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In paper I in this series, we found exact expressions for the equatorial homoclinic orbits: the separatrix

between bound and plunging, whirling and not whirling motion. As a companion to that physical space

study, in this paper we paint a phase space portrait of the homoclinic orbits that includes exact expressions

for the actions and fundamental frequencies. Additionally, we develop a reduced Hamiltonian description

of Kerr motion that allows us to track groups of trajectories with a single global clock. This facilitates a

variational analysis, whose stability exponents and eigenvectors could potentially be useful for future

studies of families of black hole orbits and their associated gravitational waveforms.

DOI: 10.1103/PhysRevD.79.124014 PACS numbers: 04.70.�s, 95.30.Sf, 04.25.�g, 04.20.Jb

I. INTRODUCTION

The transition from inspiral to plunge is a crucial land-
mark in the radiative evolution of a compact object falling
into a supermassive black hole. A natural physical divide,
the transition is also a natural conceptual divide. While
understanding the final orbital cycles might require better
knowledge of the gravitational self-force [1] or advances in
numerical relativity [2–11], the inspiral can be modeled as
adiabatic evolution through a sequence of Kerr geodesics
[12–17]. Inspiral gives way to plunge through an important
family of separatrices. In paper I in this series [18], we
detailed the nature of the separatrix between bound and
plunging orbits as a homoclinic orbit—an orbit in the black
hole spacetime that whirls an infinite number of times as it
asymptotes to an unstable circle. We found exact solutions
for the family of homoclinic trajectories and depicted them
as the infinite limit of a sequence of zoom-whirls [18]. As a
companion to that physical space picture, we analyze the
complementary phase space picture here.

Formally, the homoclinic orbit lies on the intersection of
the stable and unstable manifolds of a hyperbolic invariant
set. A collection of points in phase space is an invariant set
if orbits that are in the set at any time remain in the set for
all earlier and future times. An invariant set S is hyperbolic
if it has both a stable manifold (orbits that approach S as
t ! þ1) and an unstable manifold (orbits that approach S
as t ! �1). In the black hole spacetime, the hyperbolic
invariant sets are recognized by the more familiar tag
‘‘unstable circular orbits.’’ To make this connection precise
from the phase space perspective, we examine the varia-
tional equations—the equations governing the evolution of
small displacements from the circular orbits. It is straight-
forward to show that the energetically bound, unstable
circular orbits are hyperoblic; that is, they have an unstable

eigendirection and a stable eigendirection. We then show
that the stable and unstable eigendirections are tangent to
the homoclinic orbit in the local neighborhood of the
unstable circular orbit. In other words, two of the eigenso-
lutions of the variational equations around bound unstable
circular orbits are local representations of the homoclinic
orbit. These eigensolutions capture the qualitative and
quantitative features of the separatrix, including the azi-
muthal motion [18].
We begin by devising a reduced Hamiltonian formula-

tion of equatorial Kerr motion that naturally admits com-
parisons of groups of trajectories against a single global
clock. The variation of Hamilton’s equations yields stabil-
ity exponents for circular orbits that could have general
utility, for instance, as an estimate of inspiral or merger
time scales [19,20], or in a coarse graining of the template
space around periodic orbits [21]. For completeness, we
also find explicit expressions for the actions and the
frequencies.

II. KERRHOMOCLINIC ORBITS IN PHASE SPACE

Carter famously reduced the full geodesic equations of
motion to four first-order equations in space and time
coordinates [22]. Despite the appeal of this accomplish-
ment, a phase space analysis requires variation of the full
equations of motion for both the coordinates and their
conjugate momenta. For this reason, we will not work in
the first-order integrated system of equations, although our
analysis will incorporate some features of those familiar
expressions. Instead, we write down a Hamiltonian formu-
lation of Kerr geodesic motion and explicitly derive the
equations of motion.

A. Kerr equations of motion

Although written out in many places, to remain self-
contained we include the Kerr metric in Boyer-Lindquist
coordinates and geometrized units (G ¼ c ¼ 1):
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ds2 ¼ �
�
1� 2Mr

�

�
dt2 � 4Marsin2�

�
dtd’

þ sin2�

�
r2 þ a2 þ 2Ma2rsin2�

�

�
d’2 þ �

�
dr2

þ �d�2; (1)

where M, a denote the central black hole mass and spin
angular momentum per unit mass, respectively, and

� � r2 þ a2cos2� � � r2 � 2Mrþ a2: (2)

The constants of motion along Kerr geodesics are the rest
mass of the test object, energy E, axial angular momentum
Lz, and the Carter constant Q [22].

In dimensionless units, the first-order geodesic equa-
tions are [22]

� _r ¼ � ffiffiffiffi
R

p
(3a)

� _� ¼ �
ffiffiffiffiffi
�

p
(3b)

� _’ ¼ a

�
ð2rE� aLzÞ þ Lz

sin2�
(3c)

� _t ¼ ðr2 þ a2Þ2E� 2arLz

�
� a2Esin2�; (3d)

where an overdot denotes differentiation with respect to the
particle’s (dimensionless) proper time � and

�ð�Þ ¼ Q� cos2�

�
a2ð1� E2Þ þ L2

z

sin2�

�
(4)

RðrÞ ¼ �ð1� E2Þr4 þ 2r3 � ½a2ð1� E2Þ þ L2
z�r2

þ 2ðaE� LzÞ2r�Q�: (5)

The four Eqs. (3), though no doubt valuable in many
contexts, do not lend themselves to a variational analysis.
The formalism we will employ is Hamiltonian and a phase
space study requires not just the coordinates but also their
conjugate momenta. Although we start from scratch with a
Hamiltonian formulation of the dynamical equations, we
will make use of the Eqs. (3)–(5) along the way.

We will restrict attention to equatorial orbits and defer
nonequatorial motion to a future work. Equatorial Kerr
orbits have � ¼ �=2, _� ¼ 0, and Q ¼ 0.

B. Hamiltonian formulation

The Hamiltonian for a relativistic nonspinning free par-
ticle of mass � is [23]

H ¼ 1
2g

��p�p�; (6)

where the inverse metric components g�� are functions of
the spacetime coordinates and each p� is both a component
of the 4-momentum one-form and the canonical momen-
tum conjugate to coordinate q�.

We want to build the Hamiltonian explicitly from
Eq. (1), and we could do so just by inserting the inverse

metric and turning the crank. However, we can yield an
equivalent but algebraically nicer expression for the
Hamiltonian with far less effort. To begin, consider the
terms in the Hamiltonian explicitly containing pr or p�:

1
2 ðgrrp2

r þ g��p2
�Þ: (7)

Since the r, � portion of the metric g�� is diagonal, that

block of the inverse metric is also diagonal, with grr ¼
1=grr and g�� ¼ 1=g��. The pr, p� terms in H are thus

1

2

�
�

�

�
p2
r þ 1

2

�
1

�

�
p2
� (8)

The remaining terms in the Hamiltonian will be quadratic
in the remaining momenta pt and p’ with coefficients that

are functions only of r and � (since the metric, and thus the
inverse metric, are cyclic in the t and ’ coordinates). The
Hamiltonian can therefore be written as

Hðq;pÞ ¼ 1

2

�
�

�

�
p2
r þ 1

2

�
1

�

�
p2
� þ

1

2
Fðr; �; pt; p’Þ; (9)

where Fðr; �; pt; p’Þ ¼ Fðr; �;�E; LÞ is some expression

equivalent to gttp2
t þ 2gt’ptp’ þ g’’p2

’.

Notice that the _r and _� equations of (3) can be recast as

�

2�
p2
r � R

2��
¼ 0

1

2�
p2
� �

�

2�
¼ 0: (10)

Adding these equations and subtracting 1=2 from both
sides tells us that

�

2�
p2
r þ 1

2�
p2
� �

R

2��
� �

2�
� 1

2
¼ � 1

2
: (11)

SinceH � �1=2, the left hand side must be identical toH.
Matching to Eq. (9), we glean that

Fðr; �;�E; LÞ ¼ �Rþ��

��
� 1; (12)

so that we finally get

H ¼ �

2�
p2
r þ 1

2�
p2
� �

Rþ��

2��
� 1

2
; (13)

where R and � are the functions in (5). Note that in
dimensionless coordinates, the Hamiltonian has the same
constant value �1=2 along any trajectory. We also used
this form of the Hamiltonian in Appendix A of Ref. [21].
Because all dependences on E � �pt and Lz � p’ are

locked inside R and � and H is cyclic in t and ’,
Hamilton’s equations

_q� ¼ @H

@p�

; _p� ¼ � @H

@q�
(14)

applied to the Hamiltonian (13) yield equations of motion
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_r ¼ �

�
pr;

_pr ¼ �
�
�

2�

�0
p2
r �

�
1

2�

�0
p2
� þ

�
Rþ ��

2��

�0
(15a)

_� ¼ 1

�
p�;

_p� ¼ �
�
�

2�

�
�
p2
r �

�
1

2�

�
�
p2
� þ

�
Rþ ��

2��

�
�

(15b)

_’ ¼ � 1

2��

@

@L
ðRþ��Þ; _p’ ¼ 0 (15c)

_t ¼ 1

2��

@

@E
ðRþ ��Þ; _pt ¼ 0 (15d)

where the superscripts 0 and � denote differentiation with
respect to r and �, respectively. Notice, all of the Eqs. (15)
are dynamically equivalent to Eqs. (3). These equations
define an 8D phase space, one axis for each of the 4
coordinates t, r, �, ’ and their corresponding conjugate
momenta, with � parametrizing trajectories in the space.
The Hamiltonian (13) derived above governs the evolution
of the system in this 8-dimensional phase space.

A manifestly covariant form of Hamilton’s equations,
equivalent to (14), has been used in other references to
deduce important information about individual trajectories
[22–24]. We, however, want to describe how multiple
trajectories evolve relative to one another to locate stable
and unstable flows in phase space, and that task requires
tracking evolution with respect to some global clock. In the
covariant Hamiltonian picture, the time parameter � in (14)
flows differently on different trajectories and is thus not a
physically viable global clock.1

Coordinate time t would be a good global clock, but it
becomes awkward to maintain the clock as a coordinate in
the 8D phase space. Furthermore, all orbits move mono-
tonically away from the origin along the t direction.2

Consequently, no region of finite phase volume contains
any orbit in its entirety, and there are no recurrent invariant
sets.3

The 8D space, then, is not a natural backdrop for the
discussion of homoclinic orbits. Luckily, it is also not

required: by performing a phase space reduction,4 we can
completely analyze Kerr motion within a 6D space—the
phase space of spatial coordinates and their conjugate
momenta parameterized by coordinate time t—that avoids
the shortcomings mentioned in the previous two para-
graphs with no loss of dynamical information. To under-
stand how 8D information can be captured fully in a
6D framework, we note that the dynamics described by
Eqs. (15) is not truly 8D: since H � �1=2 on all trajecto-
ries, the dynamics is already constrained to a 7D hyper-
surface in the original 8D phase space. In the covariant
formulation, proper time is merely an evolution parameter,
and only 7 of the 8 coordinates and momenta are truly
independent.
An alternative but physically equivalent formulation

considers a phase space spanned by the six spatial coor-
dinates and momenta on which coordinate time t is the
evolution parameter and on which an extra function �ð ~q; ~pÞ
(the seventh degree of freedom) is defined for each trajec-
tory. The energy E ¼ �pt in such a formulation becomes
the new Hamiltonian function for the 6D space, just as in
classical mechanics:

dqi

dt
¼ @E

@pi

;
dpi

dt
¼ � @E

@qi
: (16)

In other words, we can map the relativistic free particle
motion to an equivalent classical problem in which t is the
evolution parameter, the energy function Eð ~q; ~pÞ is the
Hamiltonian, and � appears as an additional dynamical
function (which we will never need in this paper and thus
do not track). Such a space/time splitting, which amounts
simply to a more convenient choice of evolution parameter,
is dynamically exact and involves no approximation. All
relativistic dynamical effects (like zoom-whirl behavior)
are still present. The payoff is that the 6D formalism
greatly facilitates our task: there are now bound orbits
and recurrent invariant sets, and the evolution parameter
for our system (now t instead of �) is a physically good
global clock.
To get the 6D equations of motion for the Kerr system,

we could calculate Eð ~q; ~pÞ explicitly5 from

Hð ~q; ~p; Eð ~q; ~pÞÞ ¼ �1
2 (17)

and then apply (16). Alternately, we can realize that we
have to get the same result if we divide all the spatial
equations in (15) by _t (15d) and immediately write down

1Mathematically, of course, � is a perfectly fine global clock.
After all, the Hamiltonian formalism knows nothing about
relativity and is perfectly happy to answer physically unsensible
questions like how equal � separations evolve with respect to
‘‘global proper time.’’

2Strictly speaking, the motion is also monotonic in the ’
direction, but topologically identifying ’ ¼ 0 and ’ ¼ 2�
compactifies phase space in the ’ direction and thus bounds
the ’ motion [23].

3Of course, every individual trajectory is still a trivial sort of
invariant set. Since even in this space, the phase trajectories of
homoclinic orbits asymptote at � ! �1 to those representing
unstable circular orbits, we can still talk about their being
homoclinic to an invariant set. Still, the language is inelegant,
and having to track the additional t evolution is an unwelcome
complication.

4Phase space reduction is detailed in numerous dynamical
systems texts (e.g. Ref. [25]) and can be applied to any dynami-
cal system, relativistic or otherwise. We also discuss the reduced
phase space for Kerr motion briefly in the appendix of [21] and
elaborate on its details in a future work.

5Since we consider only positive energies, we keep the larger
root in the resulting quadratic equation for E.
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dr

dt
¼ 1

_t
� �

�
pr;

dpr

dt
¼ 1

_t
�

�
�
�
�

2�

�0
p2
r �

�
1

2�

�0
p2
� þ

�
Rþ ��

2��

�0�
(18a)

d�

dt
¼ 1

_t
� 1

�
p�;

dp�

dt
¼ 1

_t
�

�
�
�
�

2�

�
�
p2
r �

�
1

2�

�
�
p2
� þ

�
Rþ��

2��

�
�
�
(18b)

d’

dt
¼ 1

_t
�

�
� 1

2��

@

@L
ðRþ ��Þ

�
;

dp’

dt
¼ 0 (18c)

with the caveat that, when we calculate derivatives of
Eqs. (18), every instance of E be treated as a function
Eð ~q; ~pÞ rather than as either a phase space coordinate or
a parameter.

This 6D phase space makes variational analysis straight-
forward6: because coordinate time t is both a good global
clock and the time parameter for (16), the equations dictat-
ing the evolution in t of small separations between trajec-
tories at equal t can be derived just by linearizing Eqs. (18).
We perform that linearization now.

C. The variational equations

We work exclusively in the 6D phase space and intro-
duce the following notational simplification. Because the
distinction between q’s and p’s as components of vectors
and one-forms, respectively, has to do with their behavior
in the 4D manifold of the Kerr spacetime and not with their
function in the phase space, where they are merely coor-
dinates labeling points, we will henceforth drop the super-
script/subscript distinction. Instead, we will refer to both qi

and pi as components Xi (with a subscript) of a single six-
dimensional coordinate vector

X �

r
pr

�
p�

’
p’

0
BBBBBBBB@

1
CCCCCCCCA
: (19)

This allows us to write Hamilton’s equations in the com-

pact form

dX

dt
¼ fðXÞ; (20)

where the components of f can be read off Eq. (18).
Now consider an arbitrary reference trajectory XðtÞ in

phase space and the vector �XðtÞ of small displacements
from points on XðtÞ to points at the same coordinate time
on neighboring phase trajectories. The first-order equations
of motion for �XðtÞ are the linearized full equations of
motion (20) around XðtÞ. Specifically,

d�XðtÞ
dt

¼ @f

@X

��������XðtÞ
�XðtÞ � KðXðtÞÞ�XðtÞ; (21)

or, componentwise,

d�XiðtÞ
dt

¼ KijðXðtÞÞ�XjðtÞ (22)

KijðXÞ � @fi
@Xj

��������X
¼ @fi

@Xj

��������fixedE

þ @E

@Xj

@fi
@E

; (23)

where the last equality stems from the caveat regarding
Eqs. (18).
Equation (21) is a system of first-order linear ordinary

differential equations whose coefficients KijðtÞ depend

implicitly on time through the solutions XðtÞ to (20). The
solution to such a system can always be expressed in terms
of a fundamental matrix [26] Lðt;X0Þ that depends on the
pointX0 on the reference trajectory at which we define the
initial displacement vector �X0 and that satisfies

�XðtÞ ¼ Lðt;X0Þ�X0; (24)

where Lðt ¼ 0;X0Þ is the identity matrix.
The goal of variational analysis is to find L, which we

can equivalently think of as the time evolution operator for
small displacements. Given the equations of motion (20),
we can always calculate the matrix K, but in general there
is no corresponding analytic expression forL. However,K
on equatorial circular orbits is the constant matrix7

K ¼ 1

	�

0 � 0 0 0 0
R00
2� 0 0 0 0 � 2r3=2

	�

0 0 0 1 0 0
0 0 ���

2 0 0 0

� 2r3=2

	� 0 0 0 0 r2

	2�
0 0 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; (25)

where R00 and ��� are the second derivatives with respect

6Using (13) as the Hamiltonian but restricting attention just to
the 6D subspace spanned by the spatial coordinates and mo-
menta and tracking tð�Þ as a separate function (as, for instance, in
Ref. [23]) would not have been helpful to us. Trajectories would
have been bounded in that subspace, but the evolution parameter
would still not have been a sensible global clock, and we would
have had to synchronize trajectories ‘‘by hand.’’ Ultimately, the
trade-off of our 6D formulation is ‘‘automatic’’ synchronization
of trajectories (since t is a good global clock) at the cost of
slightly greater complexity in the equations of motion (18) vs
(15). For variational analysis, the formal benefit of the former
outweighs the minor drawback of the latter.

7Although Eq. (25) can be expressed solely in terms of the
black hole spin a and the constant radial coordinate r of the
circular orbit, we have left it in this form for readability.
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to their arguments of RðrÞ and �ð�Þ, respectively, and 	 is
a shorthand for

	 � _tðrÞjr¼circular orbit: (26)

Since K is constant, L has the form8

L ðtÞ ¼ eKt (27)

and shares its eigenvectors with K. Finding the eigensolu-
tions of (21) is therefore tantamount to finding eigenvalues
and eigenvectors of K.

D. Eigensolutions of the variational equations

The eigenvalues 
 of K are solutions to

jK� 
Ij ¼ 0 (28)

and come in 3 pairs of equal and opposite eigenvalues
whose magnitude we denote as


r ¼ 1

	�

ffiffiffiffiffiffi
R00

2

s
; 
� ¼ 1

	�

ffiffiffiffiffiffiffiffiffi
���

2

s
; 
’ ¼ 0: (29)

(See also [2].) The eigensolutions associated with the 
�

and 
’ ¼ 0 eigenvalues are extremely revealing in their

own right. Presently, however, our concern is the eigenso-
lutions associated with 
r.

The 
r may be real or imaginary depending on the sign
of

R00

2
¼ 12r½1� ð1� E2Þr� � 2½a2ð1� E2Þ þ L2

z�

¼ � r1=2ðr2 � 6r� 8ar1=2 � 3a2Þ
r3=2 � 3r1=2 � 2a

; (30)

where we have used the ðE; LzÞ for circular orbits found in
Ref. [27],

E ¼ r3=2 � 2r1=2 � a

r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 � 3r1=2 � 2a

p (31a)

Lz ¼ � r2 � 2ar1=2 þ a2

r3=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3=2 � 3r1=2 � 2a

p (31b)

to write R00 in terms of r alone. The plus/minus signs
indicate prograde/retrograde. On the unstable circular or-
bits of interest to us (ribco < r < risco), R

00 is positive and 
r

is real and plotted as a function of r for various values of a
in Fig. 1.

The (unnormalized) eigenvectors

u ðuÞ
r ¼

�
�;

ffiffiffiffiffiffi
R00

2

s
; 0; 0;� 2r3=2

	
ffiffiffiffiffiffiffiffiffiffiffi
R00=2

p ; 0

�
T

(32)

u ðsÞ
r ¼

�
�;�

ffiffiffiffiffiffi
R00

2

s
; 0; 0;� 2r3=2

	
ffiffiffiffiffiffiffiffiffiffiffi
R00=2

p ; 0

�
T

(33)
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FIG. 1. The dimensionless real-valued stability exponent 
r

(measured in units of M�1) for unstable circular orbits with E <
1 for various spins a. Left: Prograde orbits. Right: Retrograde
orbits.

8Considerable analytic insight into L is also possible when the
KðtÞ is periodic in time t, a situation that arises when the
reference trajectory XðtÞ is itself periodic and which we tackle
for Kerr orbits in a future work.
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associated with �
r are also real. Combining (24) and
(27), each eigenvalue/eigenvector pair yields a correspond-
ing eigensolution

�XðuÞ
r ðtÞ ¼ cðuÞeþ
rtuðuÞ

r �XðsÞ
r ðtÞ ¼ cðsÞe�
rtuðsÞ

r

(34)

to the variational equation (21), where the constants cðu;sÞ
reflect where we choose to set t ¼ 0.

E. Relation to the homoclinic orbits

We now build the case that in the neighborhood of

XcircðtÞ, the linearized solutions Xðu;sÞðtÞ coincide with
exact homoclinic solutionsXhcðtÞ. For simplicity, we focus
on the unstable solution in (34), which corresponds to a
linearized solution

X ðuÞðtÞ ¼ XcircðtÞ þ �XðuÞ
r ðtÞ (35)

to the full equations of motion (20) [the results are analo-

gous for XðsÞðtÞ].
Some of the similarities between the linearized and

homoclinic orbit are self-evident. The absence of � and

p� components in XðuÞðtÞ indicates that the orbit remains
equatorial, and the identical signs on the r and pr compo-
nents reflect the fact that small displacements from the
circular orbit along the eigendirection run away exponen-
tially to larger radial positions and velocities on an e-
folding time scale 
�1

r . The absence of a p’ component

in �XðuÞ
r ðtÞ indicates that the linearized orbit has the same

angular momentum Lz as X
circðtÞ.

Less self-evident is the fact that, like the homoclinic
orbit, the linearized orbit also has the same energy E as the
circular orbit. To see this, note that since the Hamiltonian
E ¼ EðXÞ is a function of the phase space coordinates, the
energy difference �E ¼ Ecirc � Elin can be expanded as a

power series in the components of �XðuÞ
r . Because the

derivatives of all phase variables except ’ vanish on the
circular orbit and �p’ ¼ 0, the first-order contribution to

that expansion vanishes,

�Eð1Þ ¼ @H6D

@xi

��������ru

�xi þ @H6D

@pi

��������ru

�pi

¼ �dpi

dt

��������ru

�xi þ dxi

dt

��������ru

�pi ¼ d’

dt
�p’ ¼ 0:

(36)

The second order variation in the energy becomes

�Eð2Þ ¼ @2H6D

@xi@xj

��������ru

�xi�xj þ @2H6D

@pi@pj

��������ru

�pi�pj

þ 2
@2H6D

@xi@pj

��������ru

�xi�pj

¼ � @

@xi
dpj

dt

��������ru

�xi�xj þ @

@pi

dxj

dt

��������ru

�pi�pj

þ 2
@

@xi
dxj

dt

��������ru

�xi�pj

¼ � @

@r

dpr

dt

��������ru

�r2 þ @

@pr

dr

dt

��������ru

�p2
r

þ 2
@

@r

dr

dt

��������ru

�r�pr

¼ �Kprrjru�r2 þ Krpr
jru�p2

r þ 2Krrjru�r�pr: (37)

Using Eq. (25) and the fact that

�pr ¼ 1

�

ffiffiffiffiffiffi
R00

2

s
�r (38)

on the eigensolution, we find that

�Eð2Þ ¼ �r2

	�

�
�Kprrjru þ Krpr

jru
R00

2�2
þ 2Krrjru

ffiffiffiffiffiffiffiffiffi
R00

2�2

s �

¼ �r2

	�

�
R00

2�
þ �

�
1

�2

�
R00

2
þ 0

�
¼ 0: (39)

A similar result holds for XðsÞðtÞ, despite the addition of
an overall minus sign in (38), since through second order
�E depends on �p2

r . Continuing this process to higher
orders is beyond the algebraic patience of the authors,
but at least through second order in the variations, the
linearized solutions describe orbits with the same E and
L as the unstable circular orbit.

The ’ component of �XðuÞ
r ðtÞ merits more discussion.

The ratio �’=�r is fixed, so that �’ does not merely
represent an arbitrary overall translation in ’. Instead,
this component indicates how the phasing difference be-
tween the linearized orbit and the circular orbit changes as
the radial separation between the two orbits grows. Notice

also that since �XðuÞ
r ðtÞ ! 0 as t ! �1 regardless of how

cðuÞ is chosen, the linearized solution describes an orbit that
is in phase with the circular orbit in the infinite past. There
is a unique choice of phase for a homoclinic orbit that will
synchronize it with the circular orbit in the infinite past
[18]. Apparently, the linearized eigensolution goes so far as
to select the phase of the homoclinic orbit it locally ap-
proximates.9 The import is that the linearization captures

9Of course we can have a homoclinic orbit of any phase still
line up with the linearized solution simply by adding an overall
’ shift to �XðuÞ

r ðtÞ.
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detailed information about neighboring orbits, including
phase information.

Analogously, the linearized solution

X ðsÞðtÞ ¼ XcircðtÞ þ �XðsÞ
r ðtÞ (40)

synchronizes with the circular orbit at t ¼ þ1. We can
now understand the signs of the �’ components of both

eigenvectors. In �XðuÞ
r ðtÞ it has the opposite sign as �r

because as the displaced orbit moves to larger r, its d’=dt
drops, and it lags the circular orbit with which it was

synchronized at t ¼ �1. In �XðsÞ
r ðtÞ, in contrast, �’ and

�r have the same sign: since the circular orbit will accu-
mulate azimuth faster than the displaced orbit as it spirals
in, it must begin ahead of the circular orbit in phase if the
two are to synchronize at t ¼ þ1.

Now, the two linearized solutions XðuÞðtÞ and XðsÞðtÞ do
not coincide with the same homoclinic orbit, but rather
with two homoclinic orbits that differ by a phase. Since
circular orbits that differ by a phase belong to the same
invariant set, we continue to refer to these as homoclinic
and not heteroclinic trajectories.

F. Phase portraits

To make the coincidence between the linearized solu-
tions and the homoclinic orbits manifest, we examine a
phase portrait of the homoclinic orbit and the linearized
solutions. Again, we use the radial coordinate r along the
homoclinic orbit as our global time parameter. The re-
quired expression for pr in terms of r for the homoclinic
orbit follows from Eq. (15a). The result is

prðrÞ ¼
ffiffiffiffiffiffiffiffiffi
RðrÞp
�

(41)

for outbound motion and the negative of the same expres-
sion for inbound motion. Together with the exact solutions
from paper I [18], (41) generates the exact phase curves of
the homoclinic orbit. Figure 2 overlays a homoclinic orbit

and the corresponding linearized orbit XðuÞ. By construc-
tion, the orbits are coincident at t ¼ �1.
For illustration, we have plotted the case a ¼ 0:8with an

associated unstable circular orbit at ru ¼ 2:500 536. Since
both orbits are equatorial (so that � motion can be sup-
pressed) and have the same Lz, a 3D orbit in r, pr, ’ space
captures all the dynamical information, and each panel of
Fig. 2 shows the projections of the two orbits into a plane.
The curves in Fig. 2 are the coordinate separations between
the homoclinic and circular orbits, with the various projec-
tions of the separation eigenvectors overlayed. They con-
firm that the global stable and unstable manifolds of the
circular orbits are tangent at the circular orbits to the local
stable and unstable manifolds defined by the eigensolu-
tions to the variational equations.

G. Action-angle variables

In an action-angle formulation [23,25,28] of Kerr mo-
tion, the Hamiltonian is reformulated in terms of constant
momenta Ji called actions and canonically conjugate angle
variables c i that increase linearly with time at rates !i.
Fourier expansions of orbit functionals in terms of the
fundamental frequencies !i are the basis of frequency-
domain radiative evolution codes, and Ref. [24] develops
a description of the inspiral dynamics entirely in terms of
action-angle variables. For completeness, we include exact
expressions for the frequencies and actions of homoclinic
orbits.

1. Fundamental frequencies

Because the equatorial Kerr system is two dimensional
and integrable, every bound orbit has an associated pair of
fundamental frequencies10

phc
r

r ru

hc

r ru

FIG. 2. Projections of the eigenvector uðuÞ
r , to which the linearized separation �XðuÞ is proportional, overlayed with the actual

coordinate differencesXhc �Xcirc in the phase space. In the �’ plot, we have identified�� at the bottom of the plot and � at the top.
The plots, intended to be schematic, are around an unstable circular orbit at ru ¼ 2:2 for a ¼ 0:8.

10Even equatorial orbits have a third frequency !� associated
with small oscillations about the equatorial plane. We discuss the
significance of these frequencies for all equatorial orbits in a
separate work.
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!r � 2�

Tr

(42a)

!’ � 1

Tr

Z Tr

0

��������d’dt
��������dt ¼

R
ra
rp
drj d’dr jR

ra
rp
dr dt

dr

:(42b)

Because their radial period is infinite, !r ¼ 0 for homo-
clinic orbits. Homoclinic orbits also whirl an infinite
amount as they approach their periastron ru, so both the
numerator and denominator of (42b) diverge.

However, the divergences in both Tr and the accumu-
lated azimuth ’ can be traced to specific terms of the form
[18]

’ ! 2
�u


r

tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ru
r

ra � r

ra � ru

s
;

t ! 2
1


r

tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ru
r

ra � r

ra � ru

s
as t ! Tr ¼ 1;

r ! ru:

(43)

Their ratio thus converges to �u � d’=dtðruÞ, the con-
stant coordinate velocity of the circular orbit at ru.

The azimuthal frequency for the homoclinic orbit and its
associated unstable circular orbit are thus the same,

!hc
r ¼ 0; !hc

’ ¼ j�uj ¼ 1

r3=2u þ a2
: (44)

That allows us to make a nice statement: the stable and
unstable circular orbits determine the lower and upper
bounds, respectively, of the !’’s of all eccentric bound

orbits with a given jLiscoj< jLzj< jLibcoj.

2. Actions

Each action Ji of a bound orbit is defined by

Ji �
I

pidqi; (45)

where the integral is taken over the projection of the orbit
into the qi, pi plane. Since p’ ¼ Lz is constant, J’ ¼
2�Lz for any orbit. The radial action Jr is the area enclosed
by closed ðr; prÞ curves like that of Fig. 2,

Jr �
I

prðrÞdr ¼ 2
Z ra

rp

dr

ffiffiffiffiffiffiffiffiffi
RðrÞp
�

: (46)

For arbitrary orbits, (46) at best reduces to elliptic inte-
grals, but for the homoclinic orbit, Jr can be written as an
exact function of ru alone. The result, derived in the
Appendix, is

Jhcr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruðra � ruÞ

q

þ 2
2E2 � 1

1� E2
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � ru

ru

s �
þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðr�Þ
q

tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�

ra � r�
ra � ru

ru

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrþÞ

q
tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

ra � rþ
ra � ru

ru

s �
: (47)

III. CONCLUSION

Although the results of this paper are self-contained, the
phase space portrait is a direct complement to the physical
space portrait of paper I [18]. Both approaches identify the
separatrix between bound and plunging orbits with a ho-
moclinic trajectory that whirls an infinite number of times
on asymptotic approach to a circle.
The Hamiltonian variational analysis detailed in this

paper yields descriptions of group flows of orbits.
Although the intention was to detail a profile of the sepa-
ratrix, the technical results of this paper could have further
utility. In particular, the whirling stages of trajectories in
the vicinity of the homoclinic set might be modeled as
variations around the circular orbit using the eigenvectors
and eigenvalues found here. In the future, we aim to gen-
eralize this approach to capture orbits around the periodic
set [21] and to move out of the equatorial plane [29,30].
Another connection that should be made in a dynamical

discussion of the separatrix is its role as the divide between
chaotic and nonchaotic behavior. The geodesic motion of a
nonspinning test particle around a Kerr black hole is known
to be integrable [22]. There are as many constants of
motion as there are canoncial momenta in this Hamil-
tonian system.
However, the presence of a homoclinic orbit indicates

the Kerr system is at least vulnerable to chaos [31–34].
Under perturbation, the stable and unstable manifolds that
previously coincided along the homoclinic orbit (Fig. 2)
could develop transverse intersections. In other words, the
stable and unstable manifolds would not coincide but
rather intersect, and once they intersected, would do so
an infinite number of times creating a homoclinic tangle, as
in Fig. 3. The homoclinic tangle is associated with a fractal
set of periodic orbits and, when it appears, marks a locus of
chaotic behavior in dynamical systems.
Chaotic behavior has in fact already been found for test

particle motion in a Schwarzschild background perturbed
by gravitational waves from a third body [31], for spinning
test particle motion around Schwarzschild [32,33] and Kerr
[35] black holes (albeit only for unphysically large values
of test particle spin) and in the case of spinning comparable
mass black holes [35–41], for which homoclinic orbits at
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third post-Newtonian order in the absence of radiation have
also been shown to exist [30].

While this paper is concerned with Kerr orbits, we
mention in closing that the chaotic orbits of comparable
mass binaries—in the absence of radiation reaction—could
be evidence of a homoclinic tangle [30]. Chaos in the PN
approximation of comparable mass pairs of spinning black
holes was found in Refs. [36,37] and has since been con-
firmed11 by several independent groups [35,38,41]. Yet for
comparable mass pairs, losses due to gravitational radia-
tion could happen on a shorter time scale and effectively
quash the chaotic behavior [20,35,38], like a pinball game
with too much friction. However, due to the challenges the
strong-field regime poses for the post-Newtonian approxi-
mation methods, the competition between time scales is
not easily resolved [19,20,39]. Numerical solutions to the
fully nonlinear Einstein equations have shown no evidence
of chaotic behavior to date. Still, the computational ex-
pense of such simulations means only a tiny fraction of the
parameter space has been explored. There remains no
definitive answer to the question of whether or not chaos
will ever be observed in astrophysical black hole pairs.
Chaotic orbits, if they are ever observed, could be evidence

of a homoclinic tangle in the most nonlinear regimes of
black hole spacetimes.
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APPENDIX: DERIVATION OFACTION OF
HOMOCLINIC ORBITS

The radial action of a bound nonplunging orbit is the
area enclosed by its projection into the r, pr plane,

Jr �
I

prðrÞdr ¼ 2
Z ra

rp

dr

ffiffiffiffiffiffiffiffiffi
RðrÞp
�

; (A1)

where rp and ra are the periastron and apastron, respec-

tively, and RðrÞ is the function (5).
For a homoclinic orbit, rp equals ru, the radius of the

associated unstable circular orbit, and ra is expressible in
terms of ru alone [18]. Additionally, RðrÞ factors into

RðrÞ ¼ ð1� E2Þrðr� ruÞ2ðra � rÞ; (A2)

with E the common energy of the homoclinic and unstable
circular orbit. The orbit independent quantity� can always
be factored into

� ¼ ðr� rþÞðr� r�Þ; (A3)

where r� � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
are the outer and inner horizons,

respectively, of the central black hole. Together, the above
allows us to write the radial action (A1) of a homoclinic
orbit as

Jhcr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p ¼
Z ra

ru

dr
ðr� ruÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rðra � rÞp

ðr� rþÞðr� r�Þ

¼
Z ra

ru

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � r

r

r
rðr� ruÞ

ðr� rþÞðr� r�Þ : (A4)

The integral in (A4) can be done analytically. Under the
change of variable

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

ra � r

s
; r ¼ u2

u2 þ 1
ra

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � r

r

r
¼ du

2ra
ð1þ u2Þ2 ;

(A5)

the factors in (A4) become

FIG. 3 (color online). Schematic of a homoclinic tangle. The
curve above represents the repeated intersection of a homoclinic
orbit of the perturbed system with the r, pr phase plane. The
large dot represents the intersection of a circular orbit in the
perturbed system along with the eigenvectors denoting its local
stable and unstable manifolds.

11Although our concern is with Kerr orbits, we digress for a
moment to address an issue raised in review. Reference [42]
noted that under the restricted circumstance of only one body
spinning and/or equal mass binaries, there should not be chaos in
a PN Hamiltonian description of two black holes with only spin-
orbit coupling included: under these restrictions, there are
enough constants of motion to ensure regular behavior.
However, [36] found chaos even when only one body was
spinning, in seeming contradiction with [42]. The inconsistency
is only apparent. The presence or absence of chaos is a property
of the specific equations of motion, and the detection of chaos in
the Lagrangian formulation of [36] is not inconsistent with the
claimed absence chaos in the Hamiltonian formulation of [42].
Indeed, it is expected that small perturbations to the Hamiltonian
system would display chaos, and the Lagrangian formulation can
be viewed as a small perturbation to the Hamiltonian system (at
higher order than the validity of the approximation). This issue
was resolved in [43] and followed up in [40,41].
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ra � r ¼ ra
1þ u2

;

r� ru ¼ u2ðra � ruÞ � ru
1þ u2

;

r� rþ ¼ u2ðra � rþÞ � rþ
1þ u2

;

r� r� ¼ u2ðra � r�Þ � r�
1þ u2

(A6)

and (A4) becomes

Jhcr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p ¼ ra � ru
ðra � rþÞðra � r�Þ

�
Z 1

uu

du
2r2au

2½u2 � u2u�
ð1þ u2Þ2½u2 � u2þ�½u2 � u2��

;

(A7)

where

u2u � ru
ra � ru

; u2þ � rþ
ra � rþ

; u2� � r�
ra � r�

:

(A8)

The integral in (A7) decomposes by partial fractions into

Jhcr

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p ¼ ðA1I1 þ A2I2 þ A3I3 þ A4I4Þj1uu ; (A9)

where the coefficients Ai are

A1 ¼ ra; A2 ¼ 2ðru � 2Þ;

A3 ¼ r�ðru � r�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p ; A4 ¼ � rþðru � rþÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p : (A10)

and the functions I i are

I1 �
Z

du
2

ð1þ u2Þ2 ¼
u

1þ u2
þ tan�1u; (A11a)

I2 �
Z

du
1

1þ u2
¼ tan�1u; (A11b)

I3 �
Z

du
1

u2 � u2�
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � r�

r�

s
ln

�
u� u�
uþ u�

�
; (A11c)

I4 �
Z

du
1

u2 � u2þ
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � rþ

rþ

s
ln

�
u� uþ
uþ uþ

�
: (A11d)

The right-hand side of (A9) is easiest to evaluate in
pieces. The first two terms give

ðA1I1 þ A2I2Þj1uu ¼ �ra
uu

1þ u2u
ðra þ 2ru � 4Þ

�
�

2
� tan�1uu

�
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruðra � ruÞ

q
þ ðra þ 2ru � 4Þ

�
tan�1 1

uu

�

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruðra � ruÞ

q
þ 2

2E2 � 1

1� E2
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � ru

ru

s
: (A12)

To go from the first to the second line in (A12), we have used tan�1ðuÞ þ tan�1ð1=uÞ ¼ �=2. To get the last line, we have
used the fact that

ra þ 2ru ¼ 2

1� E2
(A13)

for homoclinic orbits, which follows from equating the cubic coefficients in Eqs. (5) and (A2).
The third term in (A9) is

A3I3j1uu ¼ � 1

2

ðru � r�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�ðra � r�Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p ln

�
uu � u�
uu þ u�

�
¼ 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr�Þ
1� E2

s
ln

�
uu þ u�
uu � u�

�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr�Þ
1� E2

s
tanh�1 u�

uu
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rðr�Þ
1� E2

s
tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�

ra � r�
ra � ru

ru

s
; (A14)

and likewise

A4I4j1uu ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrþÞ
1� E2

s
tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

ra � rþ
ra � ru

ru

s
: (A15)

Combining (A9), (A12), (A14), and (A15), we find that
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Jhcr ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� E2

p
�

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ruðra � ruÞ

q
þ 2

2E2 � 1

1� E2
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ra � ru

ru

s �

þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

Rðr�Þ
q

tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r�

ra � r�
ra � ru

ru

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RðrþÞ

q
tanh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ

ra � rþ
ra � ru

ru

s �
: (A16)
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