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It is shown that the recently detected acceleration of the Uuniverse can be understood by considering a

modification of the teleparallel equivalent of general relativity, with no need of dark energy. The solution

also exhibits phases dominated by matter and radiation as expected in the standard cosmological

evolution. We perform a joint analysis with measurements of the most recent type Ia supernovae, baryon

acoustic oscillation peak, and estimates of the cosmic microwave background shift parameter data to

constrain the only new parameter this theory has.
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I. INTRODUCTION

The discovery of an unexpected diminution in the ob-
served energy fluxes coming from type Ia supernovae [1,2]
has opened one of the most puzzling and deepest problems
in cosmology today. These observations have been inter-
preted as solid evidence for an accelerating universe domi-
nated by something called dark energy. Although the
cosmological constant seems to be the simplest explana-
tion for the phenomenon, several dynamical scenarios have
been tried out since 1998 (see e.g., [3–5]). While some
authors sustain the idea of the existence of a dark energy,
others propose modifications of the Einstein-Hilbert
Lagrangian known as fðRÞ ([6–14] or [15–17] for recent
reviews) as a way to obtain a late accelerating expansion. A
great difficulty these theories have, from the point of view
of the metric formalism, is that the resulting field equations
are 4th order equations, which in many cases makes these
hard to analyze. Besides, the simplest cases of the kind
fðRÞ ¼ R� �=Rn have shown difficulties with weak field
tests [18,19] and gravitational instabilities [20] and do not
present a matter dominated era previous to the acceleration
era [21,22]. Alternatively, the Palatini variational approach
for such fðRÞ theories leads to 2nd order field equations,
and some authors have achieved putting observational
constraints on these theories [23–25]. However in many
cases the equations are still hard to work with, as evidenced
by the functional form of the modified Friedmann equation
for a generic fðRÞ. Recently, models based on modified
teleparallel gravity were presented as an alternative to
inflationary models [26,27]. In this paper we show a cos-
mological solution for the acceleration of the Universe by
means of a sort of theories of modified gravity, namely
fðLTÞ, based on a modification of the teleparallel equiva-
lent of general relativity (TEGR) Lagrangian [28,29],
where the torsion will be responsible for the observed

acceleration of the Universe, and the field equations will
always be 2nd order equations.

II. GENERAL CONSIDERATIONS: FIELD
EQUATIONS

Teleparallelism [28,29] uses as the dynamical object a
vierbein field eiðx�Þ, i ¼ 0, 1, 2, 3, which is an orthonor-
mal basis for the tangent space at each point x� of the
manifold: ei � ej ¼ �ij, where �ij ¼ diagð1;�1;�1;�1Þ.
Each vector ei can be described by its components e�i ,� ¼
0, 1, 2, 3 in a coordinate basis; i.e. ei ¼ e�i @�. Notice that

Latin indices refer to the tangent space, while Greek in-
dices label coordinates on the manifold. The metric tensor

is obtained from the dual vierbein as g��ðxÞ ¼
�ije

i
�ðxÞej�ðxÞ. Differing from general relativity, which

uses the torsionless Levi-Cività connection, teleparallelism
uses the curvatureless Weitzenböck connection [30],
whose non-null torsion is

T�
�� ¼ �

w�

�� � �
w�

�� ¼ e�i ð@�ei� � @�e
i
�Þ: (1)

This tensor encompasses all the information about the
gravitational field. The TEGR Lagrangian is built with
the torsion (1), and its dynamical equations for the vierbein
imply the Einstein equations for the metric. The telepar-
allel Lagrangian is [29,31,32]

LT ¼ S�
��T�

��; (2)

where

S�
�� ¼ 1

2ðK��
� þ ��

�T��
� � ��

�T
��

�Þ (3)

and K��
� is the contorsion tensor:

K��
� ¼ �1

2ðT��
� � T��

� � T�
��Þ; (4)

which equals the difference between Weitzenböck and
Levi-Cività connections.
In this work the gravitational field will be driven by a

Lagrangian density that is a function of LT . Thus the action
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reads

I ¼ 1

16	G

Z
d4xefðLTÞ; (5)

where e ¼ detðei�Þ ¼ ffiffiffiffiffiffiffi�g
p

. The case fðLTÞ ¼ LT corre-

sponds to TEGR. If matter couples to the metric in the
standard form then the variation of the action with respect
to the vierbein leads to the equations

e�1@�ðeSi��Þf0ðLTÞ � e�i T
�
��S�

��f0ðLTÞ
þ Si

��@�ðLTÞf00ðLTÞ þ 1
4e

�
i fðLTÞ ¼ 4	Gei

�T�
�; (6)

where a prime denotes differentiation with respect to LT ,
Si

�� ¼ ei
�S�

��, and T�� is the matter energy-momentum

tensor. The fact that equations (6) are 2nd order makes
them simpler than the dynamical equations resulting in
fðRÞ theories.

III. COSMOLOGICAL SOLUTION AND
OBSERVATIONAL CONSTRAINTS

We will assume a flat homogeneous and isotropic
Friedmann-Robertson-Walker universe, so

ei� ¼ diagð1; aðtÞ; aðtÞ; aðtÞÞ; (7)

where aðtÞ is the cosmological scale factor. By replacing in
(1), (3), and (4) one obtains

LT ¼ S���T��� ¼ �6
_a2

a2
¼ �6H2; (8)

with H being the Hubble parameter H ¼ _aa�1. As a
remarkable feature, the scale factor enters the invariant
LT just through the Hubble parameter. The substitution
of the vierbein (7) in (6) for i ¼ 0 ¼ � yields

12H2f0ðLTÞ þ fðLTÞ ¼ 16	G�: (9)

Besides, the equation i ¼ 1 ¼ � is

48H2f00ðLTÞ _H � f0ðLTÞ½12H2 þ 4 _H� � fðLTÞ
¼ 16	Gp: (10)

In Eqs. (9) and (10), �ðtÞ and pðtÞ are the total density and
pressure, respectively. It can be easily derived that they
accomplish the conservation equation

d

dt
ða3�Þ ¼ �3a3Hp; (11)

whatever fðLTÞ is. Thus, if the state equation is p ¼ w�,

then � evolves as � / ð1þ zÞ3ð1þwÞ (z is the cosmological
redshift).

We are interested in obtaining an accelerated expansion
without dark energy but driven by torsion. For this we will
try with a kind of fðLTÞ theories:

fðLTÞ ¼ LT � 


ð�LTÞn ; (12)

where 
 and n are real constants to be determined by
observational constraints. Although the functional form of
(12) is similar to those considered in fðRÞ literature, now
the guideline towards modified gravity is H instead of R.
This fact gives to these theories another interesting feature
because H is the most important cosmological variable.
For later times the term �
=ð�LTÞn is dominant, while in
early times, when H ! 1, general relativity is recovered.
From (9) along with (12), the modified Friedmann equation
is

H2 � ð2nþ 1Þ

6nþ1H2n

¼ 8

3
	G� (13)

(a functional dependence similar to the results other au-
thors arrived at, through different theoretical motivations
such as [33,34]).
Now, replacing � ¼ �moð1þ zÞ3 þ �roð1þ zÞ4, and

calling �i ¼ 8	G�io=ð3H2
oÞ the contributions of matter

and radiation to the total energy density today, Eq. (13)
becomes

ynðy� BÞ ¼ C; (14)

where y ¼ H2=H2
o, B ¼ �mð1þ zÞ3 þ�rð1þ zÞ4, and

C ¼ 
ð2nþ 1Þð6H2
oÞ�ðnþ1Þ. The evaluation of this equa-

tion for z ¼ 0 allows us to rephrase the constant C as a
function of�i and n: C ¼ 1��m ��r. For 
 ¼ 0 (then
1 ¼ �m þ�r), the GR spatially flat Friedmann equation
H2 ¼ H2

oB is retrieved. The case n ¼ 0 recovers the GR
dynamics with cosmological constant �� ¼ 1��m �
�r. Notice the functional simplicity of (13) compared
with its analog in fðRÞ theories. Compared with GR, n is
the sole new free parameter in (14), since specifying the

value of n and�m (�r) the value of 
 (in units of H2ðnþ1Þ)
is automatically fixed through the relation (13). In order to
obtain HðzÞ we solve numerically Eq. (14).
Since the most solid evidence for the acceleration of the

Universe comes from measurements of luminosity dis-
tances for type Ia supernovae, we will use the most recent
compilation of 307 SNe Ia events (the Union sample) [2],
to put constraints in the n��m plane. The predicted
distance modulus for a supernova at redshift z, for a given
set of parameters P ¼ ðn;�mÞ, is

�ðz j PÞ ¼ m�M ¼ 5 logðdLÞ þ 25; (15)

where m and M are the apparent and absolute magnitudes,
respectively, and dL stands for the luminosity distance (in
units of megaparsecs),

dLðz;PÞ ¼ ð1þ zÞ
Z z

0

dz0

Hðz0;PÞ ; (16)

where Hðz;PÞ is given by the numerical solution of (14).
We use a �2 statistic to find the best fit for a set of
parameters P (marginalizing over Ho),
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�2
SNe ¼

XN¼307

i¼1

½�iðz j PÞ ��obs
i ðzÞ�2

�2
i

; (17)

where �iðz j PÞ is defined by (15), and �obs
i and �i are the

distance modulus and its uncertainty for each observed
value [2]. As it is known, the measurements of SNe Ia
are not enough to constrain�m thoroughly. To perform the
statistic we also consider, on one hand, the information
coming from the baryon acoustic oscillation (BAO) peak
detected in the correlation function of luminous red gal-
axies (LRG) in the Sloan Digital Sky Survey [35]. The
observed scale of the peak effectively constrains the quan-
tity (assumed a �CDM model),

A0:35 ¼ DVð0:35Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
o

p
0:35

¼ 0:469� 0:017; (18)

where z ¼ 0:35 is the typical redshift of the LRG andDV is
defined as

DVðzÞ ¼
�

z

HðzÞ
�Z z

0

dz0

Hðz0Þ
�
2
�
1=3

: (19)

On the other hand, we have also included in the statistic
the cosmic microwave background (CMB) shift parameter,
which relates the angular diameter distance to the last
scattering surface with the angular scale of the first acous-
tic peak in the CMB power spectrum. In order to do this,
we have considered a radiation component �r ¼
5� 10�5. The CMB shift parameter is given by [36]

R1089 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
o

q Z 1089

0

dz

HðzÞ ¼ 1:710� 0:019: (20)

We can use both parameters since our model presents
matter domination at the decoupling time. Figure 1 shows
the Hubble diagram for the 307 SNe Ia belonging to the
Union sample. The curves represent models with values of
�m and n obtained from minimizing �2 using only SNIa
and SNIaþ BAOþ CMB as well. For reference, the
�CDM model with �m ¼ 0:26 is also shown. The ob-
tained values for the best fit to the SNe Ia data only are
�m ¼ 0:42 and n ¼ 1:30with the reduced �2

� � �2
min=� ’

1:02 (or equivalently, ��2
min ¼ �1:1), where � is the

number of degrees of freedom.

FIG. 1. Hubble diagram for 307 SNe Ia from the Union sample
[2]. The curves correspond to the concordance model �CDM
with �� ¼ 0:74 and �m ¼ 0:26 (dotted line); our models with
the values corresponding to the best fit�m ¼ 0:42 and n ¼ 1:30
(dashed line), and also with those coming from the joint analysis
of SNIaþ BAOþ CMB, �m ¼ 0:27, and n ¼ �0:10 (solid
line).

FIG. 2. Distance modulus residual from the �CDM model for
the same values from Fig. 1.

FIG. 3. Confidence intervals at 68.3%, 95.4%, and 99.7% in the
n��m plane coming from combining SNe Ia, BAO, and CMB
data. The best fit to this joint analysis is reached with the values
n ¼ �0:10 and �m ¼ 0:27.

DARK TORSION AS THE COSMIC SPEED-UP PHYSICAL REVIEW D 79, 124019 (2009)

124019-3



In Fig. 2 we plot the distance modulus residual (��)
from the �CDM model to better appreciate the discrep-
ancies between our model and �CDM.

Figure 3 shows the confidence intervals at 68.3%, 95.4%,
and 99.7% for the joint probability of the parameters n and
�m, having combined the SNe Ia data with BAO and CMB
parameters. This analysis yields the fact that the best fit to
all data is achieved with n ¼ �0:10 and �m ¼ 0:27 (with
a �2

min=� ’ 1:01, ��2
min ¼ �1:2) and also the values of

the parameters lie in the ranges (at 68.4% C.L.): n 2
½�0:23; 0:03�, �m 2 ½0:25; 0:29�.

For our model we have analyzed as well the total and
effective equations of state as a function of z. From (10)
and (13) along with (12), one can define a torsion contri-
bution to the density and pressure as

�T ¼ 3

8	G

ð2nþ 1Þ

6nþ1H2n

;

pT ¼ 


8	G

�
ð6H2Þ�ðnþ1Þ _H½4nðnþ 1Þ � 2n�

� 6nð6H2Þ�ðnþ1ÞH2 � ð6H2Þ�n

2

�
(21)

to rewrite the dynamical equations as

H2 ¼ 8	G

3
ð�þ �TÞ; (22)

€a

a
¼ � 8	G

6
½�þ �T þ 3ðpþ pTÞ�: (23)

Then, by using (22) and (23) the total and effective equa-
tions of state are written as

wtot � pþ pT

�þ �T

¼ �1þ 2ð1þ zÞ
3H

dH

dz
; (24)

weff ¼ pT

�T

: (25)

Figure 4 shows the evolution of the total equation of
state wtot as a function of z for our model with the values of
the best fit. There can be observed the last three phases of
the evolution of the universe: radiation dominated (w ¼
1=3), matter dominated (w ¼ 0), and late acceleration
(w ’ �1). Figure 5 shows the effective equation of state
coming from the dark torsion contribution. Finally, analyz-
ing (23) we find that our model with n ¼ �0:10 predicts
that the transition from deceleration to acceleration occurs
at zacc ’ 0:74 in good agreement with recent works [37].
An interesting point to be highlighted is that Eq. (13)

reveals that a value of n > 0, as the one obtained by
considering only SNIa data, implies that the effective
dark torsion is of the phantom type [38]. That is, since H
decreases toward the present time, the dark torsion density
increases instead of diluting with expansion (weff <�1).
However, when combining the complete data with SNIaþ
BAOþ CMB we can see from Fig. 3 that it is slightly
favored (1� C.L.) as a model with n � 0.

IV. CONCLUSIONS

A theory fðLTÞ based on a modification of the TEGR—
where torsion is the geometric object describing gravity
instead of curvature and its equations are always of 2nd
order—is remarkably simpler than fðRÞ theories. We have
tested the theory fðLTÞ ¼ LT � 
ð�LTÞ�n with the aim of
reproducing the recently detected acceleration of the
Universe without resorting to dark energy. We have here
performed observational viability tests for this theory by
using the most recent SN Ia data, and combined them with

FIG. 4. The curves correspond to the total equation of state as a
function of z expected for the standard concordance model
�CDM with �� ¼ 0:74 and �m ¼ 0:26 (dashed line), and for
our model (solid line) with the values of the best fit coming from
SNIaþ BAOþ CMB, �m ¼ 0:27, and n ¼ �0:10. Three cos-
mological phases are observed.

-

FIG. 5. Effective equation of state as a function of z for our
model with the values of the best fit coming from SNIaþ
BAOþ CMB, �m ¼ 0:27, and n ¼ �0:10.
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the information coming from the BAO peak and the CMB
shift parameter in order to find constraints in the n��m

plane. At 68.3% C.L. we found that the values lie in the
ranges n 2 ½�0:23; 0:03� and �m 2 ½0:25; 0:29�. The val-
ues for�m are consistent with recent estimations obtained
by other authors (see, e.g., [39]). The model with the best-
fit values minimizing the �2 that combines SNIaþ
BAOþ CMB data (n ¼ �0:10 and �m ¼ 0:27) exhibits
the last three phases of cosmological evolution: radiation

era, matter era, and late acceleration, this last stage having
started at zacc ’ 0:74.
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