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We show a uniqueness theorem for charged rotating black holes in the bosonic sector of five-

dimensional minimal supergravity. More precisely, under the assumptions of the existence of two

commuting axial isometries and spherical topology of horizon cross sections, we prove that an asymptoti-

cally flat, stationary charged rotating black hole with finite temperature in the five-dimensional Einstein-

Maxwell-Chern-Simons theory is uniquely characterized by the mass, charge, and two independent

angular momenta and therefore is described by the Chong-Cvetič-Lü-Pope solution. We also discuss a

generalization of our uniqueness theorem for spherical black holes to the case of black rings.
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I. INTRODUCTION

In string theory and various related contexts, higher-
dimensional black holes and other extended black objects
have played an important role. In particular, physics of
black holes in the five-dimensional Einstein-Maxwell-
Chern-Simons (EMCS) theory has recently been the sub-
ject of increased attention, as the five-dimensional EMCS
theory describes the bosonic sector of five-dimensional
minimal supergravity, a low-energy limit of string theory.
Various types of black hole solutions in the EMCS theory
[1–22] have so far been found, with the help of, in part,
recent development of solution generating techniques
[20,23–40]. However, the classification of those black
hole solutions has not been achieved yet. The purpose of
this paper is to show a uniqueness theorem for charged
rotating black holes in the five-dimensional EMCS theory,
as a partial solution to the black hole classification problem
in the string theory.

It is now evident that even within the framework of
vacuum Einstein gravity, there is a much richer variety of
black hole solutions in higher dimensions [37,41–47], the
classification of which still remains a major open issue. As
shown by Emparan and Reall [42], five-dimensional vac-
uum Einstein gravity admits the coexistence of a rotating
spherical hole and two rotating rings with the same con-
served charges, illustrating explicitly the nonuniqueness
property in higher dimensions. However, it is possible to
show type of uniqueness theorems for some restricted
cases in which certain additional conditions are imposed
on some parameters/properties, other than the global con-
served charges. For example, restricting attention to static
solutions, Gibbons et al. [48] showed that the only asymp-
totically flat, static vacuum black hole is the
Schwarzschild-Tangherlini solution [49]. For the rotating
case, by assuming the existence of two axial Killing sym-
metries and spherical topology of the event horizon,
Morisawa and Ida [50] succeeded in proving that five-
dimensional asymptotically flat, stationary vacuum rotat-
ing black holes must be in the Myers-Perry family. Their

theorem was recently generalized to a class of asymptoti-
cally flat solutions with nonspherical horizon topology
[51,52]. For other cases (such as cases including
Maxwell field), see [53–61].
In this paper, we generalize the boundary value analysis

of Morisawa and Ida [50] performed in vacuum Einstein
gravity to the case of the bosonic sector of five-
dimensional minimal supergravity. We are concerned
with stationary black hole spacetimes that are asymptically
flat in the standard sense: Namely, we demand that the
exterior region of the black hole is globally hyperbolic,
having a spherical spatial infinity, and that the metric and
other physical fields, such as Maxwell field, falloff in a
certain manner at large distances. (The asymptotic falloff
conditions are given later.) Furthermore, for simplicity, we
focus on the single black hole case, that is, the event hor-
izon is connected. Then, we note that in five-dimensional
EMCS theory the Chong-Cvetič-Lü-Pope black hole solu-
tion [4,5] (with vanishing cosmological constant) appears
to be the most general such solutions that describe an
asymptotically flat, stationary charged rotating black hole
with spherical horizon topology, characterized by four
conserved charges, i.e., the mass, two independent angular
momenta, and electric charge, and that encompass the
known asymptotically flat, spherical black hole solutions
in a subclass of EMCS theory, such as the Myers-Perry
solution [41], in a certain limit. Thus, we wish to show the
following theorem.
Theorem. Consider, in five-dimensional Einstein-

Maxwell-Chern-Simons theory [given by Eq.. (1) below],
a stationary charged rotating black hole with finite tem-
perature that is regular on and outside the event horizon
and asymptotically flat in the standard sense with spherical
spatial infinity. If (1) the black hole spacetime admits,
besides the stationary Killing vector field, two mutually
commuting axial Killing vector fields so that the isometry
group is R�Uð1Þ �Uð1Þ and (2) the topology of the
horizon cross sections is spherical, S3, and the topology
of the black hole exterior region is R� fR4 n B4g, then the
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black hole spacetime is uniquely characterized by its mass,
electric charge, and two independent angular momenta,
and hence must be isometric to the Chong-Cvetič-Lü-Pope
solution.

Before presenting our proof, we would like to make a
few comments concerning the assumptions made in our
theorem. In order to obtain global results, we need the
symmetry-condition (1), which, in particular, makes it
possible to reduce five-dimensional minimal supergravity
to a nonlinear sigma model with certain symmetries as
shown in [62,63]. Since all known exact black hole solu-
tions in higher dimensions admit multiple axial isometries,
our additional symmetry-condition (1) does not appear to
be too restrictive. However, we should note that the rigidity
theorem [64] (see also [65]) in higher dimensions—which
is recently shown to be applicable also to EMCS theory
[66]—only guarantees the existence of a single rotational
isometry (provided the spacetime metric and other fields
are real, analytic), and therefore at present, the condition
(1) is not yet fully justified. In this respect, note also that
the possibility for higher-dimensional black holes with
fewer isometries than R�Uð1Þ �Uð1Þ has been sug-
gested [67]. Since the rigidity theorem yields that the event
horizon is a Killing horizon, the notion of surface gravity is
well-defined. Then, by finite temperature we mean that the
event horizon is of nondegenerate type, having nonvanish-
ing surface gravity and a bifurcate surface [68,69]. For
extremal (zero-temperature) black holes with vanishing
surface gravity, the event horizon is of degenerated type
and does not possess a bifurcate surface. Then, our bound-
ary conditions to be imposed on target space fields at the
event horizon would not appear to straightforwardly apply
to such a case that the horizon has no bifurcate surface. It
would be of great interest to consider the classification
problem of such extremal (zero-temperature) black holes.
In this respect, there have recently appeared some attempts
to classify near-horizon geometries of extremal black ob-
jects, rather than extremal black objects themselves (see
e.g., [70–75] and references therein).

We also need to additionally impose the topology-
condition (2), in order to explicitly specify boundary con-
ditions on target space variables at the event horizon, in
terms of certain coordinates, globally defined over the
black hole exterior region. The topological censorship,
together with our assumption of asymptotic flatness de-
scribed above, immediately implies that the exterior region

is topologically R� Vð4Þ with Vð4Þ being some four-
dimensional simply connected Riemannian manifold.
However, the simple connectedness by itself does not

completely determine the topology of Vð4Þ. Therefore, in
the present theorem, we simply demand that Vð4Þ � fR4 n
B4g, which is in accordance with the topology of the
Chong-Cvetič-Lü-Pope solution. Our boundary condi-
tions—in particular, the rod structure, which was first
introduced by Harmark [76] based on earlier work for

static solutions [77]—are accordingly specified in the man-
ner discussed in Sec. IV. The topology theorem [78–80]
yields that in five dimensions, cross sections of the event
horizon must be topologically either a sphere, a ring, or a
lens-space. The requirement (2) excludes some interesting
class of solutions to be dealt with. It would be interesting to
consider generalization of our uniqueness theorem to in-
clude solutions with nonspherical horizon topology.
We would like to emphasize that even under these

restrictive assumptions (1) and (2), still it is not at all
obvious whether black holes in EMCS theory are uniquely
specified by their global charges. In fact, it has been shown
by numerical studies [81] that when the value of the Chern-
Simons coupling is larger than some critical value, spheri-
cal black holes in such a general EMCS theory no longer
enjoy the uniqueness property. In the present paper, moti-
vated from sting theory, we restrict attention to a special
class of EMCS theory, that is, five-dimensional minimal
supergravity and then are able to show the above unique-
ness theorem. It would be interesting to find the precise
onset of this nonuniqueness property in general EMCS
theory, using the formulas developed in this paper.
The rest of the paper is devoted to prove the above

uniqueness theorem. In the next section, we present the
metric and the gauge potential in Einstein-Maxwell-Chern-
Simons theory with three Killing symmetries, introduce
the Weyl-Papapetrou coordinates, and reduce the system to
a nonlinear sigma model with certain symmetries. In
Sec. III, using the matrix representation of the sigma
model, we derive a divergence identity/Mazur identity
associated with our nonlinear sigma model. A good part
of the material in Sec. II and the first part of Sec. III
concerning the matrix representation is discussed in [36].
Then, in Sec. IV, presenting our boundary conditions for
our sigma model fields and using the Mazur identity, we
show that if two asymptotically flat black hole solutions
have the same conserved charges, i.e., the mass, electric
charge, and two angular momenta, then they must coincide
with each other, and complete our proof of the uniqueness
theorem. In Sec. V, we summarize our results and discuss
possible generalization of our theorem to include non-
spherical black objects. We discuss that in order to have
a uniqueness theorem for black ring solutions in EMCS
theory, we need to specify rod-data, besides global charges
and horizon topology. In Appendix A, we explicitly com-
pute relevant components of the Maxwell-field. In
Appendix B, we provide the black hole solution of
Chong-Cvetič-Lü-Pope, and study, in terms of the Weyl-
Papapetrou coordinates, the limiting behavior of the solu-
tion near relevant boundaries.

II. EINSTEIN-MAXWELL-CHERN-SIMONS
SYSTEM WITH SYMMETRIES

We consider the bosonic sector of five-dimensional
minimal supergravity theory, which can be obtained by a
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suitable truncation of 11-dimensional supergravity. The
five-dimensional action is given by

S ¼ 1

16�

�Z
dx5

ffiffiffiffiffiffiffi�g
p �

R� 1

4
F2

�
� 1

3
ffiffiffi
3

p
Z

F ^ F ^ A

�
;

(1)

where we set a Newton constant to be unity and F ¼ dA.
Varying this action (1), we derive the Einstein equation

R�� � 1

2
Rg�� ¼ 1

2

�
F��F�

� � 1

4
g��F��F

��

�
; (2)

and the Maxwell equation

d � Fþ 1ffiffiffi
3

p F ^ F ¼ 0: (3)

The purpose of this section is to reduce the above five-
dimensional Einstein-Maxwell-Chern-Simons system to a
nonlinear sigma model with certain target space symme-
tries. We first consider consequences of the existence of
commuting Killing vector fields in our spacetime and
identify the target space variables in Sec.. II A. Then,
having another (stationary) Killing vector field, we intro-
duce the Weyl-Papapetrou coordinates and write down
explicitly the desired nonlinear sigma model action in
Sec. II B.

A. Two Killing system

Let �aða ¼ 1; 2Þ be two mutually commuting Killing
vector fields, so that ½�a; �b� ¼ 0, L�a

g ¼ 0, and L�a
F ¼

0. Then, introducing the coordinates xa as Killing parame-
ters of �a (so that �a ¼ @=@xa), one can express the metric
g and the gauge potential one-form A, respectively, as

ds2 ¼ �abðdxa þ aaidx
iÞðdxb þ abjdx

jÞ
þ j�j�1hijdx

idxj; (4)

A ¼ Aadx
a þ Aidx

i; (5)

where the functions � :¼ � detð�abÞ, aai, hij, Aa, and Ai

(i ¼ 3,4, 5) are independent of the coordinates xa.
Let us define the electric one-form Ea with respect to �a

by

Ea ¼ �i�a
F: (6)

Then the exterior derivatives of the electric one-forms
yield

dEa ¼ i�a
dF�L�a

F ¼ 0; (7)

where F ¼ dA is used. Hence there exist locally the po-
tentials c a such that

dc a ¼ � 1ffiffiffi
3

p i�a
F: (8)

Hence, the gauge potential can be written as

A ¼ ffiffiffi
3

p
c adx

a þ Aidx
i; (9)

where c a is also independent of the coordinates xa. Next,
define the magnetic one-form B by

B ¼ �ð�1 ^ �2 ^ FÞ: (10)

Noting that B can be rewritten as B ¼ �ð�1 ^ �2 ^ FÞ ¼
�i�2

� ð�1 ^ FÞ ¼ i�2
i�1

� F and using the identity

di�2
i�1

¼ i�2
i�1

dþ i�1
L�2

� i�2
L�1

, we can write the ex-

terior derivative of B as

dB ¼ i�2
i�1

d � F: (11)

Then, using the Maxwell Eq. (3), we find that

dB ¼ � 1ffiffiffi
3

p i�2
i�1

F ^ F ¼ 2ffiffiffi
3

p E1 ^ E2 ¼ 2
ffiffiffi
3

p
dc 1 ^ dc 2

¼ ffiffiffi
3

p
dðc 1dc 2 � c 2dc 1Þ: (12)

This immediately implies that there exists the magnetic
potential � such that

d� ¼ 1ffiffiffi
3

p B� 	abc adc b; (13)

where 	12 ¼ �	21 ¼ 1. We also introduce the twist one-
form by

Va ¼ �ð�1 ^ �2 ^ d�aÞ: (14)

Using the Einstein-equation, we can write the exterior
derivative of Va as

dVa ¼ 2 � ð�1 ^ �2 ^ Rð�aÞÞ
¼ ���1i�2

i�1
�2 ð�1 ^ �2 ^ Ea ^ BÞ

¼ �Ea ^ B

¼ �3dc a ^ ðd�þ 	bcc bdc cÞ
¼ �3d½c ad�� � d½c a	

bcc bdc c�; (15)

where Rð�aÞ in the first line is the Ricci one-form.
Therefore, there exists the twist potentials !a that satisfy

d!a ¼ Va þ c að3d�þ 	bcc bdc cÞ: (16)

Thus, as a consequence of the existence of isometries �a,
we have eight scalar fields �ab, !a, c a, �, (a ¼ 1, 2),
which we denote collectively by coordinates �A ¼
ð�ab;!a; c a;�Þ. As we will see soon, other components,
such as aai, Ai are determined by �A. Then, we can find
that the equations of motion, Eqs. (2) and (3), are cast into a
set of equations derived from the following action for
sigma-model �A coupled with three-dimensional gravity
with respect to the metric hij,

S ¼
Z
�

�
Rh �GAB

@�A

@xi
@�B

@xj
hij
� ffiffiffiffiffiffi

jhj
p

dx3; (17)

where the target space metric, GAB, is given by
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GABd�
Ad�B ¼ 1

4
Trð��1d���1d�Þ þ 1

4
��2d�2

þ 3

2
dc T��1dc � 1

2
��1VT��1V

� 3

2
��1ðd�þ 	abc adc bÞ2; (18)

where � ¼ ð�abÞ, c ¼ ðc 1; c 2ÞT , ! ¼ ð!1; !2ÞT and
V ¼ d!� c ð3d�þ 	bcc bdc cÞ. Varying the action by
hij, we obtain the equations

Rh
ij ¼ GAB

@�A

@xi
@�B

@xj
; (19)

where Rh
ij denotes the Ricci tensor with respect to hij. Next

varying the action by �A, we derive the equation

�h�
A þ hij�A

BC

@�B

@xi
@�C

@xj
¼ 0; (20)

where �h is the Laplacian with respect to the three-
dimensional metric hij and �A

BC is the Christoffel symbol

with respect to the target space metric GAB.

B. Weyl-Papapetrou form

Now we consider another Killing vector field �3 which
is assumed to commute with the other Killing vectors �a

and will be identified below as the asymptotic time-
translation Killing vector field. Let us consider the condi-
tion that the two-dimensional distribution orthogonal to
three Killing vector fields �IðI ¼ 1; 2; 3Þ becomes inte-
grable. The commutativity of Killing vector fields,
½�I; �J� ¼ 0, enables us to find coordinate system xI (I ¼
1, 2, 3), so that �I ¼ @=@xI and the coordinate components
of the metric become independent of xI. We now recall the
following theorem about the integrability of two-planes
orthogonal to Killing vector fields [77,76]:

Proposition. If three mutually commuting Killing vector
fields �I (I ¼ 1, 2, 3), in a five-dimensional spacetime
satisfy the following two conditions

(1) �½�1

1 ��2

2 ��2�
3 D���

I ¼ 0 holds at least one point of the
spacetime for a given I ¼ 1, 2, 3,

(2) ��
I R

½�
� ��1

1 ��2

2 ��2�
3 ¼0 holds for all I¼1, 2, 3, then

the two-planes orthogonal to the Killing vector
fields �I (I ¼ 1, 2, 3) are integrable.

Note here that one can replace a pair of Killing vector
fields ð�1; �2Þ above by another pair ð�2; �3Þ. We denote the
corresponding quantities in the choice ð�2; �3Þ with tilde~.
For example, we denote the twist one-forms with respect to
ð�2; �3Þ by

~V ~a ¼ �ð�2 ^ �3 ^ d�~aÞ; (21)

where ~a ¼ 2, 3. Then, using i�I
dc a ¼ i�I

d� ¼ 0,

i�I
d ~c a ¼ i�I

d ~� ¼ 0, and Eq. (16), we show i�I
dVa ¼

i�I
d ~V ~a ¼ 0, and hence have

�ð�1 ^ �2 ^ �3 ^ Rð�aÞÞ ¼ �i�3
� ð�1 ^ �2 ^ Rð�aÞÞ

¼ � 1

2
i�3

dVa ¼ 0; (22)

and

�ð�1 ^ �2 ^ �3 ^ Rð�3ÞÞ ¼ �i�1
� ð�2 ^ �3 ^ Rð�3ÞÞ

¼ � 1

2
i�1

d ~V3 ¼ 0: (23)

This implies that the condition 2 holds in our present
system (33) with three commuting Killing vector fields.
Furthermore, the axial symmetry of at least one of �I (I ¼
1, 2, 3) implies that the condition 1 also holds on the axis of
rotation. Therefore, the two-dimensional surface orthogo-
nal to three �I is integrable.
Now, without loss of generality, we choose our three

coordinates ðx1; x2; x3Þ as the three Killing parameters, so
that �3 ¼ @=@t denotes the stationary (asymptotic time-
translation) Killing vector field in our spacetimes and �1 ¼
@=@
 and �2 ¼ @=@c are two independent axial Killing
symmetries. Then, from the above observation, we can
express the three-dimensional metric hij by h ¼
hpqdx

pdxq � �2dt2 (p q ¼ 4, 5), where �2 ¼ � detðgIJÞ.
Note that the function � is globally well-defined [82]. That
� is a harmonic function can be seen by looking at the (tt)-
component of Eq. (19), which is written

Rtt ¼ �D̂2� ¼ 0; (24)

where D̂p is the covariant derivative associated with the

two-dimensional metric hpq. Let z be harmonic function

conjugate to � which satisfies D̂2z ¼ 0, D̂p�D̂
pz ¼ 0,

D̂p�D̂
p� ¼ D̂pzD̂

pz. Choose the coordinates ðx4; x5Þ as

x4 ¼ � and x5 ¼ z. Then, the metric can be written in the
Weyl-Papapetrou type form as

ds2 ¼ �

ðd
þ a
tdtÞ2 þ �c c ðdc þ ac
tdtÞ2

þ 2�
c ðd
þ a
tdtÞðdc þ ac
tdtÞ

þ j�j�1½e2�ðd�2 þ dz2Þ � �2dt2�; (25)

where all the metric components depend only on � and z.
In this coordinate system, �A are determined by the

equations of motion

���
A þ �A

BC½�B
;��

C
;� þ�C

;z�
C
;z� ¼ 0; (26)

where �� is the Laplacian with respect to the abstract

three-dimensional metric �¼d�2þdz2þ�2d’2. On the
other hand, once �A are given, one can completely deter-
mine �, a
t, a

c
t, Ai. In fact, the function � is determined

by

2

�
�;� ¼ Rh

�� � Rh
zz ¼ GAB½�A

;��
B
;� ��A

;z�
B
;z�; (27)

1

�
�;z ¼ Rh

�z ¼ GAB�
A
;��

B
;z: (28)
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The integrability �;�z ¼ �;z� is assured by Eq. (26). From

Eq. (16), the metric functions aat are determined by

aat;� ¼ ���1�abð!b;z � 3c b�;z � c b	
cdc cc d;zÞ (29)

aat;z¼����1�abð!b;��3c b�;��c b	
cdc cc d;�Þ: (30)

As shown in Appendix A, we can set A� ¼ Az ¼ 0.

Therefore it follows from Eq. (13) that the t-component
of the gauge potential A is determined by

At;� ¼ ffiffiffi
3

p ½aatc a;� � ���1ð�;z þ 	bcc bc c;zÞ�; (31)

At;z ¼
ffiffiffi
3

p ½aatc a;z þ ���1ð�;� þ 	bcc bc c;�Þ�: (32)

Thus, once we determine �A ¼ ð�ab;!a; c a; �Þ, we can
specify the solutions of the system given originally by the
action, Eq. (1), with our Killing symmetry assumption. It
turns out that the above equations of motion, Eq. (26), for
�A are derived from the following action

S ¼
Z

d�dz�½GABð@�AÞð@�BÞ�

¼
Z

d�dz�

�
1

4
Trð��1@���1@�Þ þ 1

4
��2@�2

þ 3

2
@c T��1@c � 1

2
��1vT��1v� 3

2
��1ð@�

þ 	abc a@c bÞ2
�
; (33)

where v ¼ @!� c ð3@�þ 	bcc b@c cÞ. This action is
invariant under the global G2ð2Þ transformation.

III. MAZUR IDENTITY

In the proof of uniqueness theorems for four-
dimensional charged rotating black holes, a key role was
played by a certain global identity—called the Mazur
identity. This is also the case for five-dimensional charged
rotating black holes. In this section, we present the Mazur
type identity for our nonlinear sigma models derived in the
previous section. The derivation parallels that for the vac-
uum Einstein case given in other literature, e.g., Morisawa
and Ida [50], and therefore we present here only some key
formulas.
Following [36], we introduce the G2ð2Þ=SOð4Þ coset

matrix, M, defined by

M ¼
Â B̂

ffiffiffi
2

p
Û

B̂T Ĉ
ffiffiffi
2

p
V̂ffiffiffi

2
p

ÛT
ffiffiffi
2

p
V̂T Ŝ

0
B@

1
CA; (34)

where Â and Ĉ are symmetric 3� 3 matrices, B̂ is a 3� 3

matrix, Û and V̂ are 3-component column matrices, and Ŝ
is a scalar, defined, respectively, by

Â ¼ ½ð1� yÞ�þ ð2þ xÞc c T � ��1 ~! ~!T þ�ðc c T��1Ĵ � Ĵ��1c c TÞ� ��1 ~!
��1 ~!T ���1

 !
;

B̂ ¼ ðc c T ��ĴÞ��1 � ��1 ~!c TĴ ½ð�ð1þ yÞ�Ĵ � ð2þ xÞ�þ c T��1 ~!Þc þ ðz��Ĵ��1~Þ!�
��1c TĴ �z

 !
;

Ĉ ¼ ð1þ xÞ��1 � ��1c c T��1 ��1 ~!� Ĵðz��Ĵ��1Þc
~!T��1 þ c Tðzþ���1ĴÞĴ ½ ~!T��1 ~!� 2�c T��1 ~!� �ð1þ x� 2y� xyþ z2Þ�

 !
;

Û ¼ ð1þ x��Ĵ��1Þc ����1 ~!
���1

 !
; V̂ ¼ ð��1 þ���1ĴÞc

c T��1 ~!��ð1þ x� zÞ
 !

; Ŝ ¼ 1þ 2ðx� yÞ;

with

~! ¼ !��c ; (35)

x ¼ c T��1c ; y ¼ ��1�2; z ¼ y� ��1c TĴ ~!;

(36)

and the 2� 2 matrix,

Ĵ ¼ 0 1
�1 0

� �
: (37)

We note that this 7� 7 matrix M is symmetric, MT ¼ M,
and unimodular, detðMÞ ¼ 1. Since we choose the Killing
vector fields �
 and �c to be spacelike, all the eigenvalues
of M are real and positive. Therefore, there exists an G2ð2Þ

matrix ĝ such that

M ¼ ĝĝT: (38)

We define a current matrix as

Ji ¼ M�1@iM; (39)

which is conserved if the scalar fields are the solutions of
the equation of motion derived by the action (33). Then, the
action (33) can be written in terms of J and M as follows

S ¼ 1

4

Z
d�dz� trðJiJiÞ

¼ 1

4

Z
d�dz� trðM�1@iMM�1@iMÞ: (40)
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Thus, the matrixM completely specify the solutions to our
system.

Let us now consider two sets of field configurations,M½0�
andM½1�, that satisfy the equations of motion derived from

the action, Eq. (33). We denote the difference between the
value of the functional obtained from the field configura-
tionM½1� and the value obtained fromM½0� as a bull’s eye �,
e.g.,

J
� i ¼ Ji½1� � Ji½0�; (41)

where the subscripts ½0� and ½1� denote, respectively, the
quantities associated with the field configurationsM½0� and
M½1�. The deviation matrix, �, is then defined by

� ¼ M
�
M�1

½0� ¼ M½1�M�1
½0� � 1; (42)

where 1 is the unit matrix. Taking the derivative of this, we
have the relation between the derivative of the deviation

matrix and J
� i
,

Di� ¼ M½1�J
� i
M�1

½0� ; (43)

where Di is a covariant derivative associated with the
abstract three-metric �. Taking, further, the divergence of
the above formula and also the trace of the matrix ele-
ments, we have the following divergence identity

DiD
itr� ¼ trðM½1�J

�
M�1

½0� Þ; (44)

where we have also used the conservation equationDiJ
i ¼

0. Then, integrating this divergence identity over the region
� ¼ fð�; zÞj� � 0;�1< z <1g, we obtain the Mazur
identity,

Z
@�

�@ptr�dSp ¼
Z
�
�ĥpqtrðMTpMqÞd�dz; (45)

where ĥpq is the two-dimensional flat metric

ĥ ¼ d�2 þ dz2; (46)

and the matrix M is defined by

M p ¼ ĝ�1
½0� J

�
Tpĝ½1�: (47)

Now we note that the right-hand side of the identity,
(45), is non-negative. Therefore, if we impose the bound-
ary conditions at @�, under which the left-hand side of

Eq. (45) vanishes, then we must have J
� i ¼ 0. In that case, it

follows from Eq. (43) that � must be a constant matrix
over the region�. Therefore, in particular, if� is shown to
be zero on some part of the boundary @�, it immediately
follows that�must be identically zero over the base space
�, implying that the two solutions M½0� and M½1� must

coincide with each other. This is indeed the case under
our boundary conditions discussed in the next section.

IV. BOUNDARY VALUE PROBLEMS

In this section, we derive necessary boundary conditions
for determining the scalar fields �A ¼ ð�ab;!a; c a; �Þ,
requiring asymptotic flatness at infinity, regularity on the
two rotation axes (i.e., the 
-invariant plane and the
c -invariant plane), and on the event horizon (of which
cross sections are assumed to be topologically spherical).
Note that by asymptotically flat, we mean that the space-
time metric has the following falloff behavior at large
distances,

ds2 ’
�
�1þ 8MADM

3�r2
þOðr�3Þ

�
dt2 �

�
8J
sin

2�

�r2

þOðr�3Þ
�
dtd
�

�
8Jc cos

2�

�r2
þOðr�3Þ

�
dtdc

þ ð1þOðr�1ÞÞðdr2 þ r2ðd�2 þ sin2�d
2

þ cos2�dc 2ÞÞ; (48)

having the spherical spatial infinity, S31. Here the constants
MADM and Ja are the asymptotic conserved mass and
angular momenta. Since we are concerned with stationary,
axisymmetric spacetimes with Killing symmetries �I, the
conserved charges MADM and Ja are defined, respectively,
by

MADM ¼ � 3

32�

Z
S31

dS��r�ð�3Þ�; (49)

Ja ¼ 1

16�

Z
S31

dS��r�ð�aÞ�: (50)

Wewrite below our boundary conditions for�A in terms of
the Weyl-Papapetrou coordinates. Therefore, in particular,
relevant conditions at infinity—see below Eqs. (87)–(93)
—are derived from the above falloff behavior, Eq. (48), by
the coordinate transformation

� ¼ 1

2
r2 sin2�; z ¼ 1

2
r2 cos2�: (51)

Then, we can find that the boundary conditions given in
this section are, in fact, the same as the limiting behavior of
�A for the exact solution of Chong-Cvetič-Lü-Pope black
hole [4,5] at the corresponding boundaries, which we dis-
cuss in Appendix B.
In terms of the Weyl-Papapetrou coordinate system in-

troduced in Sec. II B, and the rod structure [76], the bound-
ary @� of the base space� ¼ fð�; zÞj� > 0;�1< z <1g
is described as a set of three rods and the infinity: Namely,
(i) the 
-invariant plane: @�
 ¼ fð�; zÞj� ¼

0; k2 < z <1g with the rod vector v ¼ ð0; 1; 0Þ,
(ii) the horizon: @�H ¼ fð�; zÞj� ¼ 0;�k2 < z < k2g,
(iii) the c -invariant plane: @�c ¼fð�;zÞj�¼

0;�1<z<�k2g with the rod vector v ¼ ð0; 0; 1Þ,
(iv) the infinity: @�1¼fð�;zÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2þz2
p !1 with

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þz2

p
finiteg,
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where here and hereafterH denotes a spatial cross section
of the event horizon. Accordingly, the boundary integral in
the left-hand side of the Mazur identity, Eq. (45), is decom-
posed into the integrals over the three rods (i)–(iii), and the
integral at infinity (iv), asZ
@�

�@p tr�dSp ¼
Z �k2

�1
�
@ tr�

@z
dzþ

Z k2

�k2
�
@ tr�

@z
dz

þ
Z 1

k2
�
@ tr�

@z
dz

þ
Z
@�1

�@a tr�dSa: (52)

In order to evaluate this boundary integral, let us first
consider the integrals of the twist one-forms d!a along the
z-axis. By definition, the partial derivatives with respect to
z of the twist potentials !a vanish on both rotation axes.
This means that the twist potentials !a are constant over
the 
-invariant plane and the c -invariant plane.
Therefore, the integral can be written as

Z 1

�1
!a;zdz ¼

Z k2

�k2
!a;zdz (53)

¼ ½!a�z¼k2

z¼�k2
: (54)

On the other hand, by Stokes’s theorem, the integral of d!a

on the horizon is evaluated asZ
@�H

d!a ¼
Z
@�1

d!a

¼
Z
@�1

Va þ
Z
@�1

c að3d�þ 	bcc bdc cÞ:
(55)

We find that the first integral in the right-hand side of
Eq. (55) is proportional to the angular momenta Ja, defined
by Eq. (50) above. As will be seen later, the second integral
vanishes at infinity. Hence, using the degrees of freedom in
adding a constant to !a, we can always set the value of !a

on the two rotation axes to be

!aðzÞ ¼ � 2Ja
�

; (56)

for z 2 ½k2;1�, and
!aðzÞ ¼ 2Ja

�
; (57)

for z 2 ½�1;�k2�.
Next, consider the integral of �;z on the horizon @�H .

The derivative of the potential, d�, vanishes on the two
rotation axes by definition. Hence the integral along the
z-axis becomes

Z 1

�1
�;zdz ¼

Z k2

�k2
�;zdz ¼ ½��z¼k2

z¼�k2
: (58)

We find that this integral is proportional to the electric

charge Q defined by

Q ¼ 1

16�

Z
H

�
�Fþ 1ffiffiffi

3
p A ^ F

�
: (59)

In fact, straightforward calculation shows

1

16�

Z
H

�
�Fþ 1ffiffiffi

3
p A ^ F

�

¼ �

4

Z k2

�k2

�
�

�
ðAt;� � a
tA
;� � ac

tAc ;�Þ

� 1ffiffiffi
3

p ðA
Ac ;z � AcA
;zÞ
�
dz

¼ �
ffiffiffi
3

p
4

Z k2

�k2
�;zdz: (60)

Hence, without loss of generality, � can be set to be

� ¼ � 2Qffiffiffi
3

p
�
; (61)

for � ¼ 0, z 2 ½�1;�k2�, and

� ¼ 2Qffiffiffi
3

p
�
; (62)

for � ¼ 0, z 2 ½k2;1�.
Now we would like to show that the boundary integral,

Eq. (52), indeed vanishes under our preferable boundary
conditions that require the regularity on the three rods and
asymptotic flatness at infinity. For this purpose, in the
following we evaluate the limiting behavior of the inte-
grand, �@z tr�, of Eq. (52), separately on each boundary
(i)–(iv)
(i) 
-invariant plane: @�
 ¼ fð�; zÞj� ¼ 0; k2 < z <

1g. The regularity on the 
-invariant plane requires
that for � ! 0, the scalar fields behave as

�

 ’ Oð�2Þ; (63)

�c c ’ Oð1Þ; (64)

�
c ’ Oð�2Þ; (65)

!
 ’ � 2J

�

þOð�2Þ; (66)

!c ’ � 2Jc
�

þOð�2Þ; (67)

and

c 
 ’ Oð�2Þ; (68)

c c ’ Oð1Þ; (69)

� ’ 2Qffiffiffi
3

p
�
þOð�2Þ; (70)
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where the boundary conditions, Eqs. (63)–(65) and
Eqs. (68) and (69), come from the requirement that
@�
 is the
-invariant plane, i.e., the plane invariant

under the rotation with respect to the axial Killing
vector @=@
. The conditions, Eqs. (66) and (67), are
derived from Eq. (56). In the derivation of the con-
dition (70), Eq. (62) is used. Then for two solutions,
M½0� andM½1�, with the same mass, the same angular

momenta, and the same electric charge, � tr� be-
haves as

�@z tr� ’ Oð�Þ: (71)

(ii) Horizon: @�H ¼ fð�; zÞj� ¼ 0;�k2 < z < k2g.
The regularity on the horizon requires that for � !
0,

�ab ’ Oð1Þ; !a ’ Oð1Þ; (72)

c a ’ Oð1Þ; � ’ Oð1Þ: (73)

Therefore, for � ! 0, � tr� behaves as

�@z tr� ’ Oð�Þ: (74)

(iii) c -invariant plane: @�c ¼ fð�; zÞj� ¼ 0;�1<
z <�k2g. Similarly to the case (i), the regularity
on the 
-invariant plane requires

�c c ’ Oð�2Þ; (75)

�

 ’ Oð1Þ; (76)

�
c ’ Oð�2Þ; (77)

!
 ’ 2J

�

þOð�2Þ; (78)

!c ’ 2Jc
�

þOð�2Þ; (79)

and

c 
 ’ Oð1Þ; (80)

c c ’ Oð�2Þ; (81)

� ’ � 2Qffiffiffi
3

p
�
þOð�2Þ: (82)

Therefore, for � ! 0, � tr� behaves as

�@z tr� ’ Oð�Þ: (83)

(iv) Infinity: @�1¼fð�;zÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þz2

p !1 with

z=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þz2

p
finiteg. Recall that the three-dimensional

metric g ¼ ðgIJÞ ðI; J ¼ t; 
; c Þ is subject to the

constraint

detðgÞ ¼ ��2: (84)

Therefore, using the constraint and the formula,

detðgþ 
gÞ ¼ det½gð1þ g�1
gÞ�
¼ ��2ð1þ trðg�1
gÞ þ detðg�1
gÞÞ
’ ��2ð1þ trðg�1
gÞÞ; (85)

we can see in the next order that the metric has to
satisfy the constraint

X
I¼t;
;c


gII
gII

¼ 0; (86)

which is the same constraint as in the vacuum case
[76]. Then, the asymptotic flatness, Eq. (48), re-
quires that the limiting behavior of the metric be

gtt ’�1þ 4MADM

3�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2þ z2

p þO
�

1

�2þ z2

�
; (87)

gt
 ’ � J

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p � z

�2 þ z2
þO

�
1

�2 þ z2

�
; (88)

gtc ’ � Jc
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p þ z

�2 þ z2
þO

�
1

�2 þ z2

�
; (89)

�

 ’ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
� zÞ

�
1þ 2ðMADM þ �Þ

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
þO

�
1

�2 þ z2

��
; (90)

�c c ’ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
þ zÞ

�
1þ 2ðMADM � �Þ

3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
þO

�
1

�2 þ z2

��
; (91)

�
c ’ �
�2

ð�2 þ z2Þ3=2 þO
�

1

�2 þ z2

�
; (92)

g�� ¼ gzz ’ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p þO
�

1

�2 þ z2

�
; (93)

where the constant MADM denotes the conserved
mass defined by Eq. (49) and J
 and Jc the angular

momenta, defined by Eq. (50). Here � is a constant
that comes from gauge degrees of freedom in the
choice of the coordinate z, i.e., degrees of freedom
with respect to shift translation z ! zþ �. (This
gauge freedom exists even after the gauge freedom
of the conjugate coordinate, �, is fixed at infinity.)
Since in our proof we choose the coordinate z such
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that the horizons are located at the interval ½�k2; k2�
for two configurations M½0� and M½1�, we choose the
same values of � for the two solutions.

The left-hand side of the Einstein-Maxwell equation
behaves as Oðð�2 þ z2Þ�1Þ in a neighborhood of the infin-
ity. The energy-momentum tensor of the Maxwell field
must also behave as Oðð�2 þ z2Þ�1Þ. Hence from the
asymptotic flatness, the gauge potential must behave as

At ’ 2Q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p þO
�

1

�2 þ z2

�
; (94)

c 
 ’ O
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
; (95)

c c ’ O
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
: (96)

Next, we derive the behavior of � and !a near infinity.
The magnetic potential,�, is determined by Eq. (13). From
Eqs. (95) and (96), the second term in the right-hand side of

Eq. (13) behaves asOðð�2 þ z2Þ�1Þ. The leading term�ð0Þ,
where � ’ �ð0Þ þOðð�2 þ z2Þ�1=2Þ, is derived from the
equations

�ð0Þ
;z ’ � �ffiffiffi

3
p At;�; �ð0Þ

;� ’ �ffiffiffi
3

p At;z: (97)

Using the asymptotic behavior (94) of the gauge field At,
we obtain

�ð0Þ ¼ 2Qz

�
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p : (98)

The twist potential, !a, is determined by Eq. (16). The
second term behaves as Oðð�2 þ z2Þ�1Þ. Hence, the lead-

ing term !ð0Þ
a , where !a ’ !ð0Þ

a þOðð�2 þ z2Þ�1=2Þ, is
derived from the equations

!ð0Þ
a;z ’ �

�
�aba

b
t;�; (99)

!ð0Þ
a;� ’ � �

�
�aba

b
t;z: (100)

The functions aat behaves as

a
t ¼
�
cgtc � �c c gt


�
’ � J


�

1

�2 þ z2
; (101)

ac
t ¼

�
cgt
 � �

gtc
�

’ � Jc
�

1

�2 þ z2
: (102)

Therefore, solving Eqs. (99) and (100), we obtain

!ð0Þ

 ¼ J


�

�
�2

�2 þ z2
� 2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p �

; (103)

!ð0Þ
c ¼ Jc

�

�
�2

�2 þ z2
� 2zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p �

: (104)

Then, for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p ! 1, � tr� behaves as

� tr� ’ O
�

1

�2 þ z2

�
: (105)

Therefore,

�@p tr�dSp ’ O
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
: (106)

Thus, we find from (i)–(iv) that the boundary integral,
Eq. (52), vanishes on each rod and the infinity. The devia-
tion matrix,�, is constant and has the asymptotic behavior,
� ! 0. Therefore, � vanishes over �, and the two con-
figurations, M½0� and M½1�, coincide with each other.

Furthermore, as shown in Appendix B, the boundary con-
ditions derived above are the same as the limiting behavior
of the Chong-Cvetič-Lü-Pope solution at each correspond-
ing boundary. Therefore, the data M½0� (and now equiva-

lently M½1�) must also be the same as the corresponding

matrix to the Chong-Cvetič-Lü-Pope solution. This com-
pletes our proof for the uniqueness theorem.

V. SUMMARY

We have shown the uniqueness theorem which states
that in five-dimensional Einstein-Maxwell-Chern-Simons
theory, an asymptotically flat, stationary charged rotating
black hole with finite temperature is uniquely specified by
its asymptotic conserved charges and therefore is described
by the Chong-Cvetič-Lü-Pope solution, if (1) it admits two
independent axial Killing symmetries and (2) the topology
of the event horizon cross section is spherical. Our theorem
generalizes the uniqueness theorem for spherical black
holes in five-dimensional vacuum Einstein gravity [50] to
the case of EMCS theory. In our proof, in addition to the
symmetry-assumption (1), the Chern-Simons term in the
theory, Eq. (33), plays an important role to reduce the
system into a nonlinear sigma model with desired symme-
try property, G2ð2Þ=SOð4Þ, as discussed in [62,63]. Then,

having this symmetry property on the target space, we have
obtained the matrix representation of [36], in which our
system is completely determined by G2ð2Þ=SOð4Þ coset

matrix M. We then derived the Mazur identity, and used
the identity to show that if two solutions, i.e., two matrices,
M½0� and M½1�, satisfy the same boundary conditions (im-

posed at infinity, on two rotational axis, and on the hori-
zon), then the solutions M½0� and M½1� must coincide with

each other. We have shown that our boundary conditions
(the asymptotic flatness and the regularity) are the same as
the limiting behavior of the Chong-Cvetič-Lü-Pope
solution.
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In the present theorem, we restrict attention to topologi-
cally spherical black holes by the assumption (2). Our
theorem can be generalized to the case of charged rotating
black ring solutions by imposing certain additional con-
ditions. We first note that under the same symmetry con-
dition (1), the analysis in Sec. II, III, and IV, apply also for
black ring solutions (if they exist) in EMCS theory. See [7]
for such a ring solution.) The only difference from the
spherical black hole case arises in the boundary value
analysis. Now we also note that asymptotically flat, five-
dimensional black ring solutions that satisfy the symmetry
assumption (1) have the following rod structure: (i) ½c;1�,
v ¼ ð0; 1; 0Þ, (ii) ½ck2; c�, v ¼ ð0; 0; 1Þ, (iii) ½�ck2; ck2�,
(iv) ½�1;�ck2�, v ¼ ð0; 0; 1Þ, where c > 0, k2 < 1 and
v’s are eigenvectors with respect to a zero eigenvalue of the
three-dimensional matrix gIJ for each segment. It should
be noted that we are not concerned with a lens space
throughout discussion here, and therefore the only non-
trivial rod-data are given by rod intervals. Then, after fixing
the scale c, one can completely specify the rod data in
terms of k2. The finite spacelike rod (ii) is the main
difference from the rod structure for topologically spheri-
cal black holes considered in Sec. IV. We believe that by
appropriately specifying rod structure, one can determine
the topology of the horizon, as well as the topology of
black hole exterior region. In this respect, it has recently
been shown [61] that the topology and symmetry structure
of the black hole spacetime can be completely determined
in terms of rod intervals, which is similar to but somewhat
different from the rod structure of Harmark [76]. In the
charged black ring case, some additional parameters other
than the global conserved charges may also come to play a
role. These issues deserve further study.
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APPENDIX A: MAXWELL FIELD WITH
SYMMETRIES

Let F denote the stationary and axisymmetric Maxwell
field, i.e., that satisfies

L �IF ¼ 0; (A1)

with �I (I ¼ 
, c , t) being commuting Killing vector
fields for the axial-symmetries and the stationary symme-
try, discussed in sec. II B. From the Maxwell equation,

dF ¼ 0, and the identity

di�I
i�J

¼ �i�I
L�J

þ i�J
L�I þ di�I

i�J
d; (A2)

we have

di�I
i�JF ¼ �i�I

L�J
Fþ i�J

L�I
Fþ di�I

i�J
dF ¼ 0:

(A3)

Similarly, using the identity

di�I
i�J

i�K
¼ i�I

i�J
L�K � i�I

i�K
L�J

þ i�J
i�K

L�I

� i�I
i�J

i�K
d; (A4)

we have

di�I
i�J i�K � F ¼ i�I

i�J
L�K

� F� i�I
i�K

L�J
� F

þ i�J
i�K

L�I
� F� i�I

i�J
i�K

d � F
¼ i�I

i�J
�L�K

F� i�I
i�K

�L�J
F

þ i�J
i�K

�L�I
F� i�I

i�J
i�K

d � F
¼ 1ffiffiffi

3
p i�I

i�J
i�K

F ^ F ¼ 0: (A5)

Therefore, Fð�I; �JÞ and ð�FÞð�I; �J; �KÞ, are constant.
Since they vanish, at least, on rotation axes, these imply

Fð�I; �JÞ ¼ 0; (A6)

ð�FÞð�I; �J; �KÞ ¼ 0: (A7)

In terms of the coordinates ðt; 
; c ; �; zÞ, these can be
written as

Ft
 ¼ Ftc ¼ F
c ¼ 0; (A8)

F�z ¼ 0: (A9)

Then, from (A9), using the gauge degrees of freedom, A !
A� d�, with the function� satisfying A� ¼ �;�, A� ¼ �;�

we can show

A� ¼ Az ¼ 0: (A10)

APPENDIX B: CHONG-CVETICı́-LÜ-POPE
SOLUTION

Here we present the asymptotically flat stationary
charged rotating black hole solution in five-dimensional
Einstein-Maxwell-Chern-Simons theory, found by Cvetič
et al. [4,5]. The solution has three mutually commuting
Killing vectors that generate isometries R�Uð1Þ �Uð1Þ,
and spherical topology of the horizon cross sections. We
observe that the limiting behavior of relevant scalar func-
tions of the solution, which correspond to �A, are in
perfect accordance with our general boundary conditions
discussed in Sec. IV.
The metric and the gauge potential in [4,5] for g ¼ 0 are

given, respectively, by
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ds2 ¼ �dt2 � 2q

~�2
�ðdt�!Þ þ f

~�4
ðdt�!Þ2 þ ~�2r2

�
dr2

þ ~�2d�2 þ ðr2 þ a2Þsin2�d
2

þ ðr2 þ b2Þcos2�dc 2; (B1)

and

A ¼
ffiffiffi
3

p
q

~�2
ðdt�!Þ; (B2)

where

� ¼ bsin2�d
þ acos2�dc ; (B3)

! ¼ asin2d
þ bcos2�dc ; (B4)

f ¼ 2m~�2 � q2; (B5)

� ¼ ðr2 þ a2Þðr2 þ b2Þ þ q2 þ 2abq� 2mr2; (B6)

~� 2 ¼ r2 þ a2cos2�þ b2sin2�: (B7)

The scalar fields �A ¼ ð�ab;!a; c a; �Þ for the solution
(B1) and (B2) are computed as

�

 ¼ 2q

~�2
absin4�þ f

~�4
a2sin4�þ ðr2 þ a2Þsin2�; (B8)

�c c ¼ 2q

~�2
abcos4�þ f

~�4
b2cos4�þ ðr2 þ b2Þcos2�;

(B9)

�
c ¼ q

~�2
ða2 þ b2Þcos2�sin2�þ f

~�4
abcos2�sin2�;

(B10)

!
 ¼ ð2amþ bqÞð�4 cos2�þ cos4�Þ
8

� 2ða2 � b2Þð2aq2 þ ð2amþ bqÞFÞcos2�sin4�
F2

;

(B11)

!c ¼ �ð2bmþ aqÞð4 cos2�þ cos4�Þ
8

� 2ða2 � b2Þð2bq2 þ ð2bmþ aqÞFÞcos4�sin2�
F2

;

(B12)

c 
 ¼ �qasin2�

~�2
; (B13)

c c ¼ �qbcos2�

~�2
; (B14)

� ¼ 1

2
q cos2�� 2ðb2 � a2Þqcos2�sin2�

F
; (B15)

where the function F is defined by

F ¼ a2 þ b2 þ 2r2 þ ða2 � b2Þ cos2�: (B16)

Let us introduce the coordinates ð�; zÞ defined by

� ¼ 1

2

ffiffiffiffi
�

p
sin2�; z ¼ 2r2 þ a2 þ b2 � 2m

4
cos2�:

(B17)

Then, the base space� ¼ fð�; zÞj� > 0;�1< z <1g has
four boundaries, which exactly correspond to the four
boundaries discussed in Sec. IV: Namely, (i) 
-invariant
plane, i.e., the plane which is invariant under the rotation
with respect to the Killing vector field @=@
: @�
 ¼
fð�; zÞj� ¼ 0; k2 < z <1g, (ii) Horizon: @�H ¼
fð�; zÞj� ¼ 0;�k2 < z < k2g, (iii) c -invariant plane, i.e.,
the plane which is invariant under the rotation with respect
to the Killing vector field @=@c : @�c ¼ fð�; zÞj� ¼
0;�1< z <�k2g, and (iv) Infinity: @�1 ¼
fð�; zÞj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ z2
p ! 1 with z=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
finiteg, where

the constant k2 is given by

k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2m� a2 � b2Þ2 � 4ðabþ qÞ2p

4
: (B18)

Let us examine the behavior of the scalar fields on each
boundary.
(i) Near the 
-invariant plane @�
, each scalar field

behaves as

�

 ’ Oð�2Þ; �c c ’ Oð1Þ; �
c ’ Oð�2Þ;
(B19)

!
 ’ � 3

8
ð2amþ bqÞ þOð�2Þ;

!c ’ � 5

8
ð2bmþ aqÞ þOð�2Þ;

(B20)

c 
 ’ Oð�2Þ; c c ’ Oð1Þ;

� ’ 1

2
qþOð�2Þ:

(B21)

(ii) Near the horizon @�H , the scalar fields behave as

�ab ’ Oð1Þ; !a ’ Oð1Þ; (B22)

c a ’ Oð1Þ; � ’ Oð1Þ: (B23)

(iii) Near the c -invariant plane @�c , each potential
behaves as

UNIQUENESS THEOREM FOR CHARGED ROTATING BLACK . . . PHYSICAL REVIEW D 79, 124023 (2009)

124023-11



�

 ’ Oð1Þ; �c c ’ Oð�2Þ; �
c ’ Oð�2Þ;
(B24)

!
 ’ 5

8
ð2amþ bqÞ þOð�2Þ;

!c ’ 3

8
ð2bmþ aqÞ þOð�2Þ;

(B25)

c 
 ’ Oð1Þ; c c ’ Oð�2Þ;
� ’ �q

2
þOð�2Þ: (B26)

In the neighborhood of infinity @�1, the behavior of the
potentials becomes

�

 ’ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
� zÞ

�
1þ a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
þO

�
1

�2 þ z2

�
;

(B27)

�c c ’ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

q
þ zÞ

�
1þ 2m� a2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
þO

�
1

�2 þ z2

�
;

(B28)

�c
 ’ ða2qþ b2qþ 2abmÞ�2

8ð�2 þ z2Þ3=2 þO
�

1

�2 þ z2

�
; (B29)

!
 ’ 1

8
ð2amþ bqÞð�4 cos2�þ cos4�Þ

þO
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
; (B30)

!c ’ � 1

8
ð2bmþ aqÞð4 cos2�þ cos4�Þ

þO
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
; (B31)

c 
 ’ � qað ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p � zÞ
4ð�2 þ z2Þ þO

�
1

�2 þ z2

�
; (B32)

c c ’ � qbð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p þ zÞ
4ð�2 þ z2Þ þO

�
1

�2 þ z2

�
; (B33)

� ’ qz

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p þO
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p �
: (B34)
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