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Instituto de Fı́sica, Pontificia Universidad Católica de Valparaı́so, Casilla 4059, Valparaı́so, Chile
and Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut Am Mühlenberg 1, 14476 Golm, Germany

(Received 17 February 2009; published 15 June 2009)

It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti–de Sitter gravity

action in four dimensions recovers the standard regularization given by the holographic renormalization

procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term)

whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This

argument allows one to find the dual point of the theory where the holographic stress tensor is related to

the boundary Cotton tensor as Ti
j ¼ �ð‘2=8�GÞCi

j, which has been observed in recent literature in

solitonic solutions and hydrodynamic models. A general procedure to generate the counterterm series for

anti–de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.
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I. INTRODUCTION

On the gravity side of the AdS/CFT correspondence, the
relevant information that realizes this duality is encoded in
the finite part of the boundary stress tensor [1]. That
identification requires the cancellation of the infrared di-
vergences in the bulk theory made by the holographic
renormalization procedure [2], which is based on an
asymptotic analysis of the metric in the Fefferman-
Graham (FG) coordinate system [3]

ds2 ¼ ‘2

4�2
d�2 þ 1

�
gijdx

idxj; (1)

where hij ¼ gij=� corresponds to the boundary metric. For

asymptotically anti–de Sitter (AAdS) spaces, gijðx; �Þ ac-
cepts a regular expansion near the boundary � ¼ 0, i.e.,
gijðx; �Þ ¼ gð0Þij þ �gð1Þij þ � � � . Solving the Einstein

equations in this frame leads to the holographic reconstruc-
tion of the spacetime from a given boundary data gð0Þij that
is essential in determining the series of intrinsic counter-
terms Lct which renders finite the boundary stress tensor
[4].

However, the algorithm which produces Lct becomes
extremely complex as the spacetime dimension increases,
such that there is not a closed formula for counterterms for
an arbitrary dimension. This argument motivates the search
for alternative approaches.

On the other hand, any other regularization scheme,
even if properly removes the asymptotic divergences,
might spoil the holographic interpretation of the theory
within the AdS/CFT framework because of different
boundary conditions.

In particular, a regularization mechanism for AdS grav-
ity in any dimension which consists of the addition of
counterterms that depend on the extrinsic curvature Kij

(Kounterterms method) has been recently proposed [5,6].
In this case, the on-shell variation of the regularized action
Ireg contains terms of the type �Kijthat make a definition of

the quasilocal stress tensor more elusive. But one knows
that in AAdS spacetimes the leading order of the asymp-
totic expansion in Kij coincides with the leading order of

the induced metric hij, i.e.,

Kij ¼ 1

‘

gð0Þij
�

þOð�Þ: (2)

The above relation inspires a reformulation of holographic
renormalization in terms of an expansion of the extrinsic
curvature [7]. This suggests it might be still possible to
obtain a regularized stress tensor hTiji associated to gð0Þij
even though Kounterterms regularization does not lend

itself to a Brown-York stress tensor definition Tij ¼ 2ffiffiffiffiffi�h
p �

�Ireg
�hij

. It also motivates a direct comparison with the stan-

dard procedure that, until now, has been performed in
Einstein gravity only in three dimensions [8]. For four
and higher even dimensions, this is carried out below.

II. GAUSS-BONNET INVARIANT IN 4-
DIMENSIONAL ADS GRAVITY

Let us consider the Einstein-Hilbert action with negative
cosmological constant in four dimensions supplemented
by the Gauss-Bonnet (GB) term E4 with an arbitrary cou-
pling constant �
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I ¼
Z
M
d4x

ffiffiffiffiffiffiffiffiffi
�G

q �
1

16�G
ðR� 2�Þ

þ �ðR����R
���� � 4R��R

�� þ R2Þ
�
; (3)

where� ¼ �3=‘2 is the cosmological constant in terms of
the AdS radius ‘. It was shown in Ref. [9] that a well-posed
action principle for gravity with AdS asymptotics removes
the arbitrariness in the GB coupling. Since E4 is a topo-
logical invariant, it does not modify the field equations.
However, it still contributes to the surface term when the
total action is varied

�I ¼
Z
M
EOMþ

Z
@M

d3x
ffiffiffiffiffiffiffi�h

p
n��

½�	���
½
����G

�"��

	"

�
�

1

64�G
�½���
½��� þ �R��

��

�
; (4)

where n� is the normal vector to the boundary [10]. The

total action is rendered stationary demanding �I ¼ 0 on
shell for a given boundary condition. For asymptotically
locally AdS spacetimes, i.e.,

R��
�� þ 1

‘2
�½���
½��� ¼ 0

at @M, the variational principle fixes the coupling constant
as � ¼ ‘2=ð64�GÞ, which produces finite Noether charges
[9]. Surprisingly enough, the same value of � regularizes
the Euclidean action in a background-independent way [5]
and casts Eq. (3) into a MacDowell-Mansouri form [11]

I4 ¼ ‘2

256�G

Z
M
d4x

ffiffiffiffiffiffiffiffiffi
�G

q
�½�	���
½
����

�
R
�
�	 þ

1

‘2
�½
��
½�	�

�

�
�
R��
�� þ 1

‘2
�½���
½���

�
: (5)

Using the field equations, one proves that the Weyl tensor
is

W��
�� ¼ R��

�� þ 1

‘2
�½���
½��� ; (6)

where the right-hand side is the curvature of the AdS group
(the rest corresponds to the torsion, which vanishes in
Riemann gravity). This fact implies that the action (5) is
on shell equivalent to conformal gravity

I4 ¼ ‘2

64�G

Z
M
d4x

ffiffiffiffiffiffiffiffiffi
�G

q
W����W

����; (7)

because any trace of W���� is identically zero [12].

In what follows, we show that the addition of a topo-
logical invariant of the Euler class recovers the standard
counterterm regularization and holographic stress tensor,
by considering its equivalent boundary formulation.

III. BOUNDARY FORMULATION

In a four-dimensional manifold without boundaries, the
integration of the GB term is proportional to the Euler
characteristic �ðMÞ. When a boundary is introduced, a
correction to �ðMÞ is required, such that the Euler theorem
reads

Z
M
d4xE4 ¼ 32�2�ðMÞ þ

Z
@M

d3xB3; (8)

where B3 is a boundary term known as the second Chern
form. If the spacetime is foliated using Gaussian (radial)
coordinates ds2 ¼ N2ð�Þd�2 þ hijð�; xÞdxidxj, the term

B3 is given as a polynomial in the extrinsic curvatureKij ¼
� 1

2N @�hij and the intrinsic curvature Rij
klðhÞ as [5]

B3 ¼ 4
ffiffiffiffiffiffiffi�h

p
�½i1i2i3�
½j1j2j3�K

j1
i1

�
1

2
Rj2j3

i2i3
ðhÞ � 1

3
Kj2

i2
Kj3

i3

�
: (9)

There is a reason to consider the boundary formulation of
topological invariants beyond the purpose of comparison
with the counterterm regularization. The boundary dynam-
ics does not tell between the Euler and the boundary term
B3, as they are locally equivalent. However, computations
of the Euclidean action show that the Euler term shifts the
black hole entropy S by a constant proportional to �ðMÞ [5]
that can also be obtained using Wald’s entropy formula.
Thus, S may take negative values for topological black
holes with a hyperbolic spatial section that can only be
avoided by supplementing the action with the Kounterterm
B3 instead.
In order to compare to the standard regularization pro-

cedure, one can simply add and subtract the Gibbons-
Hawking term from the Einstein-Hilbert action plus the
boundary term B3,

I4 ¼ IEH � 1

8�G

Z
@M

d3x
ffiffiffiffiffiffiffi�h

p
K þ

Z
@M

d3xLct: (10)

The first two terms define the Dirichlet problem in gravity,
while the quantity Lct is given by

Lct ¼ ‘2

16�G

ffiffiffiffiffiffiffi�h
p

�
½i1i2i3�
½j1j2j3�K

j1
i1

�
1

2
Rj2j3

i2i3
ðhÞ

� 1

3
Kj2

i2
Kj3

i3
þ 1

‘2
�j2
i2
�j3
i3

�
: (11)

For the boundary metric hij ¼ gij=�, the intrinsic curva-

ture and the determinant rescale asRij
klðhÞ ¼ �Rij

klðgÞ andffiffiffiffiffiffiffi�h
p ¼ ffiffiffiffiffiffiffi�g

p
=�3=2, respectively. This also implies

Kj
i ¼ Kikh

kj ¼ 1

‘
ð�j

i � �kji Þ (12)

for the extrinsic curvature, with the definition kji ¼
gjk@�gki. Expanding Eq. (11) in FG form, one notices

that kij is absent from the divergent terms,
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L ct ¼ 1

8�G

ffiffiffiffiffiffiffi�g
p
�3=2

�
2

‘
þ ‘

2
�RðgÞ

�
þOð�1=2Þ (13)

such that one recovers the Balasubramanian-Kraus local
counterterms

L ct ¼ 1

8�G

ffiffiffiffiffiffiffi�h
p �

2

‘
þ ‘

2
RðhÞ

�
: (14)

The agreement with the standard holographic renormaliza-
tion can also be seen from the on-shell variation of the
action (4), which for the radial foliation and the value � ¼
‘2=ð64�GÞ adopts the form

�I4 ¼ ‘2

32�G

Z
@M

d3x
ffiffiffiffiffiffiffi�h

p
�½jkl�
½mnp�

�
�Km

j þ 1

2
Km

i ðh�1�hÞij
�

�
�
Rj2j3
i2i3

þ 1

‘2
�½j2j3�
½i2i3�

�
: (15)

Expanding the fields in the FG frame, the first term van-
ishes at the boundary, whereas the second gives a stress
tensor

�ji ¼
‘2

32�G
�½jkl�
½mnp�K

m
i

�
Rnp
kl þ 1

‘2
�½np�
½kl�

�
: (16)

Note that any conserved quantity constructed with this
stress tensor will vanish for spacetimes which are globally
of constant curvature, as the AdS vacuum. Using Gauss-

Codazzi relations, one might also notice that �ji contains
higher powers in the extrinsic curvature. However, it is

straightforward to prove that �ji coincides up to the relevant
order in � with the Balasubramanian-Kraus stress tensor

Tj
i , when it is appropriately rewritten

Tj
i ¼

1

8�G

�
Kj

i � �j
iK þ 2

‘
�j
i �

�
Rj

i ðhÞ �
1

2
�j
iRðhÞ

��

¼ �‘

32�G
�½jkl�
½inp�

�
Rnp

kl ðgÞ þ
4

‘2
�n
kk

p
l

�
: (17)

The above derivation shows that the divergence cancel-
lation provided by the counterterm series can be regarded
as a topological regularization, since it comes from the
addition of the GB term with a coupling such that the
regularized action takes the MacDowell-Mansouri form
(5).

In the holographic renormalization framework, the in-
formation on the holographic stress tensor in four dimen-
sions is carried by the coefficient gð3Þ in FG expansion

gijðx; �Þ ¼ gð0Þij þ �gð1Þij þ �3=2gð3Þij þ � � � : (18)

It is just after solving the Einstein equations order by order
in � that the vanishing of the Weyl anomaly comes from
the zero trace of gð3Þ [2]. On the other hand, the anomaly

A can also be read off from a Weyl transformation with
infinitesimal parameter � on the regularized action, that is,
��Ireg ¼

R
@M dD�1x

ffiffiffiffiffiffiffiffi
gð0Þ

p
�A. This means that one might

have concluded the same by simple inspection of Eq. (7),

since it is manifestly invariant under conformal
transformations.
Up to the relevant order, the stress tensor (16) can be

rewritten as

�ji ¼
‘

8�G
Wj

�i�n
�n�; (19)

using the traceless property and index symmetries of the
Weyl tensor.
The conformal completion technique [13] defines an

AAdS spacetime in such a way that the metric G��, which

obeys the Einstein equations, can be conformally mapped

into an unphysical one ~G�� ¼ ��2G�� by a smooth con-

formal factor � which satisfies precise falloff conditions.
The procedure gives rise to a background-independent
conserved charge for every asymptotic symmetry i as

the integral on the spatial section ~� of the boundary

H  ¼ ‘

8�G

Z
~�

~Ej
i

i~ujd
~�; (20)

where ~Ej
i ¼ �3�D ~Wj

�i�~n
�~n�=ðD� 3Þ is the electric part

of the unphysical Weyl tensor, d~� is the integration ele-

ment on ~�, and ~uj is the unit timelike normal to ~�.

Rescaling all the quantities into the ones of the spacetime
metric, it is easy to prove that the conserved quantities

Q � R
� �ji

iujd� coming from the Kounterterms regu-

larization in D ¼ 4 are the same as the Ashtekar-Magnon-
Das formula (20).

IV. PONTRYAGIN TERM AND SELF-DUAL
SOLUTIONS

In four dimensions there exists an additional (odd parity)
topological invariant known as the Pontryagin term P 4,
which is locally equivalent to the derivative of the gravi-
tational Chern-Simons term

P 4 ¼ �1
4�

����R�	
��R�	��

¼ �����@�ð��
�	@��

	
�� þ 2

3�
�
�	�

	
�"�

"
��Þ; (21)

where ����� is the constant Levi-Cività tensor density.
The Pontryagin term F ^ F in four-dimensional

Maxwell electromagnetism modifies the dynamics such
that the Lorentz boost and the parity invariance are lost
when it is coupled through an external, fixed quantity.
We will consider here the addition of the Pontryagin

term with a constant coupling � to the regularized action,
i.e.,

~I ¼ IEH þ ‘2

64�G

Z
M
d4xE4 þ �

Z
M
d4xP 4; (22)

with Euclidean signature. Therefore, in a fashion similar to
the case of the addition of the Euler term, the bulk dynam-
ics cannot fix the Pontryagin coupling. However, one may

TOPOLOGICAL REGULARIZATION AND SELF-DUALITY . . . PHYSICAL REVIEW D 79, 124020 (2009)

124020-3



expect that again the variational principle would provide a
criterion to remove the arbitrariness in �.

The on-shell variation of the total action produces

�~I ¼
Z
@M

d3x
ffiffiffiffi
G

q n�
N

��

"	

�
‘2

64�G
�½�	���
½
����G

�"W��
��

þ �
��	��ffiffiffiffi

G
p G
�W

"�
��

�
; (23)

where in the last term the part along �½"��
½��� is identically

zero. The total surface term must vanish identically for
certain boundary conditions. The argument here is differ-
ent from the one used to fix the GB coupling in Eq. (3). In
that case, � is also determined from the cancellation of the
leading-order divergences in the Euclidean action that can
be seen, e.g., from evaluating it for the Schwarzschild-AdS
black hole

�TISAdS ¼ TS� �r3

4G‘2

�
1� 64�G

‘2
�

�

�M

2

�
1þ 64�G

‘2
�

�
; (24)

where S and M are the black hole entropy and mass,
respectively, and T is the Hawking temperature. It is clear
that the correct black hole thermodynamics is reproduced
only by the same value of � as before. Moreover, for a
given cosmological constant, it is not possible to express
the variation Eq. (23) only in terms of the Weyl tensor
unless � takes the value fixed in the previous sections.

The result (24) remains unchanged when P 4 is added to
the action, as it vanishes for static AdS4 black holes. In
general, it can be shown that the contribution of the
Pontryagin term to the action is at most finite.

This means that we should look for asymptotic condi-
tions in the next-to-leading order in the curvature of the
AdS group (6). Considering (anti) self-duality in the Weyl
tensor

W���� ¼ �1
2

ffiffiffiffi
G

q
���	�W

	�
�� (25)

in the asymptotic region, we can fix the coupling constant
of P 4 as

� ¼ � ‘2

32�G
; (26)

demanding a well-posed action principle.
For arbitrary �, the variation of the action (22) projected

to the boundary indices defines a total stress tensor T i
j

�~I ¼ 1

2

Z
@M

d3x
ffiffiffi
h

p
T i

jðh�1�hÞji

¼ 1

2

Z
@M

d3x
ffiffiffi
h

p ðTi
j þ �Ci

jÞðh�1�hÞji ; (27)

where Ti
j is the stress tensor (17) and

Ci
j ¼

1ffiffiffi
h

p �iklrk

�
Rlj � 1

4
hljR

�

is the Cotton tensor, obtained from the functional variation
of the gravitational Chern-Simons term with respect to the
induced metric hij. The Cotton tensor is symmetric, trace-

less, and covariantly conserved, and contributes as above to
the total stress tensor of the theory when hij is held fixed on

the boundary (Dirichlet problem).
The term P 4 does not modify the AdS asymptotics, such

that we can use FG expansion and find the finite part of
Eq. (27), which is given by

�~I ¼ 1

2

Z
@M

d3x
ffiffiffiffiffiffiffiffi
gð0Þ

p �
� 3

16�G‘
gjð3Þi þ �Ci

jðgð0ÞÞ
�

�ðg�1
ð0Þ�gð0ÞÞji : (28)

In a similar fashion, (anti) self-duality reads

�W np
kl þ 3�3=2

2‘2
ðgnð3Þk�p

l � gnð3Þl�
p
k þ �n

kg
p
ð3Þl � �n

l g
p
ð3ÞkÞ

þOð�2Þ

¼ � �3=2

‘
ffiffiffiffiffiffiffiffi
gð0Þ

p �npmðrð0Þkgð1Þml �rð0Þlgð1ÞmkÞ þOð�2Þ;

(29)

where W is the Weyl tensor of gð0Þ.
As a consequence, when the condition (25) holds, the

value � ¼ �‘2=ð32�GÞ corresponds to the self-dual point
where the total stress tensor vanishes identically, i.e.,
T i

j ¼ 0.

This reproduces the relation between the holographic
stress tensor Ti

j and the Cotton tensor

Ti
j ¼ � ‘2

8�G
Ci
j; (30)

which has been observed in recent literature for solitonic
solutions [14], electric-magnetic transformations in the
fields in first-order gravity [12], and axial-polar perturba-
tions in hydrodynamic models in AdS4 [15].
The full duality between the renormalized stress tensor

and the Cotton tensor has been obtained in [16] by relating
two dual boundary conformal field theories (CFTs) which
correspond to Dirichlet and Neumann boundary conditions
(for related work on boundary conditions, see [17]). The
two descriptions are mapped one into another by a
Legendre transformation generated by a gravitational
Chern-Simons term.
The total action for the particular value of � which

realizes the relation (30) can be written in tetrad formalism
as

~I ¼ ‘2

64�G

Z
M
ð�ABCDWABWCD � 2WABWABÞ; (31)
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with the Weyl 2-form WAB ¼ W��
��eA�e

B
�dx

�dx� in terms

of the local orthonormal basis eA ¼ eA�dx
�. In this notation

the (anti) self-duality condition (25) reads WAB ¼
� �WAB ¼ � 1

2 �ABCDW
CD, with �� ¼ þ1 for Euclidean

signature.
Using the identity

�ABCDW
ABWCD ¼ 1

2�ABCDðWABWCD þ �WAB �WCDÞ
and also that

�ABCDW
AB �WCD ¼ �2P 4d

4x

(in an analogous way as in Yang-Mills theory), the total
action (31) can be cast into the form

~I ¼ ‘2

128�G

Z
M
�ABCDðWAB � �WABÞðWCD � �WCDÞ

¼ ‘2

16�G

Z
M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðWAB � �WABÞ

q
: (32)

It is evident from the form of Eq. (5) that the value of the
action reaches an absolute minimum for spacetimes which
are globally of constant curvature (vacuum states of AdS
gravity). The action (32) naturally generalizes this property
to states which are globally (anti) self-dual in AdS gravity.

V. CONCLUSIONS

We have shown that the standard regularization of AdS
gravity with counterterms is indeed topological, as it can
be obtained from the addition of the Gauss-Bonnet invari-
ant or the corresponding boundary term.

We have also considered the odd parity Pontryagin
invariant, which accounts for viscosity in hydrodynamic
models and formagnetic properties of solitonic solutions in
AdS4 [by analogy to the charge formula (20) which in-
volves the electric part of the Weyl tensor due to the
addition of the Euler term]. It is shown that the inclusion
of this term is consistent assuming an asymptotic (anti)
self-dual condition on the Weyl tensor. This reasoning
explains the holographic stress tensor/Cotton tensor rela-
tion (30) recently found in different setups in the literature,
and interprets it as coming from a duality between topo-
logical invariants.

The addition of topological invariants of the Euler class
to the Einstein-Hilbert gravity action in D ¼ 2n dimen-
sions was studied in Ref. [18], with the purpose of render-
ing finite the Noether charges for AAdS spacetimes. The
variational principle singles out the value of the Euler
coupling which produces a regularizing effect. One can
instead consider the action supplemented by a boundary
term I2n ¼ IEH þ c2n�1

R
@M d2n�1xB2n�1, where c2n�1 is a

constant. In Ref. [5], it is claimed that the term B2n�1

which solves the regularization problem in even-
dimensional AdS gravity is always prescribed by the
Euler theorem and written using a parametric integration
as a polynomial in the intrinsic and extrinsic curvatures

B2n�1 ¼ 2n
ffiffiffiffiffiffiffi�h

p Z 1

0
dt�½i1���i2n�1�

½j1���j2n�1�K
j1
i1

�
1

2
Rj2j3

i2i3
� t2Kj2

i2
Kj3

i3

�

� � � � � � � �
�
1

2
Rj2n�2j2n�1

i2n�2i2n�1
� t2Kj2n�2

i2n�2
Kj2n�1

i2n�1

�

(33)

with a coupling constant c2n�1 ¼
ð�‘2Þn�1=ð16�Gnð2n� 2Þ!Þ. On purpose, we have not
absorbed the constant in the boundary term, in order to
stress the geometrical origin of the Kounterterm B2n�1, as
it is linked to topological invariants.
Furthermore, it has been proved that the term (33)

regulates the Euclidean action and conserved quantities
in any gravity theory of a Lovelock type with AdS asymp-
totics—including Einstein-Gauss-Bonnet AdS—, and
where the information on a particular theory is contained
only in its coupling constant [19].
As in the four-dimensional case, we add and subtract the

Gibbons-Hawking term, i.e.,

I2n ¼ IEH � 1

8�G

Z
@M

d2n�1x
ffiffiffiffiffiffiffi�h

p
K þ

Z
@M

d2n�1xLct;

where Lct is given by

Lct ¼ ð�‘2Þn
8�Gð2n� 2Þ!

ffiffiffiffiffiffiffi�h
p

�½i1���i2n�1�
½j1���j2n�1�K

j1
i1

�
Z 1

0
dt

��
1

2
Rj2j3

i2i3
� t2Kj2

i2
Kj3

i3

�
� � � � � �

�
�
1

2
Rj2n�2j2n�1

i2n�2i2n�1
� t2Kj2n�2

i2n�2
Kj2n�1

i2n�1

�

þ ð�1Þn
‘2n�2

�j2
i2
� � ��j2n�1

i2n�1

�
: (34)

When all the fields are expanded in the FG frame, one can
collect terms as a power series in � and perform explicitly
the parametric integration. It is useful to express the ex-
trinsic curvature expansion as

Ki
j ¼

1

‘
�i
j � �‘SijðgÞ þOð�2Þ;

where

SijðgÞ ¼
1

D� 3

�
Ri

jðgÞ �
1

2ðD� 2Þ�
i
jRðgÞ

�

is the Schouten tensor of the metric gijðx; �Þ. Owing to the
rescaling properties of the boundary Riemann tensor, the
result can be written as a series of intrinsic counterterms
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Lct ¼
ffiffiffiffiffiffiffi�h

p
8�G

�ð2n�2Þ
‘

þ ‘

2ð2n�3ÞRþ ‘3

2ð2n�3Þ2ð2n�5Þ
�
�
2RijRij� ð2nþ1Þ

4ð2n�2ÞR
2�ð2n�3Þ

4
RijklRijkl

�

þ���
�
; (35)

which includes a rather unusual ðRiemannÞ2 contribution.
However, the falloff conditions for AAdS solutions imply
that the Weyl tensor is such that

ffiffiffiffiffiffiffi�h
p

WijklWijkl 	 1

rD�1

in Schwarzschild-like coordinates (see also [13]). Using
this property forD 
 6, we trade off the Riemman-squared
term for the other curvature-squared terms, i.e.,

R ijklRijkl ¼ 4

ð2n� 3Þ
�
RijRij � 1

2ð2n� 2ÞR
2

�
:

Remarkably enough, the series Lct adopts the form of
standard counterterms obtained by holographic renormal-
ization

Lct ¼
ffiffiffiffiffiffiffi�h

p
8�G

�ð2n� 2Þ
‘

þ ‘

2ð2n� 3ÞR

þ ‘3

2ð2n� 3Þ2ð2n� 5Þ
�
RijRij � ð2n� 1Þ

4ð2n� 2ÞR
2

�

þ � � �
�
; (36)

where cubic terms in the curvature are required by the
regularization problem only for D 
 8 dimensions.
We will provide the details of this derivation in a forth-

coming publication.
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OLIVERA MIŠKOVIĆ AND RODRIGO OLEA PHYSICAL REVIEW D 79, 124020 (2009)

124020-6


