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AdS/CFT correspondence is now widely used for the study of strongly coupled plasmas, such as those

produced in ultrarelativistic heavy ion collisions at the Relativistic Heavy Ion Collider. While properties

of equilibrated plasma and small deviations from equilibrium are by now reasonably well understood, the

plasma’s initial formation and thermal equilibration is a much more challenging issue which remains to be

studied. In the dual gravity language, these problems are related to the formation of bulk black holes, and

studying trapped surfaces, as we do in this work, is a way to estimate the properties (temperature and

entropy) of such black holes. Extending the work by Gubser et al. for central collisions, we find

numerically trapped surfaces for noncentral collisions of ultrarelativistic black holes (gravitational shock

waves) with different energies. We observe that beyond a certain critical impact parameter, the trapped

surface does not exist, and we argue that there are some experimental indications for a similar jump in

entropy production as a function of the impact parameter in real heavy ion collisions. We also present a

simple solvable example of the so-called wall-on-wall collision, for colliding objects that depend on the

holographic coordinate only. Finally, we critically discuss the applicability of the AdS/CFT approach to

real-world heavy ion collisions.
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I. INTRODUCTION

The quark gluon plasma (QGP) produced in the
Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory is believed to be strongly coupled
[1], as evidenced by its rapid equilibration, strong collec-
tive flows well reproduced by hydrodynamics, and strong
jet quenching. Applications of AdS/CFT correspondence
[2,3] to strongly coupled QGP have generated many fun-
damental results [4–7]; for some further results see [8] for a
recent review. However, the progress so far has been
mostly related either to equilibrium properties of the
plasma, or to kinetics/hydrodynamics close to equilibrium.

The challenging issues related to the violent initial stage
of the collisions, in which the QGP is formed and equili-
brated, producing most of the entropy, are not yet under-
stood. One issue worth mentioning is the strikingly
different views on equilibration held in statistical mechan-
ics on one hand, and in AdS/CFT-based dual gravity on the
other. Statistical/kinetic approaches treat equilibration and
entropy production as a gradual deformation of particle
distributions, from some initial nonthermal state toward the
final equilibrated one. In the dual gravity setting the
sources of temperature and entropy are both attributed to
the gravitational horizons. They may or may not be pro-
duced in a collision: For example, by decreasing the col-
lision energy or increasing the impact parameter, one may
reach a point at which no horizons are formed. This implies
certain singularities, or a view that a switching in equili-

bration is similar to a phase transition rather than a gradual
deformation.
Formation of a black hole in a collision, which is then

falling toward the AdS center, was first considered in [9],
with a spherical black hole. Janik and Peschanski [10]
proposed an asymptotic (late-time) solution, correspond-
ing to rapidity-independent (Bjorken) flow; see [11,12] for
the most recent advances along this direction.
Grumiller and Romatschke [13] tried to describe the

initial stage of high energy collisions, starting with a
certain type of gravitational shock waves. In Sec. V we
will explore the formation of a horizon in a similar setup,
but taking a different point of view: The image on the
boundary must be due to the source in the bulk. This will
lead to different and more consistent initial conditions, as
well as subsequent evolution of matter.
A perturbative treatment of the initial conditions is dis-

cussed by Albacete, Kovchegov, and Taliotis [14]. Other
models of equilibration based on solutions to dynamical
Einstein equations include the model in our previous work
[15], in which a gravitationally collapsing shell of matter in
AdS5 space is considered. This sheds light on how the
formation of isotropic and homogeneous plasma may pro-
ceed through a very specific ‘‘quasiequilibrium’’ stage. We
calculated the spectral densities and found that they deviate
from their thermal counterpart by general oscillations.
Another interesting solution describing isotropization of
plasma was proposed by Chesler and Yaffe [16] recently.
The issue wewill address in this work is the formation of

trapped surfaces and entropy production in the collision of
two shock waves in AdS background. Work in this direc-
tion in the AdS/CFT context started with the paper by
Gubser, Pufu, and Yarom [17], who considered central
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collisions of pointlike black holes in the bulk. They located
the (marginally) trapped surface at the collision moment.
Its area was then used as an estimate (more accurately, the
lower bound) of the entropy produced in the collision. In
the limit of very large collision energy E, they found that

the entropy grows as E2=3. In Sec. VI we will critically
discuss how realistic these results are.

In this work we extend the work of Ref. [17] in two
directions. One is the extension to the collision of shock
waves with a nonzero impact parameter. Like for shock
wave collision in asymptotically flat Minkowski back-
ground [18–20], in AdS background there is also an inter-
esting switching of description: Beyond a certain impact
parameter, the trapped surface disappears and the black
hole formation no longer happens. The other direction
deals with a simpler case of the so-called wall-on-wall
collision—the collision of objects with infinite extension
in transverse coordinates and nontrivial dependence in the
holographic direction only, which was, in a way, over-
looked before.

II. GRAVITATIONAL COLLISIONS AND TRAPPED
SURFACES

The AdS/CFTapproach is a duality between theN ¼ 4
super Yang-Mills theory in 3þ 1 dimensions and string
theory in AdS5 � S5 10-D space-time. At a large number
of colors string theory is in the classical (supergravity)
regime. Here (and in many other related works) the angles
of the sphere S5 play no role. The five-dimensional AdS5
space has the background metric, which we will write as

ds2 ¼ L2 �dudvþ ðdx1Þ2 þ ðdx2Þ2 þ dz2

z2
(1)

where u ¼ t� x3 and v ¼ tþ x3. x3 is the longitudinal
coordinate and x1, x2 are transverse coordinates. The ef-
fective gravity in this space (the bulk) can be related, by
certain rules, to the z ¼ 0 4-D boundary, where the gauge
theory lives. The background metric corresponds to the
vacuum state of the gauge theory.

The ultrarelativistic nucleus-nucleus collisions we want
to model are described in the bulk as a collision of certain
objects, whose holograms are the colliding nuclei. The first
step of [17] was a suggestion to model the nuclei by bulk
pointlike masses. (We will return to a critical discussion of
this point at the end of the paper.) Their gravity field
corresponds to that of small black holes, and after a
Lorentz boost to high energy, their field becomes very
thin gravitational shock waves. As the shock waves ap-
proach each other, they do not interact until they meet at
the collision point, for causal reasons. Nevertheless, the
trapped surfaces associated with each shock wave grow as
they approach the collision point, and finally merge. Note
that the causality is not violated by this behavior because
the trapped surface is not a physical object: In a way, this
tells us what happens after the collision occurs. The ex-

istence of a trapped surface signifies black hole formation,
since the matter inside it would not be able to escape.
Although in this work we attempt to solve the Einstein

equations for times after collision, let us, for completeness,
mention what happens next. For central collisions (or non-
central ones with the impact parameter below the critical
value) two colliding objects form one central black hole.
Its Hawking temperature and Bekenstein entropy are per-
ceived by the observers at the boundary z ¼ 0 as the initial
temperature and entropy produced in gauge theory. When
produced, the horizon of this black hole is strongly de-
formed, but (due to its dissipative nature) it eventually
settles down locally to some stationary black hole metric.
This black hole is simultaneously falling toward the AdS
center (z ! 1): The hologram of this is the cooling and
expansion of matter produced in a collision. Since the
boundary theory is conformal and equally strongly inter-
acting at all scales, such cooling and expansion of plasma
continues to arbitrarily low temperatures.
The importance of the trapped surface is in its determi-

nation of what part of the system must end up inside the
black hole. The part outside it may be carried away (as
gravitational radiation) or still fall inward: Thus one gets
only the lower bound of the black hole mass. In this paper,
we will concentrate on locating the trapped surface at the
collision point and use the area of the trapped surface as a
lower bound on the final black hole entropy, which by AdS/
CFT corresponds to the entropy production of nucleus
collisions in gauge theory.
The gravitational shock waves used in [17] are written as

ds2 ¼ L2 �dudvþ ðdx1Þ2 þ ðdx2Þ2 þ dz2

z2

þ L
�ðx1; x2; zÞ

z
�ðuÞdu2 (2)

with the transverse profile �ðx1; x2; zÞ satisfying the equa-
tion �

h� 3

L2

�
� ¼ 16�G5Juu (3)

with some bulk source Juu, an arbitrary function. The
operator h is the hyperbolic Laplacian on the space

ds2H3 ¼ L2 ðdx1Þ2 þ ðdx2Þ2 þ dz2

z2
: (4)

The shock wave moving in the �x3 direction can be
obtained by the substitution u $ v to (2) and (3).
The trapped surface is determined from the zero (non-

positivity) of the so-called expansion � � 0, depending on
the metric. For a detailed explanation of its geometric and
physical meaning, see e.g. [21]: It roughly corresponds to
the expansion or contraction of the area between two light
rays (null geodesics) emitted at some small distance from
each other in the same direction. Its equality to zero
corresponds to the so-called marginally trapped surface:
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These light rays neither converge nor diverge. The trapped
surface is made up of two pieces: S ¼ S1 [ S2. S1ðS2Þ is
associated with a shock wave moving in the þx3ð�x3Þ
direction before collision. An additional condition is that
the outer null vector normal to S1 and S2 must be continu-
ous at the intersection C ¼ S1 \ S2 point u ¼ v ¼ 0 to
avoid a delta function in the expansion.

To find the S1 associated with the first shock wave,

ds2 ¼ L2 �dudvþ ðdx1Þ2 þ ðdx2Þ2 þ dz2

z2

þ L
�1ðx1; x2; zÞ

z
�ðuÞdu2; (5)

the following coordinate transformation is made to elimi-
nate the discontinuity in geodesics:

v ! vþ z

L
�1�ðuÞ (6)

where �ðuÞ is the Heaviside step function. S1 is parame-
trized by

u ¼ 0; v ¼ �c 1ðx1; x2; zÞ: (7)

The expansion is defined by � ¼ h��r�l�, with l� the

outer null vector normal to S1. h
�� is the induced metric.

It can be constructed from three spacelike unit vectors w�
1 ,

w�
2 , w

�
3 , which are normal to S1:

h�� ¼ w
�
1 w

�
1 þ w

�
2 w

�
2 þ w

�
3 w

�
3 : (8)

The vanishing of the expansion corresponds to the follow-
ing equation: �

h� 3

L2

�
ð�1 ��1Þ ¼ 0 (9)

with �1ðx1; x2; zÞ ¼ L
z c 1ðx1; x2; zÞ.

The vanishing of the expansion on S2 associated with
the second shock wave can be worked out similarly:�

h� 3

L2

�
ð�2 ��2Þ ¼ 0: (10)

At the intersection C ¼ S1 \ S2, S1 and S2 coincide;
therefore, �1ðx1; x2; zÞ ¼ �2ðx1; x2; zÞ ¼ 0. The continu-
ity of the outer null normal can be guaranteed by r�1 �
r�2 ¼ 4.

In summary, finding a marginally trapped surface be-
comes the following unusual boundary value problem:�

h� 3

L2

�
ð�1 ��1Þ ¼ 0;

�
h� 3

L2

�
ð�2 ��2Þ ¼ 0; �1jC ¼ �2jC ¼ 0:

(11)

The boundary C should be chosen to satisfy the constraint

r�1 � r�2jC ¼ 4: (12)

Note that (11) and (12) are written in the form of a scalar

equation, invariant under coordinate transformation. For
central collision, the sources Juu are identical for two shock
waves. In [17], for simplicity, they are chosen to be point-
like in the bulk,

Juu ¼ E�ðuÞ�ðz� LÞ�ðx1Þ�ðx2Þ: (13)

The solution of� corresponding to this source gives rise to
the following stress tensor on the boundary field theory:

Tuu ¼ L2

4�G5

lim
z!0

�ðx1; x2; zÞ�ðuÞ
z3

¼ 2L4E

�ðL2 þ ðx1Þ2 þ ðx2Þ2Þ3 �ðuÞ: (14)

The parameters E and L can be tuned according to the
energy and the transverse size of the nucleus.
The special source (13) preserves an Oð3Þ symmetry in

H3, which is manifest in the following coordinate system:

ds2H3 ¼
dr2

1þ r2=L2
þ r2ðd�2 þ sin2�d�2Þ (15)

with the point source sitting at r ¼ 0. We will elaborate the
symmetry later in the context of noncentral collision.
TheOð3Þ symmetry helps to solve (11) analytically. The

area of the trapped surface can be calculated and can give a
lower bound to the entropy produced in the collision of
shock waves, assuming the area theorem holds in AdS
background.
For noncentral collision, the situation is complicated by

the loss of Oð3Þ symmetry. In Minkowski background, the
problem of the noncentral collision of point shock waves in
D ¼ 4 was solved beautifully in [18] by conformal trans-
formation. In D> 4, it was solved numerically in [19]. In
all cases, a critical impact parameter was found, beyond
which the trapped surface ceased to exist.
In the next section, we will cast (11) into an integral

equation, which allows us to solve (11) numerically.

III. CALCULATION OF THE TRAPPED SURFACE

Note that (11) resembles the electrostatic problem in flat
space, with � being the electric potential. We are familiar
with the fact that the electric potential can be expressed as
an integral of surface charge density. We want to see if this
can be achieved in AdS space.
Let us start with the electrostatic problem in flat space.

Consider the following electrostatic problem, which is
similar to (11):

r2�iðxÞ ¼ r2�iðxÞ; (16)

�iðxÞjC ¼ 0; (17)

r�1 � r�2 ¼ 4; (18)

where i ¼ 1, 2, and r2 is the Laplacian in flat space. �i is
the electric potential corresponding to the source r2�i,
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placed inside an empty chamber with the conducting
boundary C. The boundary should be chosen properly
such that the constraint (18) is also satisfied.

We want to express the electric potential by an integral
of the surface charge density. This can be done with the
help of the free boundary Green’s function defined as the
solution to

r2Gðx; x0Þ ¼ �ð3Þð ~x� ~x0Þ; (19)

with the solution given by

Gðx; x0Þ ¼ � 1

4�

1

j ~x� ~x0j : (20)

Taking (16) multiplied byGðx; x0Þminus (19) multiplied
by �iðxÞ, and then integrating over the space inside C, we
obtain

Z
d3xðGðx; x0Þr2�iðxÞ ��iðxÞr2Gðx; x0ÞÞ

¼
Z

d3xGðx; x0Þr2�iðxÞ ��iðx0Þ; (21)

Z
d ~S � ðGðx; x0Þ ~r�iðxÞ ��iðxÞ ~rGðx; x0ÞÞ

¼
Z

d3xGðx; x0Þr2�iðxÞ ��iðx0Þ: (22)

Denote BiðxÞ ¼ � @�iðxÞ
@n (the magnitude of the electric field

on the boundary) and note that �iðxÞ vanishes on the
boundary. With x0 taken on the boundary C, (22) evaluates
to

Z
dSGðx; x0ÞBiðxÞ ¼

Z
d3xGðx; x0Þr2�iðxÞ: (23)

The constraint (18) is simply B1ðxÞB2ðxÞ ¼ 4. We have
converted a problem in the volume into a problem on its
boundary C. Equation (23) is a Fredholm integral equation
of the first kind. We can use the following method to solve
(16): Starting with some trial shape of C, we can solve (22)
to obtain BiðxÞ and check if (18) is satisfied. We can use
iteration to tune the trial shape until (18) is satisfied.

Now we hope to apply a similar method to the problem
of a trapped surface, the difference being that the space is
H3 instead of flat.

As in the case of the electrostatic problem, we will keep
using the Green’s function in AdS, defined as the solution
to the following:�

h� 3

L2

�
Gðx; x0Þ ¼ 1ffiffiffi

g
p �ð3Þð ~x� ~x0Þ (24)

where g is the metric of H3.
The Green’s function was solved in [22,23]. We quote

the result here with L dependence restored.

Gðx; x0Þ ¼ � 1

4�L

e2u

sinhu
;

coshu ¼ 1þ ðz� z0Þ2 þ ð ~x? � ~x0?Þ2
2zz0

;

(25)

where u is the invariant distance in H3ðAdS3Þ.
It also proves useful to note another relation:

Z
M
hf

ffiffiffi
g

p
d3x ¼

Z
M

1ffiffiffi
g

p @�ð ffiffiffi
g

p
g��@�fÞ ffiffiffi

g
p 1

3!
��	
dx

�

^ dx	 ^ dx


¼
Z
M
d

� ffiffiffi
g

p
g��@�f��	


1

2!
dx	 ^ dx


�
(26)

where dx� ¼ g�� ffiffiffi
g

p
��	


1
2!dx

	 ^ dx
. M is taken to be

the manifold inH3 bounded by C, and the metric g refers to
H3. f is an arbitrary function of x.
With (25) and (26) at hand, we are ready to proceed:�

h� 3

L2

�
�iðxÞ ¼

�
h� 3

L2

�
�iðxÞ;�

h� 3

L2

�
Gðx; x0Þ ¼ 1ffiffiffi

g
p �ð3Þð ~x� ~x0Þ;

(27)

with i ¼ 1, 2. All the derivatives are with respect to x.
Taking the first line of (27) multiplied byGðx; x0Þminus the
second line of (27) multiplied by �iðxÞ, then integrating
over M, we obtain

Z
M

�
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ��iðxÞ

�
h� 3

L2

�
Gðx; x0Þ

�
� ffiffiffi

g
p

d3x

¼
Z
M
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ffiffiffi

g
p

d3x��iðx0Þ; (28)

Z
M
ðGðx; x0Þdð@��iðxÞdx�Þ ��iðxÞdð@�Gðx; x0Þdx�ÞÞ

¼
Z
M
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ffiffiffi

g
p

d3x��iðx0Þ; (29)

Z
M
ðdðGðx; x0Þ@��iðxÞdx�Þ � dð�iðxÞ@�Gðx; x0Þdx�ÞÞ

¼
Z
M
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ffiffiffi

g
p

d3x��iðx0Þ; (30)

Z
@M

ðGðx; x0Þ@��iðxÞdx� ��iðxÞ@�Gðx; x0Þdx�Þ

¼
Z
M
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ffiffiffi

g
p

d3x��iðx0Þ; (31)

where in the last line we have used Stokes theorem on
manifold M.
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Putting x0 on C, we can simplify the above with �ijC ¼
0:

Z
@M

Gðx; x0Þ@��iðxÞdx�

¼
Z
M
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ffiffiffi

g
p

d3x: (32)

Furthermore, we have @�c dx� ¼ 0 on C since �ijC ¼ 0.
On the other hand, n�dx

�jC ¼ 0, where n� is the unit vector
normal to the boundary C. Therefore, we may write

@��i ¼ �Bin�: (33)

Equations (12) and (32) can be further simplified with (33):

�
Z
@M

Gðx; x0ÞBiðxÞdS

¼
Z
M
Gðx; x0Þ

�
h� 3

L2

�
�iðxÞ ffiffiffi

g
p

d3x; (34)

B1ðxÞB2ðxÞ ¼ 4; (35)

where dS � n�dx
� is the area element.

Before proceeding to noncentral collision, wewould like
to reproduce the 5-D result of [17] first. Working in spheri-
cal coordinates (15), the shape of C is parametrized by r ¼
	0 ¼ const. The simplest point shock wave corresponding
to Juu ¼ E�ðuÞ�ðz� LÞ�ðx1Þ�ðx2Þ is given by

�1 ¼ �2 ¼ 4G5E

L

1þ 2ðr=LÞ2 � 2r=L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðr=LÞ2p

r=L
:

(36)

The Green’s function (25) is invariant under coordinate
transformation. In spherical coordinates, it is given by

Gðx; x0Þ ¼ � 1

4�L

e2u

sinhu
;

coshu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2=L2 þ 1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02=L2 þ 1

q
� rr0=L2ðcos� cos�0 þ sin� sin�0 cosð���0ÞÞ:

(37)

In the presence ofOð3Þ symmetry, it is sufficient to show
that (34) holds for �0 ¼ 0, when the integral in � is trivial.
On the other hand, (35) implies B1 ¼ B2 ¼ 2. As a result,
we only need to verify

2�
Z �

0
d�ð�2Þ ðcoshu� sinhuÞ2

sinhu
	2
0 sin�

¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2
0 þ 1

q
� 	0Þ2

	0

ð�4G5EÞ4� coshu

¼ 	2
0 þ 1� 	2

0 cos�: (38)

It is not difficult to complete the integral in �; we finally

arrive at 2G5E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	2

0=L
2

q
	2
0, which is equivalent to

(115) in [17].

IV. COLLIDING POINT SHOCK WAVES ATA
NONZERO IMPACT PARAMETER

A. Shock waves in spherical coordinates

Consider two shock waves with impact parameter b,
given by�
h� 3

L2

�
�1 ¼ �16�G5E�ðuÞ�ðz� z0Þ�

�
x1 � b

2

�
�ðx2Þ;�

h� 3

L2

�
�2 ¼ �16�G5E�ðuÞ�ðz� z0Þ�

�
x1 þ b

2

�
�ðx2Þ:
(39)

The corresponding stress energy tensors associated with
two shock waves are given by

Tuu ¼ 2L4E

�ðz20 þ ðx1 � b
2Þ2 þ ðx2Þ2Þ3 �ðuÞ;

Tvv ¼ 2L4E

�ðz20 þ ðx1 þ b
2Þ2 þ ðx2Þ2Þ3 �ðvÞ:

Therefore, z0 characterizes the size of the nucleus. We
will use spherical coordinates in solving (34). In the case of
central collision, when b ¼ 0, the shock wave center can
be placed at the origin of spherical coordinates r ¼ 0. This
is achieved by first going to global coordinates Yiði ¼
0; 1; 2; 3Þ:

Y0 ¼ z

2

�
kþ L2=kþ kx2?

z2

�
;

Y3 ¼ z

2

�
�kþ L2=k� kx2?

z2

�
;

Y1 ¼ L
x1

z
; Y2 ¼ L

x2

z
:

(40)

The global coordinates are linked to spherical coordinates
in the following way:

Y0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ L2

p
; Y1 ¼ r cos�;

Y2 ¼ r sin� cos�; Y3 ¼ r sin� sin�:
(41)

When b ¼ 0, the center of the shock waves can be put at
the origin if we set k ¼ L

z0
. The possibility of moving any

point to the origin reflects the maximally symmetric prop-
erty of AdS space.
When b � 0, we want to place the two shock waves at

opposite positions with respect to the origin, so that the
boundary of the trapped surface C will have axial symme-

try. Setting 1þ b2

4z2
0

¼ L2

k2z2
0

, we have Y2 ¼ Y3 ¼ 0 and Y1 ¼
� Lb

2z0
. According to (41), we have the shock waves at
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r ¼ Lb
2z0

, � ¼ 0, and � ¼ �. The differential equation in

(34) becomes

�
h� 3

L2

�
�i ¼ �16�G5E

L3

z30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2=L2

p
r2 sin�

�ðr� r0Þ

� �ð�� �iÞ�ð�Þ (42)

where r0 ¼ Lb
2z0

, �1 ¼ 0, �2 ¼ �. We observe that, in

spherical coordinates, the trapped surface only depends

on G5E
L3

z3
0

and r0. Since the AdS radius is a free parameter,

which will not appear alone in the final result in dual field
theory, we may set z0 ¼ L without loss of generality. As a
result we have b ¼ 2r0.

B. More general shock waves

Before proceeding to the numerical study of trapped
surfaces, we choose to take a moment to investigate the
symmetries of the problem, which will help us to study
more general shock waves. To see this, we prefer to work in
the differential form of the problem: (11) and (12).

As we noticed before, (11) and (12) are scalar equations.
�i is a scalar. It is invariant under coordinate transforma-

tions: x ! ~x, �iðxÞ ! ~�ið~xÞ. The boundary remains the

same C ! ~C, but takes a different functional form in new
coordinate. As a result, (12) is automatically satisfied.
Suppose the transformation also preserves the form of

the operator: h� 3=L2, then ~�ið~xÞ becomes another so-
lution to (11) and (12). We will focus on transformations
that leave the center of the shock waves on the axis of � ¼
0, �.

To identify such a coordinate transformation, we first
make a change of variables:

r sin� ¼ t; r cos� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ t2

p
sinh�:

The metric of H3 becomes

ds2 ¼ dt2

1þ t2=L2
þ ðL2 þ t2Þd�2 þ t2d�2: (43)

The metric is � independent; therefore the transformation
~t ¼ t, ~� ¼ �, ~� ¼ �þ �� will not change the operator
h� 3=L2. ~t ¼ t also guarantees that the center of the
shock waves remains on the axis of � ¼ 0, �. We have
obtained the desired coordinate transformation, which is
just a translation in �. It is easy to work out the corre-
sponding transformation in spherical coordinates:

~r sin~� ¼ r sin� ¼ t;

~r cos~� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ t2

p
sinhð�� ��Þ;

r cos� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ t2

p
sinh�:

(44)

One can verify explicitly that (44) preserves the form of
(15). Equation (44) moves the center of the shock waves

from Y2 ¼ Y3 ¼ 0, Y1 ¼ �r0 to Y2 ¼ Y3 ¼ 0, Y1 ¼
�r0 cosh���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r20

q
sinh��. This means that the col-

lision of shock waves centered at Y2 ¼ Y3 ¼ 0, Y1 ¼
�r0 cosh���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r20

q
sinh�� will generate the same

entropy as those centered at Y2 ¼ Y3 ¼ 0, Y1 ¼ �r0. This
allows us to study the collision of more general shock
waves. Let us consider the following shock waves:�
h� 3

L2

�
�1 ¼�16�G5Eu�ðuÞ�ðz� zuÞ�ðx1 � xuÞ�ðx2Þ;�

h� 3

L2

�
�2 ¼�16�G5Ev�ðvÞ�ðz� zvÞ�ðx1 � xvÞ�ðx2Þ:

(45)

In this paper, we restrict our interest to shock waves with

identical invariant energy, defined by Eu
L3

z3u
¼ Ev

L3

z3v
� E.

This keeps the mirror symmetry of the problem intact. We
will see that the center of the shock waves can be placed at

Y2 ¼ Y3 ¼ 0, Y1 ¼ �r0 cosh���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r20

q
sinh��.

This is equivalent to the statement that a solution to the
following equations can always be found:

L
xu
zu

¼ r0 cosh���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r20

q
sinh��;

L
xv
zv

¼ �r0 cosh���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r20

q
sinh��;

k2
�
1þ x2u

z2u

�
¼ L2

z2u
; k2

�
1þ x2v

z2v

�
¼ L2

z2v
;

xu � xv ¼ �x:

(46)

Equation (46) can be solved easily by switching to the
variable �0 ¼ sinh�1 r0

L . A solution to (46) always exists

for any given zu, zv, and �x. We include the corresponding
r0 here, as it is the only relevant quantity, apart from E, for
entropy calculation:

r0
L

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzu � zvÞ2 þ �x2

4zuzv

s
: (47)

In summary, we have shown that for shock waves (45)

satisfying Eu
L3

z3u
¼ Ev

L3

z3v
� E, the entropy is only a func-

tion of G5E and (47). Note that r0 is only a function of the
invariant distance between the centers of the shock waves.

C. Numerical solution of trapped surfaces

With all the simplification, we are ready to find the
trapped surface for different impact parameters. Our pro-
cedure is as follows: Axial symmetry allows us to parame-
trize C by r ¼ 	ð�Þ. Integrals in � on the left-hand side of
(34) can be expressed in terms of elliptic integrals.
Equation (34) becomes essentially a 1-D integral equation.
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We discretize the integral by 199 points, equally spaced in
the full range of �. The integral on the left-hand side of (34)
is discretized accordingly, and the integral on the right-
hand side can be expressed in terms of an elementary
function due to the simple form of the shock wave. We
use the same sample points for �0, bringing (34) into a
matrix form: X

j

Bð�jÞKð�j; �0iÞ ¼ Sð�0iÞ (48)

where the indices i, j ¼ 1; . . . ; 199. Kð�j; �0iÞ contains the
Green’s function and the induced metric. Sð�0iÞ is from the
right-hand-side integral of the shock wave.

A special treatment is needed for the diagonal matrix
element ofKð�j; �0iÞ, where �j ¼ �0i. The explicit integrand
expressed in terms of elliptic integrals shows that it is
logarithmically divergent in j�� �0j, yet the integral is
convergent. The integral in this interval, represented by
the diagonal matrix element, is estimated by sampling the
integrand by a certain number of points in the interval. The
sample integrand is used to extract the coefficients of the
terms lnj�� �0j, 1, ð�� �0Þ lnj�� �0j, and �� �0 by the
method of least squares. Those coefficients are finally used
for the calculation of diagonal matrix elements.

The mirror symmetry of the two shock waves implies
B2ð�Þ ¼ B1ð�� �Þ. Therefore, it is sufficient to calculate
one of them. Given a trial shape of the trapped surface r ¼
	ð�Þ, which is also necessarily symmetric under � $ ��
�, we can solve for Bð�Þ from (48). We then evaluate
�ð�Þ ¼ B1ð�ÞB2ð�Þ � 4 and tune the shape function ac-

cordingly. We repeat the process until (35) is satisfied to a
certain accuracy. In order to assure fast convergence, we
find it very helpful to calculate the gradient of 	ð�Þ. The
gradient is the matrix form of the functional derivative:
��½	ð�Þ�
�	ð�Þ . We parametrized C by 	ð�Þ ¼ P

M
n¼1 an cos2ðn�

1Þ�, where M is a truncation number. The same decom-
position applies to �ð�Þ: �ð�Þ ¼ P

M
n¼1 bn cos2ðn� 1Þ�.

The gradient in this representation is given by an M�M

matrix: �bm
�an

, which again contains elliptic integrals. For a

given collision energy, we can find the boundary C until a
certain critical impact parameter is reached. The critical

impact parameter is located where @	ð�Þ
@b diverges [19].

Empirically, the gradient �bm
�an

converges as �ð�Þ reduces
in the iteration, if the impact parameter is within the critical
value. The gradient diverges as �ð�Þ is reduced in the
iteration, if the impact parameter lies beyond the critical
value.
Figure 1 shows the shapes of the trapped surfaces at

G5E
L2 ¼ 1 and G5E

L2 ¼ 100 for different impact parameters.

The shapes are represented in spherical coordinates. We
observe that the critical trapped surface does not scale with
collision energy in spherical coordinates. As collision en-
ergy grows, the trapped surface gets elongated in the axis
of mismatch and largerM is needed to reach the prescribed
accuracy.
We also obtained several critical impact parameters

corresponding to different energies. The results are listed
in Table. I.

1.0 0.5 0.5 1.0
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0.5
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6 4 2 2 4 6
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theta Pi 2

FIG. 1 (color online). Left panel: The shapes of C (the trapped surface at u ¼ v ¼ 0) at G5E
L2 ¼ 1. The impact parameters used in the

plot are 0:4L, 0:6L, 0:8L, 1:0L, 1:1L, 1:14L, from outside to inside, the innermost shape being the critical trapped surface. Right panel:
The shapes of C (the trapped surface at u ¼ v ¼ 0) at G5E

L2 ¼ 100. The impact parameters used in the plot are 1:0L, 2:0L, 3:0L, 4:0L,

5:0L, 5:3L, from outside to inside, the innermost shape being the critical trapped surface. As collision energy grows, the trapped
surface gets elongated in the axis of mismatch.
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Figure 2 shows the log-log plot of the critical impact
parameter versus collision energy. It suggests a simple
power law within the energy range used in the numerical

study. The data are fitted with bc
L ¼ �ðG5E

L2 Þ
 to give

� ¼ 1:07; 
 ¼ 0:37: (49)

b� E
L1�2
, the numerical value from fitting, shows that
the critical impact parameter grows with collision energy
and nucleus size.

The area of the trapped surface (twice the area of C) sets
a lower bound of the entropy produced, which is given as
follows:

Strapped ¼ 2A

4G5

¼ 1

2G5

Z ffiffiffi
g

p
d3x (50)

where A is the area of the boundary C. The prefactor is

L3

G5

¼ 2N2
c

�
: (51)

We plot the lower bound of the entropy in the dual field

theory for energy G5E
L2 ¼ 100 in Fig. 3.

V. WALL-ON-WALL COLLISIONS

In this section we address a simpler form of the shock
waves (called wall-on-wall in [9]), in which there is no
dependence on two transverse coordinates. Grumiller and
Romatschke [13] have also discussed it, using gravitational
shock waves. The problem with their approach is the
(power) growing amplitude of the shock as a function of
holographic coordinate z. Thus, collision dynamics resem-
bles the atmospheric turbulence in the sense that the largest
perturbation is at the largest z—namely, in the infrared
modes—cascading down toward higher momenta (UV).
First of all, this is physically different from the heavy ion
collisions, in which case the initial wave functions have
partons well localized near the so-called ‘‘saturation
scale,’’ from which the equilibration domain (trapped sur-
face) propagates both into small z (UV) and large z (IR)
directions. Second, we think it is also inconsistent: A
function growing with z cannot be considered as a small
perturbation to the background metric, which is decreasing
at large z as 1=z2. One may think that gravity near the AdS
center z ¼ 1 should never be touched, as this is the
original position of the D3-branes which gave the basis
for AdS/CFT correspondence in the first place.
Our choice of initial conditions, describing colliding

walls with fixed parton density and thus a fixed saturation
scale, is given by the following source:�

h� 3

L2

�
�ðzÞ ¼ �16�

G5E

L2
�ðz� z0Þ: (52)

The corresponding solution to the Einstein equation, sub-
ject to the boundary condition�ðzÞ ! 0 as z ! 0, is easily
obtained:

�ðzÞ ¼
�
4�G5E

z3

z4
0

z < z0

4�G5E
1
z z > z0:

(53)

Note that it decreases in both directions from the original
scale z0; therefore (as we will see shortly), the trapped
surface has finite extensions in both directions.
The corresponding stress energy tensor on the boundary

(as seen by an observer living in dual gauge theory) is

Tuu ¼ EL2

z40
�ðuÞ: (54)

The stress energy tensor is the same as that used in [13,14],
and our solution converges well as z ! 1. We choose to
collide states with different energy; therefore, we fix z0, but

TABLE I. Critical impact parameter at different energies.

G5E
L2 0.1 0.5 1 4 9 12 15 50 100
bc
L 0.40 0.86 1.14 1.90 2.50 2.74 2.94 4.28 5.30

2 3 4 5
b L

50

100

150

Area L^3

FIG. 3 (color online). The scaled entropy 2G5S=L
3 (the area of

C) as a function of the scaled impact parameter b=L. The energy

used is G5E
L2 ¼ 100, where L3

G5
¼ 2N2

c

� .

1.00.5 5.0 10.0 50.0 100.0
G5E L^2

1.0

5.0

2.0

3.0

1.5

b L

FIG. 2 (color online). The log-log plot of the critical impact
parameter versus collision energy.
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use different E. Applying the general discussion of shock
waves in Sec. II and noting that the trapped surface only
depends on z, we obtain

z2�00
i � z�0

i � 3�i ¼ �16�G5Ei�ðz� z0Þ; (55)

�iðzaÞ ¼ �iðzbÞ ¼ 0; (56)

with i ¼ 1, 2. �1 and �2 are shape functions correspond-
ing to two shock waves. The trapped region at u ¼ v ¼ 0
is limited by the interval za < z < zb. The constraint (35)
takes a simple form:

�1ðzaÞ�2ðzaÞ z
2
a

L2
¼ 4; �1ðzbÞ�2ðzbÞ z

2
b

L2
¼ 4: (57)

Equation (55) is easily solved to give

�iðzÞ ¼
(
Cðð zzaÞ3 �

za
z Þ z < z0

Dðð zzbÞ3 �
zb
z Þ z > z0;

C ¼ �4�G5Ei

ðz0zbÞ3 �
zb
z0

ðz0zaÞ3zb � ðz0zbÞ3za
;

D ¼ �4�G5Ei

ðz0zaÞ3 �
za
z0

ðz0zaÞ3zb � ðz0zbÞ3za
:

(58)

Plugging (58) into (57), we obtain

za þ zb ¼ 8�G5

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
L

; (59)

ðza þ zbÞ2 � 3zazb
ðzazbÞ3

¼ L3

z40
: (60)

Note that E1, E2 appear only in the combination
ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
.

This is consistent with the picture that only the center of
mass contributes to the entropy. Recall that the center of
mass of two massless particles with energy E1, E2 is
2

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
. The resulting cubic equation (60) can be solved

by the Cardano formula, but the explicit solution is not
illustrative and is not shown here. The entropy is given by

S ¼ 2A

4G5

¼
R ffiffiffi

g
p

dzd2x?
2G5

;

s � SR
d2x?

¼ L3

4G5

�
1

z2a
� 1

z2b

�
:

(61)

The leading behavior of the entropy per transverse area s in
energy is extracted:

s� 4L2

z40
ð�G5

ffiffiffiffiffiffiffiffiffiffiffi
E1E2

p
z20Þ2=3: (62)

The power 2=3 is the same as the point shock wave
obtained in [17]. There is also an obvious lower bound of
the energy for the formation of the trapped surface:

4�G5E 	 z0: (63)

The equality is reached at za ¼ zb, when the C has vanish-
ing volume. For general energy, s is evaluated as a function
of effective colliding energy E ¼ ffiffiffiffiffiffiffiffiffiffiffi

E1E2

p
. We again set

z0 ¼ L. Figure 4 shows the entropy as a function of effec-
tive colliding energy.

VI. MATCHING GRAVITATIONAL AND HEAVY
ION COLLISIONS

So far, this has been a purely theoretical work devoted to
solving well-posed mathematical problems, defined in
terms of (the AdS/CFT dual) gravity framework. Now,
near the end of this work, we would like to address wider
issues of the limitations of such an approach, as well as the
best strategies to put it to practical use.
Gubser et al. [17] have applied the gravitational collision

scenario literally, selecting initial conditions at times long
before nuclei collide. More specifically, they have (i) tuned
the scale L or z0 of the bulk colliding object to the size of
the nucleus R and (ii) used the realistic center-of-mass
gamma factor of the colliding nuclei E=m ¼ �� 100.
The result of such a choice is a rather unrealistic fireball,
in spite of a reasonable entropy. Indeed, the size of the
trapped surface [17] is huge, about 30 fm, which is very
large compared to colliding nuclei. In real heavy ion
collisions the produced fireball has the same size as the
nuclei, with a radius of about 6 fm. The initial tempera-
ture—as estimated by zmin � 1=�Ti, where zmin is the
minimal distance of the trapped surface to the AdS bound-
ary—is, however, way too high. So, what can be wrong
with this approach?
The answer to this question is, in fact, well known: The

initial formation of the partonic wave function, describing
nuclei at the collision moment, cannot be adequately de-
scribed by the dual gravity. We know from experiment that
growing partonic density makes hadrons and nuclei
blacker and of larger size, as the collision energy grows.
This is phenomenologically described by a Pomeron, a
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G5E L^2
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2G5 s L

FIG. 4 (color online). The scaled entropy per transverse area
2G5s
L2 (the area of C per transverse area) as a function of scaled

effective colliding energy G5E=L
2, where L3

G5
¼ 2N2

c

� .
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power fitting to rising cross section �s�ðtÞ�1. Although
qualitatively similar to what happens in gravitational col-
lisions, this growth is very different compared to that
predicted in dual gravity. Indeed, the observed Pomeron
intercept �ðt ¼ 0Þ � 1–0:1, while in the AdS/CFT world
the Pomeron intercept �ðt ¼ 0Þ � 1 ¼ 1 [24]. Thus the
effective size of objects in gravitational collision grows
with energy with an exponent 10 times that in real QCD. In
view of this, one should clearly give up the idea of tuning
the scale L or z0 of the bulk colliding object to the size of
the nucleus, and tune it perhaps to the parton density
(‘‘saturation scale’’ Qs in the ‘‘color glass’’ models) of
the corresponding nuclear wave function.

More generally, we are dealing with a complicated
problem in QCD, in which the effective coupling runs,
from high to low scales as the collisions progress from
an initial violent partonic stage toward equilibration, ex-
pansion, and cooling. So, in principle, it would be logical
to switch—as smoothly as possible—from the weak-
coupling based methods (such as classical Yang-Mills) to
strong-coupling ones (such as AdS/CFT) at a certain
proper time �switch appropriately chosen by the evolution
of the coupling.1

Therefore, one should not try to tune the parameters of
the gravitational collision model to initial nuclei, at � ¼
�1, or to ‘‘decoherent’’ partons at the collision moment,
at � ¼ 0, but rather at the later time �switch.

2 Although at
the moment we do not understand the evolution of the
appropriate coupling quantitatively enough, one may al-
ways treat it as a parameter. The practical utility of the
AdS/CFT approach at later times, � > �switch, still remains
significant: Namely, one can use a much more fundamental
dual gravity description instead of its near-equilibrium
approximation, the hydrodynamics, currently used.

VII. ARE THERE CRITICAL IMPACT
PARAMETERS IN HEAVY ION COLLISIONS?

Summarizing our findings in one sentence, there exists a
discontinuity in grazing gravitational collisions in the AdS
space. As one smoothly increases the impact parameter b,
the trapped surface and black hole formation disappear
suddenly, at a certain critical impact parameter bcðEÞ
depending on the collision energy E. The reason for this
seems quite general: By increasing b, one increases the
angular momentum of the system while at the same time
decreasing the mass which can be stopped, and at some
moment—as one knows from the Kerr solution for rotating
black holes—black hole formation becomes impossible.

Suppose the AdS gravitational shock waves can describe
the strongly coupled plasma in heavy ion collisions; then
one would expect similar behavior in heavy ion experi-
ments. We have looked at the data and found that indeed
there are experimental indications that a relatively rapid
switch of the underlying dynamics at some bcðEÞ seems to
exist.
The most straightforward observable is entropy, which is

related to the particle multiplicity versus the impact pa-
rameter. In Fig. 5 (left panel) from [28] we show some data
plotted as a function of the number of participants Npart.

The right side of the figure corresponds to all nucleons
participating, or central collisions; toward the left side are
peripheral collisions. There are indeed two values of multi-
plicity per participant observed, one for small systems, pp
and dAu collisions (stars and crosses), and one for ‘‘large’’
systems, CuCu and AuAu (circles and squares). There
must be a transition between them somewhere, but, un-
fortunately, the experimental multiplicity measurements
for ‘‘grazing’’ collisions are not available yet.3 So, unfortu-
nately, we do not yet know how exactly the transition from
one regime to another happens; nor dowe knowwhat bcðEÞ
is, if it can be defined.
However, some other observables associated with the

collective flows of excited matter do show rapid changes at
certain bcðEÞ. Some evidence for this was seen in the
elliptic flow measurements, as deviations from the hydro-
dynamical predictions for peripheral collisions. These are
seen even more clearly in the centrality dependence of the
so-called ‘‘ridge’’ phenomenon (see its relation to flow in
[29,30]), which we show in Fig. 5 (right panel).
Admittedly, these rapid changes in the dynamics have

not been systematically studied yet, neither experimentally
nor theoretically. The naive explanation often attributes the
changes to the fact that they happen when the overlap
system gets ‘‘too small’’ in terms of participating nucleons

Np, causing large enough fluctuations Oð1= ffiffiffiffiffiffiffi
Np

p Þ.
However, if this were the reason, one would expect this
jump to be dependent on Np and not dependent on the

collision energy. Furthermore, the gravitational collisions
do not have any discrete elements at all, while predicting
bcðEÞ growing with E, as observed in Fig. 5. We therefore
suggest that angular momentum may also be important;
this issue clearly deserves to be studied further.

VIII. CONCLUSIONS

In this work we have developed a method to solve for the
shape of the trapped surface based on an analogy to the
electrostatic problem in flat space: The main idea is to
proceed from the differential to the integral form of the
equation. We used this method to obtain the shape of

1The so-called AdS/QCD approach (see e.g. [25,26]) tries to
incorporate the running coupling into the gravitational frame-
work. A particularly simple example of this is a jump of the
coupling at a certain ‘‘domain wall’’ scale proposed in [27].

2It is proposed in [14] that one may choose to collide some
special unphysical shock waves.

3Small multiplicity collisions are detected for all systems, but
their accurate separation from beam-residual gas collisions has
not yet been systematically resolved.
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trapped surfaces at different impact parameters and colli-
sion energy. We observe a critical impact parameter within
the range of energy we explored. The phenomenon is
analogous to the critical behavior found in flat space [18–
20], the difference being that the critical trapped surface
depends both on the collision energy and the nucleus size.
We found that the dependence is approximately given by a
power law. Furthermore, the shape of the critical trapped
surface gets elongated in spherical coordinates as the col-
lision energy grows. We also discussed in the preceding
subsection that grazing heavy ion collisions also seem to
suggest a rapid switch to another dynamics, without equili-
bration. The exact cause of this jump will be clarified in
future studies.

We also studied wall-to-wall collision of shock waves as
a simple version of the problem. The wall is sourced by a
delta function at a certain initial scale z0. We believe it is a
more reasonable initial condition than those used by
Grumiller and Romatschke [13], and it will be used in
the future following their method to study the initial stage.

The applicability and limitation of this approach are
discussed. We claim it is more realistic to adopt a partonic
picture in the initial stage and only switch to an effective
gravity treatment at some time after collision, when the
coupling becomes strong enough. However, we argue that
the observed critical phenomenon is still relevant for heavy
ion collisions, where there also seems to be a rapid change
of the collision regime as a function of the impact
parameter.

Finally, we would like to mention a very recent work by
Alvarez-Gaume et al. [31], who discussed another exten-

sion of the problem. They considered central collision of
shock waves sourced by certain nontrivial matter distribu-
tion in the transverse space. They, in particular, discussed
the critical phenomenon occurring as the shock wave
reaches some diluteness limit and the formation of the
trapped surface is no longer possible. It would obviously
be interesting to study how the two forms of critical
phenomena are related.
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Collaboration [30,32] at the two collision energies shown in the figure.
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