
16�2

¼ !̂2

16�2
: (54)

Here, !̂ ¼ !�m�. Now, from Eq. (45), 	 is solved to be

	 ¼ � i!̂

4�
: (55)

The massless scalar wave equation for nonspinning black-
hole was proved to be exactly solvable in the paper by
Fernando [36]. There, the analogous values for 	 was
given as

	 ¼ � i!

4�
: (56)

This is indeed the case when J ! 0 in the value obtained
for the spinning black hole here.

From Eq. (46) and B in Eq. (38),


 ¼ 1þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!2�8m2�

4�2 � 1
q

Þ
2

: (57)

A. Solution at the near-horizon region

First, the solution of the wave equation closer to the
horizon is analyzed. For the spinning black hole, as the
radial coordinate r approaches the horizon, z approaches 0.
In the neighborhood of z ¼ 0, the hypergeometric function
has two linearly independent solutions given by [40]

Fða;b;c;zÞ and zð1�cÞFða� cþ 1; b� cþ 1; 2� c; zÞ:
(58)

Substituting the values of a, b, c in terms of 	 and 

obtained in Eq. (54) and (57), the general solution for RðzÞ
can be written as

RðzÞ ¼ C1z
	ð1� zÞ
Fð	þ 
;	þ 
; 1þ 2	; zÞ

þ C2z
�	ð1� zÞ


� Fð�	þ 
;�	þ 
; 1� 2	; zÞ: (59)

Here, C1 and C2 are constants to be determined. We want

to point out that the above equation is symmetric for 	 $
�	. Note that in Eq. (55), 	 could have both � signs.
Hence, due to the above symmetry, we will choose the
‘‘þ’’ sign for 	 for the rest of the paper.
Since closer to the horizon z ! 0, the above solution in

Eq. (59) approaches

Rðz ! 0Þ ¼ C1z
	 þ C2z

�	: (60)

Closer to the horizon, r ! rh. Hence, z can be approxi-
mated with

z � r� rh
rh

: (61)

The ‘‘tortoise’’ coordinate for the slowly rotating black
hole near the horizon can be approximated as

dr� � dr

4�ðr� rhÞ ; (62)

leading to

r� � 1

4�
lnðr� rhÞ: (63)

Hence,

r� rh ¼ e4�r� ; (64)

leading to

z � 1

rh
e4�r� : (65)

Hence, Eq. (60) can be rewritten in terms of r� as

Rðr ! rþÞ ¼ C1

�
1

rh

�
	
ei!̂r� þ C2

�
1

rh

��	
e�i!̂r� : (66)

To obtain the above expression, 	 is substituted from
Eq. (55) and

!̂ ¼ !� 2mJ

rh
: (67)

The first and the second term in Eq. (66) corresponds to the
outgoing and the ingoing wave, respectively. Now, by
imposing the condition that the wave is purely ingoing at
the horizon, one can pick C1 ¼ 0 and C2 � 0. Therefore,
the solution closer to the horizon is

Rðz ! 0Þ ¼ C2z
�	ð1� zÞ


� Fð�	þ 
;�	þ 
; 1� 2	; zÞ: (68)

B. Solution at asymptotic region

In this section the wave equation in Eq. (33) is analyzed
when r ! 1. For large r, the function tðrÞ ! 4�r2. When
tðrÞ is replaced with this approximated function in the wave
equation given by Eq. (33), it simplifies to
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d

dr

�
4�r2

dRðrÞ
dr

�
þ 2r2

�
!2

8�r2
�m2

r2

�
RðrÞ ¼ 0: (69)

Here, we have neglected the other terms since r is large.
Hence finally, the wave equation at large r can be expanded
to be

r2R00 þ 2rR0 þ�R ¼ 0; (70)

where

� ¼ !2

16�2
� m2

2�
: (71)

One can observe that � ¼ �B from Eq. (38). Also,
Eq. (70) is the well-known Euler equation, with the solu-
tion

RðrÞ ¼ D1

�
rh
r

�
�1 þD2

�
rh
r

�
�2

; (72)

with

�1 ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
2

¼ 
;

�2 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�

p
2

¼ ð1� 
Þ:
(73)

The expression for 
 is given in Eq. (46). Note that the
form in Eq. (72) is chosen to facilitate its comparison with
the matching solutions in Sec. VC.

C. Matching the solutions at the near-horizon and the
asymptotic region

In this section we match the asymptotic solution given in
Eq. (72) to the large r limit (or the z ! 1) of the near-
horizon solution given in Eq. (68) to obtain an exact
expression for D1 and D2. To obtain the z ! 1 behavior
of Eq. (68), one can perform a transformation on hyper-
geometric function given as follows [40]:

Fða; b; c; zÞ ¼ �ðcÞ�ðc� a� bÞ
�ðc� aÞ�ðc� bÞFða; b; aþ b� cþ 1; 1

� zÞ þ ð1� zÞc�a�b �ðcÞ�ðaþ b� cÞ
�ðaÞ�ðbÞ Fðc

� a; c� b; c� a� bþ 1; 1� zÞ:
(74)

Applying this transformation to Eq. (68) and substituting
for the values of a, b, c, one can obtain the solution to the
wave equation in the asymptotic region as follows:

RðzÞ ¼ C2z
�	ð1� zÞ
 �ð1� 2	Þ�ð1� 2
Þ

�ð1� 	� 
Þ2
� Fð�	þ 
;�	þ 
; 2
; 1� zÞ

þ C2z
�	ð1� zÞ1�
 �ð1� 2	Þ�ð�1þ 2
Þ

�ð�	þ 
Þ2
� Fð1� 	� 
; 1� 	� 
; 2� 2
; 1� zÞ: (75)

Now we can take the limit of RðzÞ as z ! 1 (or r ! 1),
which will leads to

Rðz! 1Þ ¼ C2ð1� zÞ
�ð1� 2	Þ�ð1� 2
Þ
�ð1�	�
Þ2

þC2ð1� zÞ1�
�ð1� 2	Þ�ð�1þ 2
Þ
�ð�	þ
Þ2 : (76)

Note that we have replaced Fða; b; c; 1� zÞ and z	 with 1
when z approaches 1. Since

1� z ¼ rh
r
; (77)

by replacing 1� z with the above expression in Eq. (76),
RðrÞ for large r can be written as

Rðr ! 1Þ ¼ C2

�
rh
r

�

 �ð1� 2	Þ�ð1� 2
Þ

�ð1� 	� 
Þ2

þ C2

�
rh
r

�
1�
 �ð1� 2	Þ�ð�1þ 2
Þ

�ð�	þ 
Þ2 : (78)

By comparing Eqs. (72) and (78), the coefficients D1 and
D2 can be written as

D1 ¼ C2

�ð1� 2	Þ�ð1� 2
Þ
�ð1� 	� 
Þ2 ; (79)

D2 ¼ C2

�ð1� 2	Þ�ð�1þ 2
Þ
�ð�	þ 
Þ2 : (80)

To determine which part of the solution in Eq. (72) corre-
sponds to the ‘‘ingoing’’ and ‘‘outgoing,’’ respectively, we
will first find the tortoise coordinate r� in terms of r at large
r. Note that for large r, tðrÞ ! 4�r2. Hence, the equation
relating the tortoise coordinate r� and r in Eq. (62) sim-
plifies to

dr� ¼ dr

4�r
: (81)

The above can be integrated to obtain

r� � 1

4�
ln

�
r

rh

�
: (82)

Hence,

r � rhe
4�r� : (83)

Substituting r from Eq. (83) and 
 from Eq. (57) into Eq.
(72), Rðr ! 1Þ is rewritten as

Rðr ! 1Þ ! D1r


h e

�i!r�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð4�2=!2Þðð2m2=�Þþ1Þ

p
�2�r�

þD2r
ð1�
Þ
h ei!r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ð4�2=!2Þðð2m2=�Þþ1Þ

p
�2�r� :

(84)

From the above it is clear that the first term and the second
term represent the ingoing and outgoing waves,
respectively.
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VI. QUASI-NORMAL MODES OF THE SPINNING
DILATON BLACK HOLE

When computing the quasinormal modes of a classical
perturbation of black hole space-times, two boundary con-
ditions are imposed. First is the condition that the waves
are purely ingoing at the horizon, which has already been
done in the computations in Sec. V. In addition, one has to
impose boundary conditions on the solutions at the asymp-
totic region as well. In asymptotically flat space-times, the
second boundary condition is the solution to be purely
outgoing at spatial infinity. For nonasymptotically flat
space-times, there are two possible boundary conditions
to impose at sufficiently large distances from the black hole
horizon: one is the field to vanish at large distances and the
other is for the flux of the field to vanish at far from the
horizon. The first is chosen here. This is the condition
imposed in Ref. [36]. Another example in 2þ 1 dimen-
sions where the vanishing of the field at large distance is
imposed is given in Ref. [32], where QNM’s of scalar
perturbations of BTZ black holes were computed exactly.

Let us consider the field RðrÞ at large distances given by
Eq. (84). Clearly the second term vanishes when r ! 1.
This also can be seen from Eq. (76), where the second term
vanishes for z ! 1. Since C2 is not zero, the first term
vanish only at the poles of the Gamma function �ð1� 	�

Þ. Note that the Gamma function �ðxÞ has poles at x ¼
�n for n ¼ 0; 1; 2 . . . Hence, to obtain QNM’s, the follow-
ing relations have to hold:

1� 	� 
 ¼ �n; (85)

which leads to the equation for 
 given by


 ¼ ð1þ nÞ � ið!� 2mJ
rh Þ

4�
: (86)

By combining the above equation with the Eq. (46) given
by

m2

2�
� !2

16�2
þ 
� 
2 ¼ 0; (87)

! ¼ !R þ i!I can be found where

!R ¼ 2Jm

�rhð2nþ 1Þ2 ð�ð1þ 2nþ 2n2Þ þm2Þ; (88)

!I ¼ �2

2nþ 1
ð2�nð1þ nÞ �m2Þ: (89)

Because of the minus sign in front of !I, these oscillations
will be damped leading to stable perturbations for
2�nð1þ nÞ>m2. However, for 2�nð1þ nÞ<m2, the
oscillations lead to unstable modes. This was pointed out
in [38]. In fact, for nonrotating black holes, the !I is same
as for the slowly rotating black hole. However, !R was
zero for the nonrotating black hole where as here it is
nonzero and depends on J.

The asymptotic values of the ! is computed as follows:

!Rðn ! 1Þ ¼ Jm

rh
; (90)

!Iðn ! 1Þ ¼ �2n�: (91)

In Fig. 2 above, for large n, !R approaches a constant
value and !I becomes linear in n.

VII. AREA SPECTRUM OF THE SPINNING
DILATON BLACK HOLE

The relation of quasinormal mode frequencies and the
quantization of the area spectrum of a black hole have been
studied extensively. Following the methods of previous
work, we will compute the area spectrum and the entropy
of the dilaton black hole considered in this paper.
Bekenstein is the first to conjecture that in a quantum

theory, the black hole area would be discrete and equally
spaced [18,19]. Hod made an interesting conjecture that
the asymptotic QNM frequency and the fundamental area
unit in a quantized black hole area indeed are related [20].
Following Hod’s work, Dreyer applied the asymptotic
QNM frequency to obtain the black hole entropy in loop
quantum gravity [21]. Birmingham et al. showed that
Hod’s ideas could be translated into interesting statements
about the dual CFT in [41]. Because of these develop-
ments, there have been many works to compute asymptotic
QNM frequencies and area spectrums in various types of
black holes.
In an interesting paper, Kunstatter stated that [23]

I ¼
Z dE

!ðEÞ (92)

is an adiabatic invariant for a system with energy E and
vibrational frequency!ðEÞ. Furthermore, it was stated that
via the Bohr-Sommerfeld quantization, the quantity I will
have an equally spaced spectrum in the large n limit as

I � n@: (93)

For black holes, the vibrational frequency was the QNM
frequency and dE was obtained using the first law of black
hole thermodynamics. Kunstatter applied this approach to

10 20 30 40 50 60
Im ω

0.2

0.4

0.6

0.8

1

1.2

1.4

Re ω

FIG. 2. !real against !imaginary for � ¼ 1 M ¼ 32, J ¼ 2, and
m ¼ 2.
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compute the black hole entropy spectrum for d-
dimensional Schwarzschild black holes in [23]. The !ðEÞ
was substituted with the real part of the quasinormal fre-
quency at the large n limit.

There have been several interesting works in the litera-
ture following this approach to quantize the area of various
black holes. For example, the area spectrum of the non-
spinning BTZ black hole [24], the extremal Reissner-
Nordstrom black hole [25], Kerr black hole [26], and the
extremal Schwarzschild-de Sitter black hole [27] were
computed in the respective papers. In all these works, the
!ðEÞ in the expression in Eq. (92) was chosen to be the real
part !R of the quasinormal frequency at the large n limit.
However, in a recent paper, Maggiore [42] has argued that
in the large n limit (or high damping limit), the physically
relevant ! would be

!p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j!Rj2 þ j!Ij2

q
: (94)

However, it was also stated that the expression ! in Eq.
(92) should be the transition between (adjacent) quasinor-
mal frequencies for large n, such that

!t ¼ lim
n!1!pðnþ 1Þ �!pðnÞ: (95)

Applying the above idea, area spectrum of various black
holes have been recalculated leading to interesting results.
Four papers along these lines are [28–30,43].

In this paper, we like to calculate the area spectrum of
the spinning dialton black holes by extending Kunstatter’s
and Maggiore’s approaches. Note that according to
Eq. (89), the oscillations will be damped leading to stable
modes for 2�nðnþ 1Þ>m2. Even though the low-lying
modes are unstable with 2�nðnþ 1Þ<m2, the highly
excited black holes with the limit n ! 1, are stable with
!I ! �2n�. Since in the approach by Kunstatter and
Maggiore, the area is quantized only using the asymptotic
QNM frequencies, we will follow their formalism to com-
pute the area spectrum for the black hole considered in this
paper. Furthermore, to justify quantizing the area of the
black hole in spite of existing unstable modes, we may
recall that a full analysis of the QNM’s of the spinning
black holes in this paper has to be studied for arbitrary
values of J to arrive at conclusions about the stability of the
black hole. Since we have only obtained QNM’s for a
slowly spinning black hole, the computations in the next
section may be considered as an initial step to understand-
ing the quantum properties of a possibly stable black hole.

A. Nonspinning black hole area spectrum

Kunstatter incorporated the first law of thermodynamics
in describing the adiabatic invariant I for the
Schwarzschild black hole in [23]. Following the approach
in [23] dE ¼ dM for the nonspinning dilaton black hole.
Here, ! in the expression in Eq. (92) is replaced with !t

following Maggiore [42]. Hence, the adiabatic expression

for the nonspinning black hole is

I ¼
Z dM

!t

: (96)

It was shown that the QNM for the nonspinning dilaton
black hole was pure imaginary in [36]. Hence, according to
Maggiore, the corresponding frequency would be !p ¼
j!Ij. In the large n limit, it is given by 2n�. Hence, the
transition frequency !t is

!t ¼ jð!IÞnj � jð!IÞn�1j ¼ 2�: (97)

Hence, the adiabatic invariant for the nonspinning dilaton
black hole is

I ¼
Z dM

2�
¼ M

2�
: (98)

From the Bohr-Sommerfeld quantization

I ¼ M

2�
¼ n@: (99)

Since the horizon of the nonspinning black hole is rh ¼ M
4� ,

the area spectrum is derived as

An ¼ 2�rh ¼ �n@: (100)

It is obvious that the area spectrum is equally spaced. The
corresponding entropy spectrum is given by

Sn ¼ An

4
¼ �

4
n@: (101)

The entropy too is equidistant.

B. The spinning dilaton black hole area spectrum

Extending Kunstatter’s argument for the Schwarzschild
black hole, Setare and Vagenas computed the area spec-
trum for the Kerr black hole [26]. There, the argument was
made that the correct expression for the adiabatic invariant
would be

I ¼
Z dM��hdJ

!t

: (102)

Here, again the first law of thermodynamics was used and
the modification was necessary due to the spinning of the
black hole. From Eqs. (90) and (91), in the large n limit,
!I 	 !R. Hence, the transition frequency !t is given by

!t ¼ jð!IÞnj � jð!IÞn�1j ¼ 2�: (103)

Hence, the adiabatic invariant for the slowly spinning
dilaton black hole is

I ¼
Z dM

2�
� 4JdJ

M
¼ M

2�
� 2J2

M
: (104)

Sincewe have neglected J2 terms for slowly spinning black
holes in this paper, one can approximate I � M

2� . Hence,

from the Bohr-Sommerfeld quantization
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I ¼ M

2�
¼ n@: (105)

Since the horizon of the spinning black hole is rh ¼ M
4� , the

area spectrum is derived as

An ¼ 2�rh ¼ �n@: (106)

It is obvious that the area spectrum is equally spaced. The
corresponding entropy spectrum is given by

Sn ¼ An

4
¼ �

4
n@: (107)

The entropy too is equidistant similar to the nonspinning
black hole. It is interesting to note that both the nonspin-
ning and spinning black hole have the same spectrum.

VIII. CONCLUSION

We have studied analytically the perturbation of the
spinning dilaton black hole in 2þ 1 dimensions by a
massless scalar. The wave equation is solved exactly in
terms of hypergeometric functions for a spinning dilaton
black hole. To the author’s knowledge, this is the only
spinning dilaton black hole with exact solutions to the
wave equation. The QNM frequencies are computed for
slowly spinning black holes. The QNM’s have both a real
and an imaginary component. The black hole is stable only
for a selected range of values of n and m. In a previous
paper by the same author [7], the nonspinning dilaton black
hole perturbations by a massless scalar field were studied.
There, the wave equations were solved exactly, and the
QNM’s were shown to pure imaginary. We have computed
the area spectrum of the spinning as well as the nonspin-
ning dilaton black hole, which is shown to be equally
spaced.

There are several avenues to proceed from here. Since
we have only studied the slowly spinning black hole, it
would be interesting to compute the QNM frequencies for
a dilaton black hole with any value of J. Such an approach
would give a complete solution to the question of stability

of a spinning black hole discussed here. If one proceeds to
compute QNM’s for a general spinning black hole follow-
ing the approach in Secs. V and VI, one will end up with
Eq. (85). By substituting the value of A in Eq. (38) without

approximations to compute	 ¼ ffiffiffiffiffiffiffiffi�A
p

and combining with
Eq. (87) will lead to a polynomial in terms of !. Such a
polynomial can be solved numerically.
Another avenue to proceed with is to study the massive

scalar field around the black hole in this paper. Even
though the Kerr black hole is stable under the massless
scalar field, instability has been shown to occur for the
massive scalar field around it due to the superradiance
effect [44]. It would be interesting to understand if such
phenomenon occurs in the spinning dilaton black hole.
Also, it would be interesting to understand how the

Dirac spinor fields decay around such black holes. One
would hope that exact solutions to the Dirac field equations
may exist similar to the scalar field. The QNM’s of the
Dirac field for the nonspinning black hole was computed
exactly in [38].
It would be interesting to compute the greybody factors

and particle emission rates for the massless scalars for this
black hole. The greybody factors of the massless scalar
were studied for the nonspinning black hole in [39]. Since
the wave equation has already been solved, it should be a
welcome step toward understanding the Hawking radiation
from these black holes.
In string theory, different space-time geometries may be

related to each other by duality transformations. The non-
spinning dilaton black hole and the spinning dilaton black
hole are related by a T duality as described by Chen [6].
Furthermore, the static charged dilaton black hole was
generated by applying the duality transformations de-
scribed by Horowitz [45] to the nonspinning dilaton black
hole in [36]. In [36], the QNM’s were computed for both
static charged and neutral black holes. Since QNM fre-
quencies for all three families have been computed, it
would be interesting to study what role QNM’s play in
understanding duality. What remains is to compute the
QNM’s of the spinning charged dilaton black holes in 2þ
1 dimensions. Such solutions were presented by Chen [6].
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69, 1849 (1992); M. Bañados, M. Henneaux, C.

Teitelboim, and J. Zanelli, Phys. Rev. D 48, 1506 (1993).
[3] K. C.K. Chan and R. B. Mann, Phys. Rev. D 50, 6385

(1994); 52, 2600(E) (1995).
[4] K. C.K. Chan and R. B. Mann, Phys. Lett. B 371, 199

(1996).

[5] K. C. K. Chan, Phys. Rev. D 55, 3564 (1997).
[6] C. Chen, Nucl. Phys. B544, 775 (1999).
[7] S. Fernando, Gen. Relativ. Gravit. 34, 461 (2002).
[8] K. D. Kokkotas and B.G. Schmidt, Living Rev. Relativity

2, 2 (1999).
[9] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y.

Oz, Phys. Rep. 323, 183 (2000).
[10] G. T. Horowitz and V. E. Hubeny, Phys. Rev. D 62, 024027

(2000).

SPINNING DILATON BLACK HOLES IN 2þ 1 . . . PHYSICAL REVIEW D 79, 124026 (2009)

124026-9



[11] V. Cardoso and J. P. S. Lemos, Phys. Rev. D 64, 084017
(2001).

[12] I. G. Moss and J. P. Norman, Classical Quantum Gravity
19, 2323 (2002).

[13] B. Wang, C. Lin, and E. Abdalla, Phys. Lett. B 481, 79
(2000).

[14] G. Siopsis, Classical Quantum Gravity 22, 1425 (2005).
[15] R. A. Konoplya, Phys. Rev. D 66, 084007 (2002).
[16] R. A. Konoplya, Phys. Rev. D 70, 047503 (2004).
[17] V. Ferrari and L. Gualtrier, Gen. Relativ. Gravit. 40, 945

(2008).
[18] J. D. Bekenstein, Lett. Nuovo Cimento 11, 467 (1974).
[19] J. D. Bekenstein, arXiv:gr-qc/9710076.
[20] S. Hod, Phys. Rev. Lett. 81, 4293 (1998).
[21] O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003).
[22] G. Siopsis, Lect. Notes Phys. 769, 471 (2009).
[23] G. Kunstatter, Phys. Rev. Lett. 90, 161301 (2003).
[24] M.R. Setare, Classical Quantum Gravity 21, 1453 (2004).
[25] M.R. Setare, Phys. Rev. D 69, 044016 (2004).
[26] M.R. Setare and E. C. Vagenas, Mod. Phys. Lett. A 20,

1923 (2005).
[27] M.R. Setare, Gen. Relativ. Gravit. 37, 1411 (2005).
[28] S. Wei, R. Li, Y. Liu, and J. Ren, J. High Energy Phys. 03

(2009) 076.

[29] A. J.M. Medved, Classical Quantum Gravity 25, 205014
(2008).

[30] E. C. Vagenas, J. High Energy Phys. 11 (2008) 073.
[31] R. A. Konoplya, Gen. Relativ. Gravit. 34, 329 (2002).
[32] D. Birmingham, Phys. Rev D 64, 064024 (2001).
[33] D. Birmingham, I. Sachs, and S. N. Solodukhin, Phys.

Rev. Lett. 88, 151301 (2002).
[34] V. Cardoso and J. P. S. Lemos, Phys. Rev. D 63, 124015

(2001).
[35] E. Abdalla, B. Wang, A. Lima-Santos, and W.G. Qiu,

Phys. Lett. B 538, 435 (2002).
[36] S. Fernando, Gen. Relativ. Gravit. 36, 71 (2004).
[37] S. Fernando, Phys. Rev. D 77, 124005 (2008).
[38] A. Lopez-Ortega, Gen. Relativ. Gravit. 37, 167 (2005).
[39] S. Fernando, Gen. Relativ. Gravit. 37, 461 (2005).
[40] M. Abramowitz and A. Stegun, Handbook of

Mathematical Functions (Dover, New York, 1977).
[41] D. Birmingham, S. Carlip, and Y. Chen, Classical

Quantum Gravity 20, L239 (2003).
[42] M. Maggiore, Phys. Rev. Lett. 100, 141301 (2008).
[43] W. Li, L. Xu, and J. Lu, Phys. Lett. B 676, 177 (2009).
[44] S. R. Dolan, Phys. Rev. D 76, 084001 (2007).
[45] G. Horowitz, arXiv:hep-th/9210119.

SHARMANTHIE FERNANDO PHYSICAL REVIEW D 79, 124026 (2009)

124026-10


