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We consider the behavior of massive Dirac fields on the background of a charged de Sitter black hole.

All black hole geometries are taken into account, including the Reissner-Nordström-de Sitter one, the

Nariai case, and the ultracold case. Our focus is at first on the existence of bound quantum mechanical

states for the Dirac Hamiltonian on the given backgrounds. In this respect, we show that in all cases no

bound state is allowed, which amounts also to the nonexistence of normalizable time-periodic solutions of

the Dirac equation. This quantum result is in contrast to classical physics, and it is shown to hold true even

for extremal cases. Furthermore, we shift our attention on the very interesting problem of the quantum

discharge of the black holes. Following the Damour-Deruelle-Ruffini approach, we show that the

existence of level crossing between positive and negative continuous energy states is a signal of the

quantum instability leading to the discharge of the black hole, and in the cases of the Nariai geometry and

of the ultracold geometries we also calculate in WKB approximation the transmission coefficient related

to the discharge process.
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I. INTRODUCTION

Black holes in de Sitter (dS) space are an interesting
subject of investigation, both on the theoretical side and on
the experimental one. On one hand, the contextual pres-
ence of a black hole event horizon and of a cosmological
event horizon, to be associated with the corresponding
quantum emission of thermal radiation [1] is a feature
which enriches the framework of black hole thermodynam-
ics in itself and also because of the possibility to obtain a
true nonequilibrium situation when two different tempera-
tures coexist on the same manifold. On the other hand,
black hole physics in space-times with a positive cosmo-
logical constant appear to be of direct physical interest,
because the present-day measurements of cosmological
parameters confirm the presence of a small positive cos-
mological constant, which implies that dS backgrounds are
the real black hole backgrounds to be taken into account
for physical considerations. In this paper, we consider
some relevant aspects of the physics of massive quantum
Dirac particles on dS black hole backgrounds. We first
show that, as expected, the Dirac Hamiltonian is well
behaved in the sense that its self-adjointness can be en-
sured without imposing any boundary condition. We also
determine, by means of spectral analysis, two relevant
physical properties: there is no mass gap in the spectrum,
even if the particles are massive, and there exists no

quantum bound state for charged particles around a
charged black hole, in contrast to classical physics. The
latter property amounts to the absence of normalizable and
time-periodic solutions of the Dirac equation on the back-
ground of a nonextremal Reissner-Nordström-dS black
hole, in full agreement with the recent literature on this
topic [2–6]. Furthermore, we show that this holds true also
in the extremal case, due to the prominent role of the
cosmological event horizon, as well as in the so-called
Nariai case and in the ultracold ones.
In the second part of the paper, we also take into account

the problem of pair creation by a charged black hole. This
is a long-standing topic in the framework of quantum
effects in the field of a black hole, as old as the Hawking
effect but still different in its origin [7,8]. The latter can
be brought back to vacuum instability in the presence of
an external field (see e.g. [9,10] and, in the recent litera-
ture [11–13]). It is shown that the presence of level cross-
ing, i.e. of overlap between positive continuum energy
states and negative continuum energy ones, according to
a criterion introduced by Ruffini, Damour, and Deruelle
[14–17], recently extended to include the Reissner-
Nordström–anti-dS (RN-AdS) case [18], is a still valid
tool for investigating pair creation of charged Dirac parti-
cles even in presence of a positive cosmological constant.
We point out that this method is equivalent to the ones
commonly exploited in order to investigate instability
properties of the vacuum [11,13], even if the criterion of
level crossing seems to be specific of the above referen-
ces [14–17].
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Special attention is focused on special cases, like the
Nariai and the ultracold ones, for which an estimate in
WKB approximation of the transmission coefficient re-
lated to the process of pair-creation is provided.

This work, together with the analogous one concerning
the Dirac equation on the background of a Reissner-
Nordström-AdS black hole, completes the analysis of the
process of pair creation by a charged black hole in the
presence of a cosmological constant, and in this sense
it also extends the analysis on the background of a
Reissner-Nordström black hole [7,8]. We recall that, in
spite of the fact that dS and AdS differ for a change
of sign in the cosmological constant, very different mani-
folds and very different physics occur on these back-
grounds. We mention, for example, the occurrence of
closed timelike curves in the AdS case, a problem which
can be overcome by passing to the universal covering,
but at the price to deal with the lack of global hyper-
bolicity [19]. On the quantum level, self-adjointness of
the wave operators cannot be ensured in general (see e.g.
[18] for RN-AdS black holes), and boundary conditions
have to be introduced for some cases, because of a boun-
darylike behavior of the AdS asymptotic region. In par-

ticular, for �
ffiffiffiffiffi
3
j�j

q
< 1

2 , where � is the Dirac particle mass

and � is the (negative) cosmological constant, several
boundary conditions can be chosen (see e.g. [20] for ex-
plicit choices of boundary conditions for the Dirac
Hamiltonian on pure AdS), and then physics is not
uniquely defined.

In the dS cases we discuss herein, no such features arise.
Moreover, black holes are characterized by a single event
horizon in the AdS case and by two event horizons in the
dS one. This fact is shown to be at the root of the fact that in
the de Sitter case there is always level crossing, which is in
contrast not only to the AdS case but also with the standard
RN case (� ¼ 0). This feature is then peculiar of these
solutions; notwithstanding, the actual presence of pair
creation is to be associated with further conditions, to be
related with the actual largeness of the forbidden region
separating positive energy states from negative energy
ones. For completeness, we recall that charged Dirac fields
in the more general Kerr-Newman-de Sitter background
have been studied with the aim to determine their quasi-
normal modes in [21].

II. DIRAC HAMILTONIAN IN THE CASE rþ < rc:
REISSNER-NORDSTRÖM-DS BLACK HOLES

We first define the one-particle Hamiltonian for Dirac
massive particles on the Reissner-Nordström-dS black hole
geometry (RN-dS black hole in the following). We use
natural units @ ¼ c ¼ G ¼ 1 and unrationalized electric
units. The metric of the RN-dS black hole manifold (t 2
R; r 2 ðrþ; rcÞ; � 2 S2) is

ds2 ¼ �fðrÞdt2 þ 1

fðrÞdr
2 þ r2d�2

fðrÞ ¼ 1� 2M

r
þQ2

r2
��

3
r2;

(1)

M is the mass andQ is the electric charge of the black hole,

and �> 0 is the cosmological constant; let us define L ¼ffiffiffi
3
�

q
; the equation fðrÞ ¼ 0 is assumed to admit solutions

rc > rþ � r� > r0; then one obtains

fðrÞ ¼ 1

L2r2
ðrc � rÞðr� rþÞðr� r�Þðr� r0Þ: (2)

rc is the radius of the cosmological horizon, rþ is the
radius of the black hole event horizon, and r� is the radius
of the Cauchy horizon. Moreover, due to the actual lack of
a term proportional to r3, one has r0 ¼ �ðrc þ rþ þ r�Þ.
The above reparametrization of the metric amounts to
implementing the following relations between rc, rþ, r�
and M, Q, L:

L2 ¼ rcðrþ þ r� þ rcÞ þ r2þ þ r2� þ rþr�
2L2M ¼ r2crþ þ rcr

2þ þ 2rcrþr� þ r2cr� þ rcr
2�

þ r2þr� þ rþr2�
L2Q2 ¼ rcrþr�ðrc þ rþ þ r�Þ:

It is not difficult to show that four real zeros of fðrÞ ¼ 0
exist (and three are positive) if and only if the following
conditions are implemented:

0<Q2 <
L2

12
(3)

Mextr � M<Mmax; (4)

where

Mextr ¼ L

3
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

Q2

L2

svuut �
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

Q2

L2

s �
(5)

is the mass of the extremal black hole with r� ¼ rþ, and

Mmax ¼ L

3
ffiffiffi
6

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

Q2

L2

svuut �
2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

Q2

L2

s �
(6)

is the mass of the black hole with rþ ¼ rc (see Sec. IV).
See [22] for the analysis of the more general Kerr-
Newman-dS case.
The vector potential associated with the RN-dS solution

is A� ¼ ð�Q=r; 0; 0; 0Þ. Spherical symmetry, as usual,

allows one to separate variables [23–26] and to obtain the
following reduced Hamiltonian:

Hred ¼ � ffiffiffi
f

p
�þ eQ

r f@r þ k

ffiffi
f

p
r

�f@r þ k

ffiffi
f

p
r

ffiffiffi
f

p
�þ eQ

r

2
64

3
75; (7)

F. BELGIORNO AND S. L. CACCIATORI PHYSICAL REVIEW D 79, 124024 (2009)

124024-2



where fðrÞ is the same as in (1), k ¼ �ðjþ 1=2Þ 2 Z�
f0g is the angular momentum eigenvalue and � is the mass
of the Dirac particle. The Hilbert space in which Hred is
formally defined is the Hilbert space
L2½ðrþ; rcÞ; 1=fðrÞdr�2 of the two-dimensional vector
functions ~g � ðg1g2Þ such that

Z rc

rþ

dr

fðrÞ ðjg1ðrÞj
2 þ jg2ðrÞj2Þ<1:

As a domain for the minimal operator associated with
Hred we can choose the following subset of L2½ðrþ;rcÞ;
1=fðrÞdr�2: the set C1

0 ðrþ; rcÞ2 of the two-dimensional

vector functions ~g whose components are smooth and of
compact support [27]. It is useful to define a new tortoise-
like variable y:

dy

dr
¼ 1

fðrÞ (8)

and then one obtains y 2 R, with y ! 1 , r ! r�c and
y ! �1 , r ! rþþ. The reduced Hamiltonian becomes

Hred ¼ D0 þ VðyÞ; (9)

where

D0 ¼ 0 @y
�@y 0

" #

and

VðrðyÞÞ ¼ � ffiffiffi
f

p
�þ eQ

r k

ffiffi
f

p
r

k

ffiffi
f

p
r

ffiffiffi
f

p
�þ eQ

r

2
64

3
75:

The Hilbert space of interest for the Hamiltonian (9) is
L2½R; dy�2. We check if the one-particle Hamiltonian is
well defined in the sense that no boundary conditions are
required in order to obtain a self-adjoint operator. This
means that we have to check if the reduced Hamiltonian
is essentially self-adjoint; with this aim, we check if the
solutions of the equation

Hred ~g ¼ � ~g (10)

are square integrable in a right neighborhood of y ¼ �1
and in a left neighborhood of y ¼ þ1. The so-called Weyl
alternative generalized to a system of first order ordinary
differential equations ([27], theorem 5.6) can be applied, in
particular, if in a right neighborhood of y ¼ �1 at least
one solution not square integrable exists for every � 2 C,
then no boundary condition is required and the so-called
limit point case (LPC) is verified; if instead for every � 2
C all the solutions of ðHred � �Þ ~g ¼ 0 lie in
L2½ð�1; cÞ; dy�2, with �1< c<1, the so-called limit
circle case occurs (and boundary conditions are required).
Analogously, one studies the behavior of solutions in a left
neighborhood of y ¼ 1. The Hamiltonian operator is es-
sentially self-adjoint if the LPC is verified both at y ¼ �1

and at y ¼ 1 (cf. [27], theorem 5.7). In the case at hand,
we can refer to the corollary to theorem 6.8 (page 99) of
[27], both for y ! �1 and for y ! 1. Thus, the Dirac
operator defined on C1

0 ðrþ; rcÞ2 is essentially self-adjoint

on the RN-dS black hole background.

III. QUALITATIVE SPECTRAL PROPERTIES
AND TIME-PERIODIC SOLUTIONS IN THE

CASE rþ < rc

We first show that the essential spectrum of the unique
self-adjoint extension of the Dirac Hamiltonian (still in-
dicated with Hred) coincides with R both in the case of
nonextremal black holes and in the extremal case. This
feature is expected in the presence of a black hole horizon
and is well known in the case of scalar particles [28], and
also verified in the case of Dirac particles on Kerr-Newman
black hole manifold (see e.g. [29,30]). We confirm that it is
verified also in the present cases. From a physical point of
view, it also implies that there is no room for isolated
eigenvalues, and then that there is no ‘‘standard’’ bound
state (in the sense that a charged particle with charge
opposite to the charge of the black hole cannot form a
bound state which is analogous to the bound state an
electron forms around an atomic nucleus). Moreover, a
finer analysis allows also to conclude that, both in the
nonextremal case and in the extremal one, the point spec-
trum is empty, and then no quantum bound state, i.e. no
possibility to obtain a normalizable time-periodic solution
of the Dirac equation, exists.

A. Essential spectrum

One expects that, in the presence of an event horizon, i.e.
of a so-called ergosurface, the mass gap vanishes and that
the continuous spectrum includes the whole real line. We
recall that qualitative spectral methods for the Dirac equa-
tion (see e.g. [26,27]) have been applied to Dirac fields on a
black hole background in [4,29]. In order to verify this
property, we adopt the decomposition method [27]. We
split the interval ðrþ; rcÞ at an inner point r1 and then
consider the formal differential expression (7) restricted
to the subintervals ðrþ; r1� and ½r1; rcÞ. Roughly speaking,
we refer to the aforementioned expressions as the ‘‘restric-
tion of the Hamiltonian Hred to the interval ðrþ; r1� and to
the interval ½r1; rcÞ’’ and write e.g. Hredj½r1;rcÞ for the latter.
We limit ourselves to consider the latter restriction, which
is relative to the novel feature of space-time, with respect
to previously discussed cases, represented by the cosmo-
logical horizon. In the tortoiselike coordinate y, one finds a
potential P such that

P ¼ � ffiffiffi
f

p
�þ eQ

r k

ffiffi
f

p
r

k

ffiffi
f

p
r

ffiffiffi
f

p
�þ eQ

r

2
64

3
75

and it holds
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lim
y!1PðyÞ ¼ P0 ¼ �c 0

0 �c

� �
which is in diagonal form and whose eigenvalues coincide.
We apply theorem 16.6, page 249 of Ref. [27], which
implies that, if ��, �þ, with �� � �þ, are the eigenvalues
of the matrix P0, then fR� ð��; �þÞg � �eðHredj½yðr1Þ;1ÞÞ
if

lim
y!1

1

y

Z y

�0

dtjPðtÞ � P0j ¼ 0; (11)

where j � j stays for any norm in the set of 2	 2 matrices
(we choose the Euclidean norm). In our case one has to find
the limit as y ! 1 for the following expression:

1

y

Z rðyÞ

r1

dr
1

hðrÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

rc � r
p

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2hðrÞ þ 2ð�2þðrc � rÞ þ k2hðrÞÞ 1

r2

s
; (12)

where we put hðrÞ ¼ fðrÞ
rc�r . Both in the nonextremal case

and in the extremal one, the above integral is finite as r !
rc, i.e. as y ! 1, and then the limit is zero (We recall that
the difference between the nonextremal case and the ex-
tremal one from this point occurs when studying the limit
as r ! rþ, i.e. as y ! �1. In the extremal case rþ ¼ r�,
the corresponding integral diverges but a trivial use of the
l’Hospital’s rule allows one to find that the aforementioned
limit is still zero.) As a consequence, we can state that

�eðHredÞ ¼ R: (13)

A completely analogous conclusion can be stated for the
restriction to ð�1; r1Þ, and again the essential spectrum
contribution one finds is R both in the nonextremal case
and in the extremal one.

B. Absence of states of the point spectrum

Qualitative spectral analysis of the reduced Hamiltonian
in the nonextremal case can be implemented by means of
theorems in [31] or also in [27]. In [22] a proof was given
for the more general case of the Dirac equation in a Kerr-
Newman-de Sitter black hole background, again in the case
rþ < rc. For the sake of completeness, we sketch the
strategy and also provide some details involving some
differences with respect to [22].

We note that, given a decomposition point r1 2 ðrþ; rcÞ,
we can introduce the following self-adjoint operators Hhor

and Hc on the respective domains DðHhorÞ ¼ f ~g 2
L2½ðrþ; r1Þ; 1=fðrÞdr�2; ~g is locally absolutely continuous;
g1ðr1Þ ¼ 0; Hhor ~g 2 L2½ðrþ; r1Þ; 1=fðrÞdr�2g, and analo-
gously DðHcÞ ¼ f ~g 2 L2½ðr1; rcÞ; 1=fðrÞdr�2, ~g is locally
absolutely continuous; g1ðr1Þ¼0; Hc ~g2L2½ðr1;rcÞ;
1=fðrÞdr�2g. According to the decomposition method ap-
plied to the absolutely continuous spectrum, one has
�acðHredÞ ¼ �acðHhorÞ [ �acðHcÞ (cf. e.g. [22]). Theorem

16.7 in [27] allows one to conclude that, in the nonextremal
case, Hhor has an absolutely continuous spectrum in R�
�þ, where

�þ
e is the electrostatic potential at the black hole

event horizon, and that Hc has an absolutely continuous

spectrum in R��c, where
�c

e is the electrostatic potential

at the cosmological horizon. Moreover, for eQ > 0 it has to
hold �c <�þ, and �c >�þ for eQ < 0, due to the
inequality rc > rþ. In any case, �c � �þ occurs, and
this is an interesting fact in the light of the study of the
pair-creation process, as we shall see in the following
section. As to the spectral properties of the reduced
Hamiltonian, one can easily infer that the spectrum is
absolutely continuous in R (indeed, the above analysis
allows one to conclude that the spectrum is absolutely
continuous in R� ff�cg \ f�þgg but of course the latter
set coincides with R). As to the extremal case, one can
again refer to theorem 16.7 in [27] for Hc and to theorem 1
in [31] for Hhor to conclude that the spectrum is absolutely
continuous in R� ff�cg \ f�þgg. Again, the latter set is
R.

IV. NARIAI SOLUTION

We take into consideration the special case of the so-
called charged Nariai solution [32,33], which is a black
hole solution with r� < rþ ¼ rc. As known, the metric (1)
is no more valid and a suitable transformation is necessary.
It can be shown that the manifold can be described by

ds2 ¼ 1

A
ð�sin2ð�Þdc 2 þ d�2Þ þ 1

B
ðd�2 þ sin2ð�Þd�2Þ

(14)

with c 2 R, � 2 ð0; 	Þ, and where B ¼ 1
2Q2 	

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12 Q2

L2

q
Þ and A ¼ 6

L2 � B are constants such that
A
B < 1 [32,33]. We note that there is nowarping factor in the

metric between the ‘‘radial’’ part and the S2 part. For an
electrically charged black hole, we can choose Ai ¼
�QB

A cosð�Þ
0
i . We study the Dirac equation as in

[23,24]. With the same notation as in [23], we introduce
the so-called generalized Dirac matrices such that
f�i; �jg ¼ 2gij:

�0 ¼ sinð�Þffiffiffiffi
A

p ~�0 �0 ¼ �
ffiffiffiffi
A

p
sinð�Þ ~�0 �1 ¼ 1ffiffiffiffi

A
p ~�1

�1 ¼ ffiffiffiffi
A

p
~�1 �2 ¼ 1ffiffiffiffi

B
p ~�2 �2 ¼ ffiffiffiffi

B
p

~�2

�3 ¼ sinð�Þffiffiffiffi
B

p ~�3 �3 ¼
ffiffiffiffi
B

p
sinð�Þ ~�3; (15)

where ~�i, i ¼ 0, 1, 2, 3 are the usual Dirac matrices in
Minkowski space. The Dirac equation is

½�kð@k � �kÞ ���� ¼ 0; (16)

with
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�k ¼ �1
4�

jð@k�j � �l�
l
jkÞ þ ieAk: (17)

One finds the following nonvanishing Christoffel symbols
�0
01 ¼ cotð�Þ, �1

00 ¼ sinð�Þ cosð�Þ, �2
33 ¼ � sinð�Þ cosð�Þ,

and �3
23 ¼ cotð�Þ. Then, due to our choice for Ai, we get

�0 ¼ � 1
2 cosð�Þ~�0 ~�1 þ ieA0, �1 ¼ 0, �2 ¼ 0, and �3 ¼

1
2 cosð�Þ~�2 ~�3. Then the Dirac equation becomes

�
�

ffiffiffiffi
A

p
sinð�Þ ~�0ð@c � ieA0Þ þ

ffiffiffiffi
A

p
~�1

�
@� þ 1

2
cotð�Þ

�

þ ffiffiffiffi
B

p �
~�2

�
@� þ 1

2
cotð�Þ

�
þ ~�3

1

sinð�Þ@�
�
��

�
�¼ 0:

(18)

By posing � ¼ ðsinð�ÞÞ�1=2ðsinð�ÞÞ�1=2� , we eliminate
the terms proportional to cotð�Þ and to cotð�Þ in the pre-
vious equation. We now consider a static solution with � ¼
expð�i!c Þ
ð�; �;�Þ. Then a trivial manipulation of the
Dirac equation leads to the following eigenvalue equation:

H
 ¼ !
; (19)

with

H ¼ �i~�0 ~�1 sinð�Þ@� � eA0I4 þ
ffiffiffiffi
B

A

s
sinð�Þ~�1K

þ i~�0

�ffiffiffiffi
A

p sinð�Þ: (20)

I4 stays for the 4	 4 identity matrix and K is the following
operator:

K ¼ �i~�1 ~�0 ~�2@� � i~�1 ~�0 ~�3

1

sinð�Þ@� (21)

which commutes with H and whose eigenvalues are k 2
Z� 0 [23,24]. By restrictingH to eigenspaces of K and by
choosing

~� 0 ¼ iI2 O2
O2 �iI2

� �
; ~�1 ¼ O2 I2

I2 O2

� �

(I2 is the 2	 2 identity matrix, O2 is the 2	 2 zero
matrix), we obtain the reduced Hamiltonian,

Hk ¼ � sinð�Þ@�
O2 �I2
I2 O2

 !
þ eQ

B

A
cosð�Þ I2 O2

O2 I2

 !

þ
ffiffiffiffi
B

A

s
sinð�Þk O2 I2

I2 O2

 !

� �ffiffiffiffi
A

p sinð�Þ I2 O2

O2 �I2

 !

¼ hk 
 I2; (22)

where

hk¼
eQB

A cosð�Þ� �ffiffiffi
A

p sinð�Þ sinð�Þ@�þ
ffiffiffi
B
A

q
sinð�Þk

�sinð�Þ@�þ
ffiffiffi
B
A

q
sinð�Þk eQB

A cosð�Þþ �ffiffiffi
A

p sinð�Þ

2
64

3
75:

(23)

The coordinate transformation

x ¼ log

�
tan

�
�

2

��
$ � ¼ 2 arctanðexpðxÞÞ (24)

is such that x 2 R and, furthermore, hk becomes

hk ¼ 0 @x
�@x 0

� �
þ Pð�ðxÞÞ; (25)

where

Pð�Þ¼ eQB
A cosð�Þ� �ffiffiffi

A
p sinð�Þ

ffiffiffi
B
A

q
sinð�Þkffiffiffi

B
A

q
sinð�Þk eQB

A cosð�Þþ �ffiffiffi
A

p sinð�Þ

2
64

3
75:

(26)

hk is formally self-adjoint in L2½R; dx�2 and it is essentially
self-adjoint in C1

0 ðRÞ2, as follows from corollary to theo-

rem 6.8 (page 99) of [27] (the limit point case occurs both
at x ¼ �1 and at x ¼ 1). It is easy to show that the
essential spectrum of hk coincides with R and the same
is true for the absolutely continuous spectrum. The latter
claim can be checked by following the ideas displayed in
Sec. III B. See Appendix A for more details.

V. ULTRACOLD CASE

There is still a subcase to be taken into account. It
corresponds to the so-called ultracold case [32], where
the three horizons coincide: r� ¼ rþ ¼ rc. Also in this
case the metric (1) is no more valid, and a suitable limit has
to be considered [32]. Actually, one can introduce two
different metrics for the ultracold case. As a consequence,
also our analysis is split into two parts.

A. Ultracold I

A first metric [32] is

ds2 ¼ ��2dc 2 þ d�2 þ 1

2�
ðd�2 þ sin2ð�Þd�2Þ; (27)

with � 2 ð0;1Þ and c 2 R. One gets �0
01 ¼ 1

� , �
1
00 ¼ �,

�2
33 ¼ � sinð�Þ cosð�Þ, and �3

23 ¼ cotð�Þ. The electromag-

netic field strength is F ¼ ffiffiffiffi
�

p
�d� ^ dc , and we can

choose A0 ¼
ffiffiffi
�

p
2 �2 and Aj ¼ 0, j ¼ 1, 2, 3. We introduce
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�0 ¼ �~�0 �0 ¼ � 1

�
~�0

�1 ¼ ~�1 �1 ¼ ~�1

�2 ¼ 1ffiffiffiffiffiffiffi
2�

p ~�2 �2 ¼
ffiffiffiffiffiffiffi
2�

p
~�2

�3 ¼ sinð�Þffiffiffiffiffiffiffi
2�

p ~�3 �3 ¼
ffiffiffiffiffiffiffi
2�

p
sinð�Þ ~�3; (28)

and then we obtain �0 ¼ � 1
2
~�0 ~�1 þ ieA0, �1 ¼ 0, �2 ¼

0, and �3 ¼ 1
2 cosð�Þ~�2 ~�3. Calculations which are strictly

analogous to the ones performed in the Nariai case [with
� ¼ expð�i!c Þ 1ffiffiffi

�
p ffiffiffiffiffiffiffiffiffi

sinð�Þ
p �] and the variable change � ¼

expðxÞ, x 2 R, lead to the following reduced Hamiltonian:

hk¼ �e
ffiffiffi
�

p
2 expð2xÞ��expðxÞ @xþ

ffiffiffiffiffiffiffi
2�

p
kexpðxÞ

�@xþ
ffiffiffiffiffiffiffi
2�

p
kexpðxÞ �e

ffiffiffi
�

p
2 expð2xÞþ�expðxÞ

" #
:

(29)

As in the Nariai case, hk is formally self-adjoint in
L2½R; dx�2 and it is essentially self-adjoint in C1

0 ðRÞ2, as
follows from corollary to theorem 6.8 (page 99) of [27].
The analysis of the spectrum can be pursued by means of
the decomposition method applied to the absolutely con-
tinuous spectrum, and one can again conclude that the
absolutely continuous spectrum of the self-adjoint exten-
sion of hk on R coincides with the whole real line. See
Appendix B for details.

B. Ultracold II

The second allowed metric [32] for the ultracold case is

ds2 ¼ �dc 2 þ dx2 þ 1

2�
ðd�2 þ sin2ð�Þd�2Þ; (30)

with x 2 R and c 2 R. One gets �2
33 ¼ � sinð�Þ cosð�Þ

and �3
23 ¼ cotð�Þ. The electromagnetic field strength is

F ¼ � ffiffiffiffi
�

p
dc ^ dx, and we can choose A0 ¼

ffiffiffiffi
�

p
x and

Aj ¼ 0, j ¼ 1, 2, 3. We introduce

�0 ¼ ~�0 �0 ¼ �~�0

�1 ¼ ~�1 �1 ¼ ~�1

�2 ¼ 1ffiffiffiffiffiffiffi
2�

p ~�2 �2 ¼
ffiffiffiffiffiffiffi
2�

p
~�2

�3 ¼ sinð�Þffiffiffiffiffiffiffi
2�

p ~�3 �3 ¼
ffiffiffiffiffiffiffi
2�

p
sinð�Þ ~�3; (31)

and then we obtain �0 ¼ ieA0, �1 ¼ 0, �2 ¼ 0, and �3 ¼
1
2 cosð�Þ~�2 ~�3. Again calculations as above [with � ¼
expð�i!c Þ 1ffiffiffiffiffiffiffiffiffi

sinð�Þ
p �] lead to the following reduced

Hamiltonian:

hk ¼ �e
ffiffiffiffi
�

p
x�� @x þ

ffiffiffiffiffiffiffi
2�

p
k

�@x þ
ffiffiffiffiffiffiffi
2�

p
k �e

ffiffiffiffi
�

p
xþ�

" #
: (32)

Also in this case, hk is formally self-adjoint in L2½R; dx�2
and it is essentially self-adjoint in C1

0 ðRÞ2. As in the

previous case, the decomposition method applied to the
absolutely continuous spectrum allows one to draw the
conclusion that the spectrum of the self-adjoint extension
of the Hamiltonian (32) is absolutely continuous and co-
incides with R. See Appendix C for details.

VI. PAIR CREATION AND LEVEL CROSSING

We follow the Ruffini-Damour-Deruelle [14–17] ap-
proach, which was summarized in a previous paper [18].
Herein, we limit ourselves to recall some very basic prop-
erties, focusing on the RN-dS case (the other cases can be
dealt with analogously). In this approach one introduces
effective potentials E�

0 ðrÞ for the positive and negative

energy states, respectively; they represent the classical
turning points for the particle motion and lead to the
definition of the so-called effective ergosphere. These po-
tentials enter the Hamilton-Jacobi (HJ) equation for a
classical particle. They can be interpreted also at the quan-
tum level, as in [17]. In particular, they indicate the regions
of level crossing between positive and negative energy
states [15,16]. In the case of the Dirac equation, it is known
that the HJ equation corresponds to a WKB approximation
to the Dirac equation at the lowest order [34,35]. Variable
separation in the quantum case allows one to obtain an
obvious improvement of the semiclassical formulas,
amounting to replacing the classical value of the angular
momentum with the quantum eigenvalues of the corre-
sponding quantum operator [18]. We limit ourselves to
recall one of the main points of our analysis of the Dirac
Hamiltonian in [18]. The key observation resides in the
following fact: if one considers the potential term in the
Dirac Hamiltonian,

VðrÞ ¼ p11ðrÞ p12ðrÞ
p21ðrÞ p22ðrÞ

� �
;

and formally calculates the eigenvalues of the above ma-
trix, which are found by solving

ðp11ðrÞ � �Þðp22ðrÞ � �Þ � p12ðrÞp21ðrÞ ¼ 0; (33)

then, defining SðrÞ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðp11ðrÞ þ p22ðrÞÞ2 � 4p11ðrÞp22ðrÞ þ 4p12ðrÞp21ðrÞ
p

one
finds

��ðrÞ ¼ 1
2ðp11ðrÞ þ p22ðrÞ � SðrÞÞ; (34)

and moreover one gets

��ðrÞ ¼ E�
0 ðrÞ; (35)

i.e., the semiclassical potentials introduced by Damour-
Deruelle-Ruffini coincide with the eigenvalues of the ma-
trix potential term in the Dirac Hamiltonian. Moreover, the
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square of the classical angular momentum term is replaced
by the square of the eigenvalues k ¼ �ðjþ 1=2Þ for the
quantum angular momentum, and one obtains

E�
0 ðrÞ ¼

eQ

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðrÞ

�
�2 þ k2

r2

�s
: (36)

A. Level crossing in the RN-dS case

Level crossing amounts to the presence of overlap be-
tween the range of Eþ

0 and the range of E�
0 , signalling the

possibility of a tunneling between positive energy states
and negative energy ones; the latter phenomenon is in turn
interpreted as pair creation at the barrier potential, and is
strictly related to the Klein paradox (incidentally, it could
be called for this reason also Klein effect [29]). There is a
peculiar property in the case of RN-dS black holes: due to
the inequality �c � �þ, an overlap is always present,
indeed one gets

lim
r!rþ

E�
0 ðrÞ ¼ �þ; (37)

and

lim
r!rc

E�
0 ðrÞ ¼ �c: (38)

Assuming for definiteness eQ > 0, one finds

E�
0 ðrþÞ ¼ �þ >�c ¼ Eþ

0 ðrcÞ; (39)

which proves the above claim. Moreover, it is easy to
realize that level crossing occurs for energy ! such that

�c ¼ minEþ
0 ðrÞ � ! � maxE�

0 ðrÞ ¼ �þ: (40)

For eQ < 0 the overlap still exists, being E�
0 ðrcÞ ¼ �c >

�þ ¼ Eþ
0 ðrþÞ, and (40) changes accordingly: �þ � ! �

�c. It is to be immediately pointed out that this overlap is
not enough to conclude that a sensible pair-creation pro-
cess occurs in the given background. Indeed, the potential
barrier to be overcome by the negative energy particle can
be as large as the whole external region of the space-time.
As a consequence, no efficient process can be expected on
this ground in general, and further conditions taking into
account the effective largeness of the barrier have to be
looked for. Notice also that Eþ

0 , as a function of �2, is

increasing, and the same is true for its dependence on k2;
both these properties are reversed in the case of E�

0 , which

is in fact decreasing. As a consequence, one expects a more
difficult level crossing for increasing values of �2 or k2.
We start giving sample examples for a nonextremal

black hole manifold. In Fig. 1, we keep fixed the geometric
background parameters L, M, Q, and the charge e of the
Dirac particle, and consider two sample values of the mass.
On the left, we find the former phenomenon described
above, i.e. a level crossing with a barrier as large as�rc �
rþ. On the right-hand case, which is obtained by consid-
ering a lower fermion mass, we obtain instead a level
crossing associated with a much smaller extent of the
barrier. The latter case is expected to be involved in an
effective phenomenon of pair creation at the barrier. In
Figs. 2 and 3 a further nonextremal case is displayed, with
rc
rþ
� 1:01 (to be compared with rc

rþ
� 10:4 of the example
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FIG. 1. On the left, we display the level crossing in the case of a nonextremal RN-dS black hole, with L ¼ 1000, M ¼ 50, Q ¼ 30,
� ¼ 1, e ¼ 1, and k ¼ 1. The particle and the black hole have charges with the same sign. One finds rþ � 90:842, rc � 946:214,
r� � 9:999, and r0 ��1047:056. The upper straight line represents eQ=rþ, the lower is eQ=rc. The upper potential is Eþ

0 ðrÞ, the
lower one is E�

0 ðrÞ. Level crossing occurs, but the potential barrier is as large as the whole space-time region at hand. On the right, the

only change with respect to the previous figure stays in the smaller value � ¼ 0:01 of the fermion mass. The upper straight line
represents eQ=rþ, the lower is eQ=rc. The upper potential is E

þ
0 ðrÞ, the lower one is E�

0 ðrÞ. Level crossing occurs in this case with a

much smaller extent of the potential barrier with respect to rc � rþ.
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displayed in Fig. 1). In Fig. 3 we show the details of the
potentials near the horizons. In Fig. 4, an extremal case is
also shown. In Fig. 5 we display the so-called lukewarm
case [32,36], which is such that the same temperature
occurs in the case of the cosmological horizon and of the
black hole event horizon, still with rþ < rc (this happens
for Q ¼ M). It is displayed for the sake of completeness,
even if from the point of view of the given phenomenon no
peculiar behavior is expected with respect to the cases

explored in Figs. 1 and 2. Notice that, from a physical
point of view, the phenomenon of pair creation by a
charged black hole has been related to the Schwinger
calculation of pair creation by a homogeneous electric field
[7]. The highest value of the electrostatic potential, which
corresponds to the highest intensity of the electrostatic
field, occurs near the black hole event horizon; hence,
one could naively expect that the standard condition�2þ >
�2, i.e.
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FIG. 2. Level crossing in the case of a nonextremal RN-dS black hole having L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 791

p
, M ¼ 1 193 005=31 791, and Q ¼

330
ffiffiffiffiffiffiffiffi
190

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 791

p
, which are such that rc ¼ 100, rþ ¼ 99, and r� ¼ 10. Moreover, we choose e ¼ 1, k ¼ 1, and the same sign for

the black hole charge and for the particle charge. The upper straight line represents eQ=rþ, the lower is eQ=rc. The figure on the right
displays the potentials for � ¼ 1, and shows that a very large potential barrier occurs. In the figure on the right, one has � ¼ 0:01 and
a very narrower potential barrier. Note that in the latter case eQ=rþ >� holds, whereas in the former the opposite inequality is
implemented.
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FIG. 3. Level crossing in the case of a nonextremal RN-dS black hole having L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 791

p
, M ¼ 1 193 005=31 791, and Q ¼

330
ffiffiffiffiffiffiffiffi
190

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
31 791

p
, as in the previous figure, with e ¼ 1, k ¼ 1. We display on the left the presence of a bump near the black hole

horizon in the case of Eþ
0 . Analogously, on the right we show the behavior of the potentials very near the cosmological horizon.
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�
Q

rþ

�
2
>

�2

e2
; (41)

which is enough for the standard Reissner-Nordström case
[7,8,15], is also qualitatively relevant in the present one, at
least in some approximation. We recall that, in the case of
the lightest known charged particle, i.e. the electron, one
has �e

e � 10�21. The above condition is not necessary for

the existence of a sensible level crossing. A proof of its
sufficiency in the extremal case can be given under the

hypothesis k2

r2þ
� 1, which allows one to neglect the angular

momentum contribution in the potentials, and also for
rþ � rc. In the extremal case, it is easy to show that the

condition to be satisfied is that
dEþ

0

dr ðrþÞ dE
�
0

dr ðrþÞ> 0, which

means that both potentials are increasing or decreasing
near r ¼ rþ. One has to impose

dEþ
0

dr
ðrþÞ dE

�
0

dr
ðrþÞ ¼ 1

r2þ

�
�2þ � r2c

L2

�
1� rþ

rc

��
1þ 3

rþ
rc

�

	
�
�2 þ k2

r2þ

��
> 0; (42)
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FIG. 5. Level crossing in the case of a lukewarm RN-dS black hole, with L ¼ 1000,M ¼ 50,Q ¼ 50, e ¼ 1, k ¼ 1, and with� ¼ 1
on the left and � ¼ 0:01 on the right. One finds rþ � 52:786 and rc � 947:214. Level crossing is qualitatively similar to the one
displayed in Fig. 1.
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FIG. 4. Level crossing in the case of an extremal RN-dS black hole, with L ¼ 1000, Q ¼ 10 and then M ’ 9:999 499 [see Eq. (5)].
Particle parameters e ¼ 1, k ¼ 1 are kept fixed, whereas it holds � ¼ 1 on the left and � ¼ 0:01 on the right. Level crossing is more
effective in the latter case, and it occurs without any bump near the black hole event horizon.
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and then, under the above hypotheses k2

r2þ
� 1 and rþ � rc,

one obtains

dEþ
0

dr
ðrþÞdE

�
0

dr
ðrþÞ ’ 1

r2þ

�
�2þ ��2 r

2
c

L2

�
> 0; (43)

for which, being rc
L < 1, the aforementioned condition (41)

is sufficient. In Fig. 6 we show an example of extremal
black hole where a significant level crossing occurs but
condition (41) is not satisfied.

Explicit evaluations of the transmission coefficient
which is related to the pair-creation phenomenon (dis-
charge) can be given, e.g. in a WKB approximation, as

pointed out in the original literature [7,8,15]. See also [18]
for a short summary. We do not delve into quantitative
evaluation herein in the RN-dS case but limit ourselves to
some estimates in the cases which will be analyzed in the
following subsections.

B. The Nariai case

The potentials E�
0 ð�Þ in the Nariai case are

E�
0 ð�Þ ¼ eQ

B

A
cosð�Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

A
þ k2

B

A

s
sinð�Þ: (44)

Also in this case level crossing is always present, being
Eþ
0 ð	Þ< E�

0 ð0Þ for eQ > 0 and Eþ
0 ð0Þ<E�

0 ð	Þ for eQ <
0. Level crossing occurs for energies ! such that Eþ

0 ð	Þ �
! � E�

0 ð0Þ in the former case and for Eþ
0 ð0Þ � ! �

E�
0 ð	Þ in the latter one. Again, the largeness of the poten-

tial barrier depends on the choice of the parameters. See
Fig. 7.
An estimation of the transmission coefficient can be

given in the WKB approximation; one obtains [15]

jTWKB
! j2 ¼ exp

�
�2

Z
barrier

dx
ffiffiffiffiffiffiffi
Z!

p �
; (45)

where x stays for the coordinate defined in (24) and where
we have stressed the dependence on the energy ! of TWKB

!

and of

Z! ¼
�
B

A
k2 þ�2

A

�
sin2ð�ðxÞÞ �

�
!� eQ

B

A
cosð�ðxÞÞ

�
2
:

(46)

Let us introduce
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FIG. 6. Level crossing in the case of an extremal RN-dS black
hole, with L ¼ 50, Q ¼ 14:433 684 560 776 572 5, which are
such that M ¼ 13:608 225 263 871 805 121, rþ ’ 20:380 115,
and rc ’ 20:476 977. With � ¼ 0:01, e ¼ 0:01, k ¼ 1 one gets
�þ ’ 0:708�, which violates (41).
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FIG. 7. Level crossing in the case of a Nariai solution. The potentials E�
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�2
k ¼

B

A
k2 þ�2

A
; (47)

and also

Em ¼ jQjB
A
; (48)

which corresponds to 1
A times the maximum value for the

modulus of the electrostatic field. Note that positivity of Z!

requires !2 <�2
k þ e2E2

m. We obtain

jTWKB
! j2 ¼ exp

�
�2	jejEm

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

k

e2E2
m

s
� 1

��
; (49)

which does not depend on !. See Appendix D for more
details. At the leading order as�2

k � e2E2
m one is also able

to recover the approximation

jTWKB
! j2 � exp

�
�	

�2
k

jejEm

�
; (50)

which shares a nice resemblance with the WKB estimate of
the transmission coefficient related to the pair-creation
process in a uniform constant electrostatic field. Compare
e.g. [15].

C. The ultracold cases

We obtain

E�
I ð�Þ ¼ � e

ffiffiffiffi
�

p
2

�2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k2 þ�2

q
� (51)

in the case of the first kind of ultracold solution (27), and
level crossing requires that! � 0 for e > 0 and! � 0 for
e < 0. In the case (30) one finds

E�
II ðxÞ ¼ �e

ffiffiffiffi
�

p
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�k2 þ�2

q
: (52)

It is evident that for any ! 2 R one obtains level crossing.
In Figs. 8 and 9 level crossing is displayed for both the
ultracold I and the ultracold II cases.
As to a WKB approximation for jT!j2, we get in both

cases

jTWKB
! j2 ¼ exp

�
�	ð�2 þ 2�k2Þ

jej ffiffiffiffi
�

p
�
; (53)

which again is independent from !. Notice that, by keep-
ing into account that for the electrostatic field one finds

E ¼ ffiffiffiffi
�

p
, and with the replacement �2 � �2

k ¼
�2 þ 2�k2, one obtains again a formula which is very
similar to the one which is associated with the description
of the pair creation in a uniform constant electric field in
flat space-time in the same approximation, and this time no
requirement about the smallness of the ratio between �2

k

and jejE is imposed. A deeper analysis for the special cases
ultracold II, ultracold I, and Nariai is in progress [37].
Some considerations about the problem of the choice of

the quantum state playing the role of vacuum are ad-
dressed. If one were to assume that the positive and nega-
tive frequencies associated with the Hamiltonian define the
vacuum, one would end up with the so-called Boulware
vacuum, which is viable as the real vacuum only in the
ultracold II case, where the background temperature is zero
[36]. For a Reissner-Nordström-de Sitter black hole back-
ground, a further difficulty arises due to the presence of
both a cosmological temperature and of a black hole
temperature in the nonextremal and nonlukewarm cases,
involving a true nonequilibrium situation. A simpler case is
the extremal one, because of the occurrence of a single
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temperature for the given manifold, and the same consid-
erations can be made in the case of the lukewarm solution
and in the Nariai case.

We are not aware of a rigorous construction for quantum
field theory on the given backgrounds. One could expect
that, in the presence of a single nonzero temperature,
suitable analyticity requirements for the fields on the ex-
tended manifold can lead to the thermal state as in [7], and
that ‘‘heating up’’ the Boulware vacuum (as it can be
rigorously done in the case of a scalar field on a
Schwarzschild black hole background [38]), taking into
account the complication of the level crossing displayed
above, could be a viable solution. The instability associated
with the pair-creation process induced by the presence of
the electrostatic field generated by the black hole still
remains, and gives rise to the process of discharge we
have taken into account. Thermality of the physical state
modifies such a pair-creation process but the transmission
coefficient jTj we have calculated for a vacuum situation
still plays a role, as it is shown e.g. in Ref. [39] for the case
of quantum electrodynamics in flat space-time (see also
[40]). One obtains that for an initial thermal state pair
creation is still proportional to jTj2 with a multiplicative
factor depending on the temperature. We shall come back
to this topic in [37]. The general RN-dS case is evidently
more tricky and challenging, and requires a nonequilib-
rium framework.

VII. CONCLUSIONS

We have shown that, on the background of a charged
black hole in de Sitter space, massive and charged Dirac
particles are described by a Hamiltonian operator which is
well behaved both on the cosmological horizon and on the
black hole horizon. We have also inferred that in all cases

the point spectrum of the Hamiltonian is empty, and then
there is no bound state and no normalizable time-periodic
solution of the Dirac equation. The presence of two differ-
ent horizons allows a simpler analysis even in the extremal
case. Moreover, the same occurrence of two event horizons
involving different values of the electrostatic potential is at
the root of the presence in any case of level crossing
between positive energy states and negative energy ones.
This fact per se is not enough for claiming that a sensible
pair-creation effect is present on the given manifold, due to
the fact that a priori the potential barrier to be overcome
can be very large (even large as almost the whole external
manifold in the RN-dS case and in the Nariai one) and then
the effect is expected to be very suppressed. Nevertheless,
in all cases examples can be found where the barrier is of
much more reduced extent, in such a way to allow a
physical ground to the pair-creation phenomenon. Some
estimates in WKB approximation have been given for the
transmission coefficient which is related to the pair-
creation process [7,8,15] in the case of the Nariai geometry
and in the ultracold ones.
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APPENDIX A: ABSOLUTELY CONTINUOUS
SPECTRUM IN THE NARIAI CASE

We introduce a decomposition point �d 2 R and also
the following self-adjoint operators H�1 and H1 on
the respective domains DðH�1Þ¼f ~g2L2½ð�1; �d�;dx�2,
~g is locally absolutely continuous; g1ð �dÞ ¼ 0;

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-10 -5  0  5  10

-2

-1

 0

 1

 2

-10 -5  0  5  10

FIG. 9. Level crossing in the case of the ultracold II metric. We choose � ¼ 0:01, k ¼ 1, and e ¼ 1 in both cases and � ¼ 1 on the
left and � ¼ 0:01 on the right. We display only a part of the full plot, which shows of course a linear behavior.
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H�1 ~g2L2½ð�1; �d�;dx�2g, and analogously DðH1Þ¼
f ~g2L2½½ �d;1Þ;dx�2, ~g is locally absolutely continuous;
g1ð �dÞ ¼ 0; H1 ~g 2 L2½½ �d;1Þ; dx�2g. We define P� :¼
limx!�1Pð�ðxÞÞ and Pþ :¼ limx!�1Pð�ðxÞÞ, where the
Pð�ðxÞÞ is the potential (26), and write

P ¼ P
 þ ðP� P
Þ: (A1)

The first term on the right-hand side of Eq. (A1) is obvi-
ously of bounded variation, whereas the latter term is such
that jP� Pþj 2 L1½½ �d;1Þ; dx� and jP� P�j 2
L1½ð�1; �d�; dx�, respectively. Moreover, notice that

P
 ¼ �eQ B
A 0

0 �eQ B
A

" #
: (A2)

As a consequence, in both cases the hypotheses of theorem
16.7 in [27] are implemented, and one is allowed to con-
clude thatH�1 has absolutely continuous spectrum inR�
feQ B

Ag, and that H1 has absolutely continuous spectrum in

R� f�eQ B
Ag. Then the absolutely continuous spectrum of

the self-adjoint extension of the Hamiltonian operator (25)
is R.

APPENDIX B: ABSOLUTELY CONTINUOUS
SPECTRUM IN THE ULTRACOLD I CASE

Let us introduce a self-adjoint extension H�1 of the
formal differential expression (29) on the interval ð�1; 0�
(0 is the decomposition point). Notice that the potential
term in (29) is

PðxÞ ¼ � e
ffiffiffi
�

p
2 expð2xÞ �� expðxÞ ffiffiffiffiffiffiffi

2�
p

k expðxÞffiffiffiffiffiffiffi
2�

p
k expðxÞ � e

ffiffiffi
�

p
2 expð2xÞ þ� expðxÞ

" #
(B1)

and it is such that limx!�1PðxÞ ¼ O. Moreover, it is easy
to show that jPðxÞj 2 L1½ð�1; 0�; dx�. As a consequence,
theorem 16.7 of [27] can be applied and the given self-
adjoint extension has absolutely continuous spectrum in
R� f0g. It is also true that 0 is not an eigenvalue for H�1,
because no normalizable solution exists as a consequence
of the Levinson theorem [whose applicability is related to
the property that each entry in PðxÞ is integrable near x ¼
�1; cf. [41], page 8]. Compare also [4] for the Kerr-
Newman case. Thus �acðH�1Þ ¼ R. As a consequence
(cf. e.g. [22]), also the absolutely continuous spectrum of
the self-adjoint extension of hk on R coincides with the
whole real line.

APPENDIX C: ABSOLUTELY CONTINUOUS
SPECTRUM IN THE ULTRACOLD II CASE

Let us notice that the equation hk ~g ¼ � ~g, by putting

~gðxÞ ¼ w1ðxÞu1ðxÞ
1

w1ðxÞu2ðxÞ
 !

;

wherew1ðxÞ ¼ expð�2
ffiffiffiffiffiffiffi
2�

p
kxÞ is equivalent to the follow-

ing equation:

d

dx
~uðxÞ ¼ 0 ð�e

ffiffiffiffi
�

p
x��Þw1ðxÞ

ðe ffiffiffiffi
�

p
xþ�Þ 1

w1ðxÞ 0

" #
~uðxÞ;
(C1)

where � ¼ ��� and � ¼ �þ�. Then, by restricting
our attention to the interval ½c;1Þ, with c > 0, and by
applying theorem 2 in [31] the result follows. Let us define,

according to the notations of [31], p1 ¼ ð�e
ffiffiffiffi
�

p
xþ�Þ	

expð�2
ffiffiffiffiffiffiffi
2�

p
kxÞ ¼: p11 þ p12, p2 ¼ ð�e

ffiffiffiffi
�

p
x��Þ	

expð2 ffiffiffiffiffiffiffi
2�

p
kxÞ ¼: p21 þ p22, �1 ¼ expð�2

ffiffiffiffiffiffiffi
2�

p
kxÞ, and

�2 ¼ expð2 ffiffiffiffiffiffiffi
2�

p
kxÞ; p11 :¼ �e

ffiffiffiffi
�

p
x expð�2

ffiffiffiffiffiffiffi
2�

p
kxÞ and

p21 :¼ �e
ffiffiffiffi
�

p
x expð2 ffiffiffiffiffiffiffi

2�
p

kxÞ. One obtains p11p21 ¼
e2�x2 > 0 and

Rþ1
c dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p11p21

p ¼ þ1. Moreover, bothRþ1
c dx�1

ffiffiffiffiffi
p21

p11

q
and

Rþ1
c dx�2

ffiffiffiffiffi
p11

p21

q
diverge (it is sufficient

that one of them diverges [31]). Moreover, if 
 ¼ ðp21

p11
Þ1=4,

then � :¼ d

dx

1


ffiffiffiffiffiffiffiffiffiffi
p11p21

p ¼
ffiffiffiffiffi
2�

p jkj
jejx is such that limx!þ1� ¼ 0

and d�
dx 2 L1½½c;þ1Þ; dx�. Moreover, �1

p11
, �2

p21
, p12

p11
, and p22

p21

are long range (in the sense that they vanish as x ! þ1
and their derivative is in L1½½c;þ1Þ; dx�). Then the hy-
potheses of theorem 2 in [31] are implemented, which
means that the absolutely continuous spectrum is R.

APPENDIX D: EVALUATION OF THE NARIAI
TRANSMISSION INTEGRAL

We need to evaluateZ
barrier

ffiffiffiffiffiffiffi
Z!

p
dx; (D1)

where Z! is given in (46) and �ðxÞ ¼ 2 arctanex [cf. (24)].
Using

cos�ðxÞ ¼ � tanhx; sin�ðxÞ ¼ 1

coshx
;

we can rewrite

MASSIVE DIRAC PARTICLES ON THE BACKGROUND OF . . . PHYSICAL REVIEW D 79, 124024 (2009)

124024-13



Z
barrier

ffiffiffiffiffiffiffi
Z!

p
dx ¼

Z
barrier

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
B

A
k2 þ�2

A

�
�
�
! coshxþ eQ

B

A
sinhx

�
2

s
dx

coshx

¼
Z
barrier

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
B

A
k2 þ�2

A

�
e�2x � 1

4

��
!þ eQ

B

A

�
þ
�
!� eQ

B

A

�
e�2x

�
2

s
2e2x

1þ e2x
dx: (D2)

If we define �2
k as in (47) and !� ¼ !� eQ B

A , and change the variable to z ¼ e2x we get

Z
barrier

ffiffiffiffiffiffiffi
Z!

p
dx ¼

Z zþ

z�
dz

1

1þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2�

4

1

z2
þ
�
�2

k �
1

2
!þ!�

�
1

z
�!2þ

4

s
; (D3)

where 0 � z� < zþ are the two real solutions of

�!2�
4

þ
�
�2

k �
1

2
!þ!�

�
z�!2þ

4
z2 ¼ 0:

Note that such solutions exist if the discriminant of the
polynomial is positive. This gives

0<�2
kð�2

k �!þ!�Þ ¼ �2
k þ e2Q2 B

2

A2
�!2:

The integral is indeed well defined for �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ e2Q2 B2

A2

q
<

!<
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ e2Q2 B2

A2

q
. Note, however, that only the region

of level crossing �jeQB=Aj � ! � jeQB=Aj, corre-
sponding to !þ!� � 0, is relevant for computing the
transmission coefficient. Let us first distinguish the ‘‘ge-
neric case’’ !þ!� � 0 from the ‘‘particular case’’
!þ!� ¼ 0. In order to compute the integral in the generic
case, the residue method is used. Let us cut the complex
plane C along the segment ½z�; zþ� � Rþ (note that z� >
0 in this case), so defining a Riemann sheet for the square

root fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ � zÞðz� z�Þ!2þ=4

q
. In particular, we

choose the phase of ðzþ � zÞðz� z�Þ!2þ=4 to be 0 (mod-
ulo 4	) along the lower border of the cut, so that it will be
2	 (modulo 4	) along the upper border. Thus, it makes
sense to take the closed path � ¼ s# [ cþ [ s" [ c� as in
Fig. 10.

When the radii of the two circles c� are set to zero, �
approaches the cut without crossing any singularity so that
the value of the integral

I ¼
I
�
dz

1

1þ z

fðzÞ
z

(D4)

does not change. In this limit, the contributions from the
circles vanish, whereasZ

s#
!

Z zþ

z�
;

Z
s"
! �

Z zþ

z�

and being the phase of f equal to 0 on the lower cut and to
	 on the upper cut, we see that

Z
barrier

ffiffiffiffiffiffiffi
Z!

p
dx ¼

Z zþ

z�
dz

1

1þ z

fðzÞ
z

¼ 1

2
I: (D5)

To compute the integral I, let us blow up �, without cross-
ing the poles of the integrand (which are z ¼ 0, �1, 1) as
in Fig. 11.
We see that (cf. Fig. 11)

I ¼ �
I
c�ð0Þ

dz
1

1þ z

fðzÞ
z

�
I
c�ð�1Þ

dz
1

1þ z

fðzÞ
z

þ
I
cRð0Þ

dz
1

1þ z

fðzÞ
z

; (D6)

where we used crðzÞ to indicate the counterclockwise
oriented circle with center z and radius r. Note that, if
we take the change of variable z ¼ 1=t in the last integral,
we have [42] cRð0Þ ! �c1=Rð0Þ so that

FIG. 10. Circuit � around the cut in the Riemann sheet of f. FIG. 11. Blowup of the path �.
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I ¼ �
I
c�ð0Þ

dz
1

1þ z

fðzÞ
z

�
I
c�ð�1Þ

dz
1

1þ z

fðzÞ
z

þ
I
c1=Rð0Þ

dt
1

1þ t
fð1=tÞ

¼ �2	i

�
resz¼0

�
1

1þ z

fðzÞ
z

�
þ resz¼�1

�
1

1þ z

fðzÞ
z

�
� resz¼0

�
1

1þ z
fð1=zÞ

��
¼ �2	iðfð0Þ � fð�1Þ � lim

z!0
ðzfð1=zÞÞÞ

¼ 2	i

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2�

4

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
�2

k þ
1

4
ð!þ �!�Þ2

�s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2þ

4

s �
: (D7)

To compute the square roots we need to specify their
phases. This is easily done looking at the Riemann sheet.
Indeed, if we look at the real axis, on z < z� the phase of
f2 is 3	 (modulo 4	) so that fðxÞ ¼ �ijfðxÞj for x ¼ 0,
�1. For the last root, we note that

lim
z!0

zfð1=zÞ ¼ lim
z!1fðzÞ=z

and because the monodromy of z ¼ 1 is trivial [the phase
of fðzÞ does not change (modulo 2	) if jzj is very large and
argðzÞ varies by a period], z ¼ 1 is indeed a pole (and not a
branch point) and this limit does not depend on the phase of
z. Thus, we can compute it along the positive real axis. But
there, the phase of fðzÞ2 for z > zþ is 	, so that fðzÞ ¼
ijfðzÞj, and finally we have

I ¼ 2	i

�
�
�
�i

j!�j
2

�
þ
�
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ
1

4
ð!þ �!�Þ2

s �

þ i
j!þj
2

�

¼ 2	

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ
1

4
ð!þ �!�Þ2

s
� 1

2
ðj!þj þ j!�jÞ

�
:

(D8)

Note that in the physically interesting case, that is when
!þ!� < 0, we have j!þj þ j!�j ¼ j!þ �!�j which
does not depend on !, and reproduces exactly (49).

It remains only to check the particular cases, which are
however easily obtained by direct integration. For ex-

ample, for !� ¼ 0 so that !þ ¼ 2eQB=A, we have

I=2 ¼
Z
barrier

ffiffiffiffiffiffiffi
Z!

p
dx ¼ 1

2

Z 4ð�2
k
=!2

þÞ

0

dz

1þ z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

z
�2

k �!2þ

s
:

(D9)

Introducing the new integration variable s2 ¼ 4
z �

2
k �!2þ,

we get

I=2 ¼
Z 1

0

�
1

!2þ þ s2
� 1

4�2
k þ!2þ þ s2

�
s2ds

¼
Z 1

0

�
� !2þ
!2þ þ s2

þ 4�2
k þ!2þ

4�2
k þ!2þ þ s2

�
ds

¼ �	

2
j!þj þ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

k þ
1

4
!2þ

s
:

For !þ ¼ 0 (!� ¼ �2eQB=A) we have

I=2 ¼
Z 1

!2�=4�2
k

1

zð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

kz�
!2�
4

s

¼ 1

2

Z 4ð�2
k
=!2�Þ

0

dt

1þ t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

t
�2

k �!2�

s
;

where we used the change of variable t ¼ 1=z, obtaining
the same integral as in (D9) with!� in place of!þ, giving
thus the same result, being j!�j ¼ 2jeQB=Aj.
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