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Spontaneous Lorentz symmetry breaking can occur when the dynamics of a tensor field cause it to take

on a nonzero expectation value in vacuo, thereby providing one or more ‘‘preferred directions’’ in

spacetime. Couplings between such fields and spacetime curvature will then affect the dynamics of the

metric, leading to interesting gravitational effects. Bailey and Kostelecký [Q. G. Bailey and V.A.

Kostelecký, Phys. Rev. D 74, 045001 (2006)] developed a post-Newtonian formalism that, under certain

conditions concerning the field’s couplings and stress-energy, allows for the analysis of gravitational

effects in the presence of Lorentz symmetry breaking. We perform a systematic survey of vector models of

spontaneous Lorentz symmetry breaking. We find that a two-parameter class of vector models, those with

kinetic terms we call ‘‘pseudo-Maxwell,’’ can be successfully analyzed under the Bailey-Kostelecký

formalism, and that one of these two ‘‘dimensions’’ in parameter space has not yet been explored as a

possible mechanism of spontaneous Lorentz symmetry breaking.
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I. INTRODUCTION

It is widely believed that classical general relativity, as
formulated by Einstein, is a particular limit of some under-
lying theory of quantum gravity. However, at energy scales
that are now accessible, it is expected (from our knowledge
of effective field theory) that any fundamentally nonclass-
ical effects would be suppressed by at least a factor of the
ratio of our experimental energy scale to the Planck scale;
even for today’s most powerful particle colliders, this ratio
still gives a suppression factor of 10�16. With no foresee-
able way to bridge this 16-order-of-magnitude gap in en-
ergy, we are forced to aim for sensitivity rather than power
when searching for quantum-gravitational effects.

One particularly interesting avenue for this search is the
possibility of quantum-suppressed Lorentz violation. In
such a scenario, the underlying theory would include a
tensor field (or fields) which spontaneously takes on a
nonzero expectation value. Such a field would, in essence,
provide a ‘‘preferred’’ direction or directions in space-
time.1 The background value of this field could then couple
weakly to conventional matter fields [1]; thus, the effects of
such a tensor field could in principle be seen via careful
observation of the behavior of conventional particles and
fields.

A particularly interesting venue in which to search for
possible violations of Lorentz invariance is the gravita-

tional sector. Interactions between a dynamical metric
and a tensor field with a nonzero expectation value have
been postulated as a possible method of modifying cos-
mology [2–6], as a mechanism for modifying Newtonian
gravity to solve the dark-matter problem [7,8], or simply in
their own right as modifications of conventional gravity [9–
11]. Such modifications of gravity will, in general, cause
modifications to the weak-field limit of gravity. The line-
arized effects of a direct coupling between Lorentz-
violating fields and the Riemann tensor were analyzed in
some detail by Bailey and Kostelecký [12]. By making
certain assumptions about the properties of the equations
of motion, they were able to obtain an effective linearized
gravitational equation of the form

�Gab þTab
cdef�Rcdef ¼ 8�G�Tab; (1)

where �Gab and �Rabcd are (respectively) the Einstein and
Riemann tensors linearized about a flat background, �Tab

is the stress energy of conventional matter, andTab
cdef is a

‘‘small’’ tensor (in a sense we will make explicit below)
depending in a particular way on the background values of
the Lorentz-violating tensors. Using this effective equa-
tion, they then performed a thorough post-Newtonian
analysis of such theories, examining the effects of
Lorentz-violating fields on phenomena including satellite
orbits, interferometric gravimetry, torsion-balance experi-
ments, and frame-dragging.2
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1Such a field is often said to be ‘‘Lorentz-violating.’’ This

description plays somewhat fast and loose with usual notions
from the rest of physics; the field does, after all, transform as a
proper tensor field under local Lorentz transformations. A more
accurate way to describe such a field would be to say that it
‘‘spontaneously breaks Lorentz symmetry,’’ but such phrasing is
rather more awkward. In the interests of readability and consis-
tency with other papers in the literature, we will use ‘‘Lorentz-
violating’’ in this sense as well.

2It is important to note that although the Bailey-Kostelecký
formalism can be applied to the analysis of post-Newtonian
gravity, the theories to which this formalism can be applied
are in general not the same as those to which Will’s familiar
Parametrized Post-Newtonian (PPN) formalism [13,14] can be
applied. The connections and distinctions between these two
formalisms are explored in Sec. III C of Bailey and Kostelecký’s
original paper [12].
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While this formalism is highly valuable for the analysis
of the interface between gravity and Lorentz violation, its
range of applicability is not immediately clear. To obtain
the effective gravitational equation (1), it was necessary for
Bailey and Kostelecký to place certain conditions on the
equations of motion, rather than on the action from which
they were derived. As action principles tend to be concep-
tually simpler than the equations of motion derived from
them, it would be quite helpful to know whether a given
action which includes spontaneous Lorentz symmetry
breaking is analyzable in the Bailey-Kostelecký formal-
ism. Should this be the case, the physical predictions of
their paper [12] would be directly applicable to any such
model.

This question is the focus of the present work. We will
restrict our attention to the simplest type of tensor field
which can spontaneously break Lorentz symmetry, namely,
vector fields Aa. In Sec. II, we describe the properties of the
theories we will be concerned with, and we review the
conditions required for successful use of the Bailey-
Kostelecký formalism. Section III is dedicated to the ap-
plication of these conditions to the vector actions under
consideration; we will see that the class of vector theories
for which the Bailey-Kostelecký formalism can success-
fully be used is not large, but that there do exist previously
unconsidered models which can be analyzed in this frame-
work. Finally, we discuss these results in Sec. IV.

We use the sign conventions of Wald [15] throughout,
and units in which c ¼ 1.

II. EQUATIONS OF MOTION AND FORMALISM

A. Actions for Lorentz-breaking vector fields

Bailey and Kostelecký’s analysis of gravitational
Lorentz violation [12] begins by assuming an action of
the form

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ðLEH þLLV þL0Þ: (2)

LEH here is the usual Einstein-Hilbert action,

L EH ¼ R� 2�: (3)

We will assume throughout that � ¼ 0. The second term,
LLV, contains the nontrivial couplings of the Lorentz-
violating fields to the metric:

L LV ¼ �uRþ sabðRTÞab þ tabcdCabcd: (4)

Here, R is the Ricci scalar, ðRTÞab � Rab � 1
4gabR is the

trace-free Ricci tensor, and Cabcd is the Weyl tensor. The
tensors u, sab, and tabcd may be fundamental fields or (as
will be the case in our analysis) composites of other fields
present in the theory. The final term,L0, contains the terms
determining the dynamics of the fundamental Lorentz-
violating fields, as well as the action for conventional
matter.

In the case of a single vector field being responsible for
Lorentz symmetry breaking, we can be more specific in the
form of the Lagrangian. Denoting the Lorentz-breaking
vector field by Aa, the most general Lorentz-violation
coupling terms will be of the form

L LV ¼ �ð�fuðA2ÞRþ fsðA2ÞAaAbRabÞ; (5)

where A2 ¼ AaAa, fu and fs are arbitrary functions of A2,
and � is a coupling constant.3 (By the symmetries of the
Weyl tensor, any term analogous to tabcdCabcd and con-
structed out of Aa and the metric must vanish.) This term is
best thought of as a ‘‘weak’’ coupling term between the
vector field and the curvature; the ‘‘weakness’’ of this
coupling will be of importance in the next subsection.
The dynamics for Aa, meanwhile, will be determined by

L0. We can write the Lagrangian for an arbitrary second-
differential-order vector theory as

L 0 ¼ Ka
b
c
draA

brcA
d � VðA2Þ þ 2�Lmat; (6)

where Lmat is the Lagrangian for ‘‘conventional’’ matter;
� ¼ 8�G; VðA2Þ is the potential for the vector field, con-
structed to have a minimum at a nonzero value of Aa; and
Ka

b
c
d is a tensor constructed out of A

a and the metric. This

tensor can be taken to be symmetric under the simulta-
neous exchange of a $ c and b $ d. The conventional
matter action Lmat can, in principle, contain direct cou-
plings to Aa. (Wewill introduce an explicit parametrization
for Ka

b
c
d in the next subsection.)

We can easily obtain the Euler-Lagrange equations as-
sociated with this action by varying the action with respect
to gab and Aa; there result the equations

ðEgÞab��Gabþ�Aabþ�BabþðTAÞabþ�ðTmatÞab¼0

(7)

and

ðEAÞa � 2�ð�f0uAaRþ f0sAbAcRbcAa þ fsA
bRbaÞ

þMb
c
d
earbA

crdA
e � 2rbðKb

a
c
drcA

dÞ

� 2V 0Aa þ �Lmat

�Aa ¼ 0; (8)

where

A ab � fuG
ab þ f0uAaAbRþ 1

2
fsg

abAcAdRcd

þ f0sAaAbAcAdRcd; (9)

3Note that fs is associated with the Ricci tensor in our
parametrization, while in Bailey and Kostelecký’s original paper
the tensor sab is associated with the trace-free Ricci tensor.
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B ab � ðgabh�rarbÞfu � 1

2
gabrcrdðfsAcAdÞ

� 1

2
hðfsAaAbÞ þ rcrðaðfsAbÞAcÞ; (10)

ðTAÞab �Mc
d
e
f
abrcA

dreA
f

þre½ðKc
d
ðajejAbÞ �Kc

d
eðaAbÞ �KðabÞc

dA
eÞrcA

d�
�1

2
gabV�AaAbV0; (11)

ðTmatÞab � 1

2

1ffiffiffiffiffiffiffi�g
p �ð ffiffiffiffiffiffiffi�g

p
LmatÞ

�gab
; (12)

M c
d
e
f
ab � 1

2
gabKc

d
e
f þ

�Kc
d
e
f

�gab
; (13)

and

M b
c
d
ea � �Kb

c
d
e

�Aa : (14)

(The arguments of the functions fu, fs, and V will be
regularly omitted for brevity hereafter.)

B. Bailey-Kostelecký formalism

The basic tack taken by Bailey and Kostelecký in their
original paper [12] was to start from an action of the form
(2), with its associated equations of motion; to construct
the linearized equations of motion about a particular type
of background; and to then impose certain conditions on
the background and the equations of motion such that the
linearized equations could be reduced to a particularly
simple form:

�Gab ¼ �ð�TmatÞab þ �u�Gab þ �ab �s
cd�Rcd

� 2�scða�RbÞc þ 1

2
�sab�Rþ �scd�Racdb; (15)

where �u and �sab are the background values of the fields u
and sab. We now review and discuss these conditions as
they pertain to the vector theories we are considering.

(1) The background values of the Lorentz-violating
fields are constant with respect to a background
flat spacetime. In other words, if � is our lineariza-
tion parameter, we are looking for a family of solu-
tions such that

gab ¼ �ab þ �hab; Aa ¼ �Aa þ � ~A;a (16)

with �Aa � 0, and, in addition, that

raA
b �Oð�Þ: (17)

We will see below that these requirements constrain
the background values of V, as well as greatly
simplifying the equations of motion (7) and (8).

(2) The dominant Lorentz-violating effects are linear in
the vacuum values �u, �sab, and �tabcd. This can be
enforced in our case by working only to linear order
in the coupling constant �, discarding terms of
Oð�2Þ or higher. Turning this condition around, we
will also require that in the limit of vanishing �, the
metric will obey the Einstein equations; this ensures
that our ‘‘Lorentz-violating’’ perturbed metric will
only differ slightly from the usual perturbed metric
derived from the conventional Einstein equations.

(3) The fluctuations ~u, ~sab, and ~tabcd of the Lorentz-
violating fields do not couple to the ‘‘conventional
matter’’ sources. This can be ensured by demanding
that

�Lmat

�Aa
¼ 0; (18)

thereby eliminating the last term from Eq. (8) above.
In essence, this requirement ensures that it is only
the metric that is directly affected by the dynamical
Lorentz breaking. Conventional test particles will
still move on geodesics with respect to the now-
distorted metric, and these distorted paths can in
principle allow us to indirectly observe the effects
of Lorentz violation on gravity. In the remainder of
this paper, we will be studying ‘‘vacuum solutions,’’
with all conventional matter sources set to zero.

(4) The independently conserved piece of the Lorentz-
violating stress-energy ðTAÞab vanishes. More spe-
cifically, if we take the divergence of the Einstein
equation (7), we find that the divergence of ðTAÞab
must equal the divergence of �ðAab þBabÞ. This
relation then allows us to ‘‘reverse engineer’’ the
form of ðTAÞab, up to a piece �ab whose divergence
vanishes. This condition is then the statement that
�ab itself vanishes.4

(5) When the Einstein equation (7) is linearized, any

second derivatives of ~Aa can be eliminated fromBab

and ðTAÞab in favor of second derivatives of the
metric. In practice, this elimination can only occur
via the linearized vector equation of motion. This
condition will be our primary focus in Sec. III.

As a consequence of the first condition above, the back-
ground (zero-order) equations of motion reduce simply to

1

2
�abVð �A2Þ þ �Aa �AbV 0ð �A2Þ ¼ 0 (19)

and

V0ð �A2Þ �Aa ¼ 0; (20)

which together imply (as would be expected) that Vð �A2Þ ¼

4Note that this is not strictly speaking necessary for the
analysis performed by Bailey and Kostelecký to still be valid,
as noted in the original paper; in fact, it does not hold for the
bumblebee model [12].
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V 0ð �A2Þ ¼ 0. The linearized Einstein equation of motion
then becomes

�ðEgÞab ¼ ��Gab þ �

�
fu�G

ab � f0u �Aa �Ab�R

þ 1

2
fs�

ab �Ac �Ad�Rcd þ f0s �Aa �Ab �Ac �Ad�Rcd

�

þ ð�QR
abc

d
e þQK

abc
d
eÞ�ðrercA

dÞ
� V 00 �Aa �Abð2 �Ac

~Ac þ hcd �A
c �AdÞ; (21)

where

QR
abc

d
e � 2f0uð�ab�ce � �eða�bÞcÞ �Ad

þ fsð��ab �Aðc�eÞ
d � gce �Aða�bÞ

d þ �cða �AbÞ�e
d

þ �cða�bÞ
d
�AeÞ þ f0sð��ab �Ac �Ae � �Aa �Ab�ce

þ 2�cða �AbÞ �AeÞ �Ad (22)

and

Q K
abc

d
e � �AðaKbÞec

d � �AðaKjejbÞc
d � �AeKðabÞc

d: (23)

The linearized vector equation of motion, meanwhile,
becomes

1

2
�ðEAÞa ¼ �ð�f0s �Aa�Rþ f0a �Ab �Ac�Rbc

�Aa þ fs �A
b�RbaÞ

� Kb
a
c
d�ðrbrcA

dÞ
� V00 �Aað2 �Ab

~Ab þ hbc �A
b �AcÞ: (24)

In Eqs. (21)–(24), the arguments of the functions fu, fs,
and V, as well as the tensor Ka

b
c
d, are understood to be

evaluated at their background values Aa ! �Aa and gab !
�ab; indices are raised and lowered by the flat-space metric
�ab. The quantity �ðrarbA

cÞ is given in terms of flat-
space derivatives and the metric perturbation hab by

�ðrarbA
cÞ ¼ @a

�
@b ~A

c þ
�
@ðbhdÞ

c � 1

2
@chbd

�
�Ad

�
: (25)

Note that by Condition 1 above, this is an Oð�Þ quantity.5
The quantities �Rab, �Gab, and �R ¼ �ab�Rab, finally,
are the linearized Ricci tensor, Einstein tensor, and Ricci
scalar associated with the metric perturbation hab.

It will be to our advantage to introduce a concrete
parametrization for the tensor Ka

b
c
d. Any tensor with the

proper index structure constructed out of Aa and the metric
will be of the form

Ka
b
c
d ¼ C1ðA2Þgacgbd þ C2ðA2Þ�a

b�
c
d þ C3ðA2Þ�a

d�
c
b

þ C4ðA2ÞAaAcgbd þ 1

2
C5ðA2ÞðAaAd�

c
b

þ AcAb�a
dÞ þ C6ðA2ÞAbAdg

ac þ 1

2
C7ðA2Þ

� ðAaAb�
c
d þ AcAd�

a
bÞ þ C8ðA2ÞAaAcAbAd:

(26)

(This particular parametrization is due to Zlosnik et al.
[8].) However, due to the geometric identity

ra½fðA2ÞðAarbA
b � AbrbAaÞ�

¼ fðA2ÞððraA
aÞ2 �rbA

araA
b � RabA

aAbÞ
þ 2f0ðA2ÞðAaAcraAcrbA

b � AaAcraA
brbAcÞ;

(27)

we can always eliminate one of C2, C3, C5, or C7 via an
integration by parts (thereby changing fs as well).
Hereafter we will take C2 to vanish. The arguments of
CiðA2Þ will also generally be omitted for brevity.

C. ‘‘Pseudo-Maxwell’’ kinetic terms

Finally, we note two important properties of the vector
equation of motion (8) for certain choices of Ka

b
c
d.

Consider a kinetic term for which KðabÞc
d ¼ 0. This places

restrictions on the Ci functions:

C1 þ C3 ¼ 0; (28a)

C4 ¼ � 1

2
C5 ¼ C6; (28b)

C7 ¼ C8 ¼ 0: (28c)

Alternately, this condition implies a kinetic term that can
be written in the form

Ka
b
c
draA

brcA
d ¼ �ðH 1g

ac þH 2A
aAcÞ

� ðH 1g
bd þH 2A

bAdÞFabFcd; (29)

where Fab ¼ 2r½aAb�, C1 ¼ �H 2
1, and C4 ¼ �H 1H 2.

(The signs here are determined by the overall sign of C1.)
As this kinetic term is simply the familiar Maxwell field
strength tensor contracted twice with a ‘‘generalized met-
ric’’ H 1g

ab þH 2A
aAb, we will call such kinetic terms

(and theories containing them) ‘‘pseudo-Maxwell.’’
Taking the divergence of the vector equation of motion

(8) for a general Ka
b
c
d and linearizing about our chosen

background, we find that

�ð�f0u �Aara�Rþ f0s �Ab �Ac �Aara�Rbc þ fs �A
bra�RbaÞ

� Kbac
d�ðrarbrcA

dÞ � 2V00ð �A2Þ �Aa �Ab�ðraA
bÞ ¼ 0:

(30)

For an arbitrary vector field Aa and an arbitrary metric, we

5It is also important to note that the flat-space derivative
operator @a and the covariant derivative operator ra differ
only at order �. In particular, this means that the covariant
derivative of an Oð�Þ quantity (such as raA

b) differs from its
flat-space coordinate derivative byOð�2Þ, which for the purposes
of this paper is negligible.
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know that

rarbrcA
d ¼ rðarbÞðrcA

dÞ þ 1

2
ðRabc

ereA
d

� Rabe
drcA

eÞ: (31)

It can be then be seen that in the case KðbaÞc
d ¼ 0, to linear

order in � the divergence of the vector equation of motion
is simply

�ð � f0u �Aara�Rþ f0s �Ab �Ac �Aara�Rbc þ fs �A
bra�RbaÞ

¼ 2V00ð �A2Þ �Aa �Ab�ðraA
bÞ: (32)

[Note that the quantity in brackets in Eq. (31) is Oð�2Þ.]
Using the linearized contracted Bianchi identity
ra�Rab ¼ 1

2rb�R, this last equation is equivalent to

�Aara

�
�

�
�f0u þ 1

2
fs

�
�Rþ �f0s �Ab �Ac�Rbc

� V 00ð �A2Þ�ðA2Þ
�
¼ 0; (33)

where �ðA2Þ ¼ �ðAaAaÞ ¼ 2 ~Aa �Aa þ hab �A
a �Ab.

This implies that in the case where KðabÞc
d ¼ 0, if the

linearized quantity in brackets above vanishes on some
hypersurface to which �Aa is nontangent, this quantity
will vanish throughout spacetime. (Recall that �Aa is a
constant vector field in Minkowski space.) Thus, via an
appropriate choice of boundary conditions, we can impose

�F � �

�
�f0u þ 1

2
fs

�
�Rþ �f0s �Ab �Ac�Rbc

� V00ð �A2Þ�ðA2Þ ¼ 0 (34)

everywhere.6 This equation can be interpreted as telling us
how much the vector field moves ‘‘up’’ its potential (recall
that the value of the potential V only depends on A2), and
so we will call Eq. (34) the ‘‘massive-mode’’ condition.
When combined with the linearized vector equations of
motion (24), this yields

1

2
�ðEAÞa ¼ �fs �A

b�Gab � Kb
a
c
d�ðrbrcA

dÞ ¼ 0: (35)

This massive-mode condition can then be used to im-
pose further conditions on Aa and its derivatives. It can be
shown (see Appendix A) that by taking the appropriate
combinations of the derivatives of the equation of motion,
we arrive at the equation

O a
b½ �Ac�ðr½bAc�Þ� ¼ �fs �A

b �Ac@½a�Gb�c; (36)

whereOa
b is the flat-space linear second-order differential

operator

O a
b � C1�a

bhþ C4ð�a
b �Ac �Ad@c@d þ �A2@a@

b

� �Aa
�Ac@c@

bÞ: (37)

Thus, the operator Oa
b applied to the one-form va �

�Ab�ðr½aAb�Þ yields a quantity of order �. The properties of
Oa

b (see Appendix A) allow us to conclude that under the
imposition of appropriate boundary conditions, the quan-
tity va will itself be of order � as long as

C 1ðC1 þ �A2C4Þ> 0: (38)

Since we also have

�A a�ðrbAaÞ ¼ 1

2
�ðrbA

2Þ �Oð�Þ (39)

from the massive-mode condition (34) above, we can con-
clude that under these assumptions, the quantity

�A a�ðraAbÞ ¼ �2vb þ 1

2
�ðrbA

2Þ �Oð�Þ (40)

as well. This condition, along with the massive-mode
condition (34), will become important in our analysis of
the effective gravitational equations below.

III. CONDITIONS ON VECTOR DYNAMICS

A. The Einstein limit

1. General case

Recall the second of Bailey and Kostelecký’s conditions
above: namely, that any Lorentz-violating corrections to
the linearized Einstein equation are linear in the parameter
�. This implies that in the limit � ! 0, the equations of
motion (21) and (24) must together imply that the conven-
tional linearized Einstein equation is satisfied, i.e., that
�Gab ¼ 0. In this limit, the equations of motion become

� �Gab þQK
abc

d
e�ðrercA

dÞ � V00 �Aa �Ab�ðA2Þ ¼ 0;

(41)

with QK defined as in (23), and

� Kb
a
c
d�ðrbrcA

dÞ � V 00 �Aa�ðA2Þ ¼ 0: (42)

We will further allow the functions CiðA2Þ to be dependent
on �, defining functions CiðA2Þ and DiðA2Þ such that

C i ¼ Ci þ �Di þOð�2Þ: (43)

For the two Eqs. (41) and (42) to imply the validity of the
conventional linearized Einstein equation, we must be able
to eliminate the terms containing second derivatives of the
vector field from (41) using the vector equation of motion
(42). Since this must occur for an arbitrary perturbation of
the vector field, with arbitrary derivatives, we conclude that
this will only occur if for some tensor T abf,

Q K
abc

d
e ¼ T abfKe

f
c
d (44)

6We have abused notation somewhat here, inasmuch as the
quantity �F defined by (34) is not obtained as the linearized
variation of some quantity F . Nevertheless, we will continue to
use �F throughout as a reminder that equations involving it are
not exact, but only hold to linear order.
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in the limit � ! 0. If this relation holds, then we can
combine the linearized Einstein equation and the linearized
vector equation of motion to obtain

�Gab ¼ �V 00ð �A2Þð �Aa �Ab þT abc �AcÞ�ðA2Þ: (45)

This further implies that if the conventional Einstein equa-
tion is to hold in the limit � ! 0, we must either have
�Aa �Ab þT abc �Ac ¼ 0 or �ðA2Þ ¼ 0 in this limit.
What form must this tensor T abc have? For later con-

venience, we will split it up into pieces of Oð�0Þ and
Oð�1Þ:

T abc ¼ T abc
0 þ �T̂

abc
: (46)

Moreover, since we are only concerned with the linearized
equations, we can take T abc to be composed solely of
background quantities. Since the only two geometric ob-
jects ‘‘in play’’ in the background are the vector field �Aa

and the flat metric �ab, and given the symmetry T abc ¼
T bac inherent in the definition of T abc, we conclude that
T abc must be of the form

T abc
0 ¼ U1�

ab �Ac þU2
�Aða�bÞc þU3

�Aa �Ab �Ac (47)

and

T̂ abc ¼ V1�
ab �Ac þ V2

�Aða�bÞc þ V3
�Aa �Ab �Ac; (48)

where the coefficients Ui and Vi can in principle be func-
tions of �A2. Assuming that �ðA2Þ � 0, the constraint that
�Aa �Ab þT abc

0
�Ac vanish yields

U1 ¼ 0 and U2 þU3
�A2 þ 1 ¼ 0: (49)

The question now becomes what form Ka
b
c
d can have

and still satisfy the condition (44). As with our other
quantities, we will split Ka

b
c
d into Oð�0Þ and Oð�1Þ parts:

Ka
b
c
d ¼ ðK0Þabcd þ �K̂a

b
c
d þOð�2Þ: (50)

Note that due to the decomposition (43), ðK0Þabcd or K̂a
b
c
d

can be obtained by taking the original definition (26) of
Ka

b
c
d and replacing Ci by Ci or Di, respectively.

Similarly, we will define

Q K
abc

d
e ¼ ðQK0Þabcde þ �Q̂K

abc
d
e þOð�2Þ: (51)

In the limit � ¼ 0, we thus have the condition

ðQK0Þabcde ¼ T abf
0 ðK0Þefcd: (52)

Both sides of this equation consist of various five-index
tensors constructed from �Aa and the metric, with various
coefficients given in terms of U2 and the Ci functions.
(Their exact forms are given in Appendix B, Eqs. (B1) and
(B2).) Matching these coefficients, we obtain a set of 11
equations which the Ci functions and U2 must satisfy. (We
of course want a nontrivial solution for the Ci coefficients.)
Examination of the resulting equations shows that we must
have U2 ¼ �2 and U3 ¼ �A�2, and that the functions Ci

must satisfy

C 1 ¼ �C3 ¼ � �A2C4 ¼ 1

2
�A2C5 and C7 ¼ 0 (53)

with C6 and C8 arbitrary. This implies a vector kinetic term
that can be rewritten in the form

Ka
b
c
draA

brcA
d

¼ G1ðgac � A�2AaAcÞðgbd � A�2AbAdÞFabFcd

þ ðG2g
ab þG3A

aAbÞraðA2ÞrbðA2Þ; (54)

where Fab ¼ 2r½aAb� and the coefficients Gi are functions

of A2, related to the Ci functions by C1 ¼ 2G1, C6 ¼ 4G2 �
2A�2G1, and C8 ¼ 4G3.

2. Pseudo-Maxwell dynamics

In the previous subsection, we assumed that a general
form for Ka

b
c
d. However, as was noted at the end of

Sec. II C, a pseudo-Maxwell vector kinetic term, satisfying

KðabÞc
d ¼ 0, will behave somewhat differently. The line-

arized solutions obtained from such an action will, with the
imposition of appropriate boundary conditions, also meet
additional self-consistency conditions due to properties of
the linearized equations of motion. In particular, in the � !
0 limit, the condition (34) becomes

V 00ð �A2Þ�ðA2Þ ¼ 0: (55)

This allows us to ignore the constraints (49) on T abc, as
they were imposed by the requirement that the right-hand
side of Eq. (45) vanish. We therefore only have the require-
ment that the second derivatives of Aa vanish, as expressed
by (44), in order to obtain a valid Einstein limit. In this
case, the full tensors are given by Eqs. (B3) and (B4) in
Appendix B. Once again, we perform the matching of
coefficients between these two tensors, yielding a set of
equations that must be satisfied by the Ci and Ui functions.
Assuming that C1 � � �A2C4, these two tensors will be
equal if and only if U2 ¼ �2 and U1 ¼ U3 ¼ 0.7 We
have thus found two possible vector field kinetic terms,
given by (29) and (54), for which the conventional Einstein
limit is recovered in the limit of no direct coupling to
curvature.

B. Adding Lorentz violation

In the above section, we obtained vector actions which
satisfied Condition 2 above; namely, in the limit of no
direct coupling to curvature, these actions yielded linear-
ized equations of motion that implied the conventional
linearized Einstein equation �Gab ¼ 0. We now wish to
‘‘turn on’’ direct coupling between the curvature and the

7Note that the case where C1 ¼ � �A2C4 is a special case of the
kinetic term (54) derived in the previous section.
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vector field by setting � � 0 and place further constraints
on the form of these actions.

Although Condition 2 does not yield any constraints on
the form of the equations of motion at Oð�Þ, we can still
constrain the vector action by imposing Condition 5: we
must be able to eliminate the derivatives of Aa from the
metric equation of motion (21) via use of the vector equa-
tion of motion (24). In particular, the terms in (21) which
contain derivatives of the vector field can be written in the
form

ðQK
abc

d
e þ �QR

abc
d
eÞ�ðrercA

dÞ
¼ ððQK0Þabcde þ �ðQ̂K

abc
d
e þQR

abc
d
eÞÞ�ðrercA

dÞ:
(56)

Using the vector equation of motion (21) and the condition
(44), we can rewrite this as

ðQK
abc

d
e þ �QR

abc
d
eÞ�ðrercA

dÞ
’ �ð�T abf

0 K̂e
f
c
d þ Q̂K

abc
d
e þQR

abc
d
eÞ�ðrercA

dÞ;
(57)

where the ‘‘’’’ symbol here means ‘‘up to terms not
involving derivatives of Aa.’’ We can further simplify
this expression by noting that, in an arbitrary spacetime,

rarbA
c ¼ rðarbÞAc � 1

2
Rabd

cAd (58)

or, in our case,

�ðrarbA
cÞ ¼ �ðrðarbÞAcÞ � 1

2
�Rabd

c �Ad (59)

up to linear order in �. Thus, at Oð�Þ we only need to
eliminate the symmetrized second derivatives from the
metric equation of motion (21); the antisymmetrized sec-
ond derivatives will merely result in contractions of �Aa

with the linearized Riemann tensor, which are expected if
the effective linearized gravitational equation is to be of the

form (1). This will occur if T̂
abc

[the Oð�Þ contribution to
T abc defined in (46)] satisfies the equation

Q R
abðc

d
eÞ þ Q̂K

abðc
d
eÞ ¼ T̂

abf
Kðe

f
cÞ
d þT abf

0 K̂ðe
f
cÞ
d:

(60)

This equation is essentially the Oð�Þ analog of Eq. (44).
We can now proceed with the analysis of this equation as

we did in the � ¼ 0 limit: we write out the left-hand and
right-hand sides in terms of various five-index tensors
constructed from �ab and �Aa, and match coefficients to
determine the possible forms of the Di’s and their corre-
sponding T abc tensors. Expressions for the resulting ten-
sors are given in Appendix B; the left-hand side of (60) is
given by Eq. (B5), while the right-hand side is given by
(B6).

1. General case

In the case where KðabÞc
d � 0, we found in Sec. III A 1

that the kinetic terms for the vector must be given by (54),
with U3 ¼ �A�2. We now wish to match the coefficients in
(B5) and (B6) to see what conditions can be placed on the
Di coefficients and the functions fs and fu. Substituting in
the appropriate relations for the Ci’s and U3, we find that if
(B5) and (B6) are to agree, we are forced to set

f0uðA2Þ ¼ 0 (61)

and

fsðA2Þ ¼ 0: (62)

These conditions can most easily be seen from the coef-

ficients of �eða�bÞc �Ad and �ab �Aðc�eÞ
d, respectively. In

other words, the vector model whose kinetic term is given
by (54) cannot be modified with a Lorentz-violating cur-
vature coupling of the form (5) and still satisfy the assump-
tions of the Bailey-Kostelecký formalism. [Note that
setting fuðA2Þ to a nonzero constant merely changes the
effective value of G.] Thus, this theory cannot be success-
fully be analyzed under this formalism unless Lorentz-
violating effects induced by the coupling termLLV vanish.

2. Pseudo-Maxwell dynamics

The obvious next step is to attempt the same coefficient
matching for pseudo-Maxwell vector theories, as defined
in (29). However, when we naı̈vely do so, we find that the
same logic that forced us to abandon Lorentz violation in
the vector model (54) again forces the Lorentz-violating
functions fu and fs to vanish in the case of pseudo-
Maxwell kinetic terms. This stands in opposition to the
fact Bailey and Kostelecký successfully applied their for-
malism to the so-called ‘‘bumblebee model’’ [1] in their
original paper [12]; the kinetic term for this model is the
same as our pseudo-Maxwell kinetic term in the special
case C1 ¼ constant and C4 ¼ 0. What have we failed to
take into account?
The missing pieces are the conditions on the linearized

derivatives of Aa derived in Sec. II C. Namely, we found
that under the imposition of certain boundary conditions,
we have

�A a�ðraAbÞ � �Aa�ðrbAaÞ �Oð�Þ (63)

everywhere in the spacetime. The role of these conditions
is easiest to see by returning to Eq. (57) and examining the
Oð�1Þ derivative terms remaining in the equations of mo-
tion after eliminating the Oð�0Þ derivative terms. To wit,

suppose there exist tensors T̂
abf

, cabcd, ~c
abc

d, and dabcd

such that we can write
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�T abf
0 K̂e

f
c
d þ Q̂K

abc
d
e þQR

abc
d
e

¼ T̂
abfðK0Þefcd þ cabcd

�Ae þ ~cabed
�Ac þ dabce �Ad:

(64)

The conditions (63) on the derivatives of Aa imply that to
linear order in �, �Ac�ðrercA

dÞ and �Ad�ðrercA
dÞ are of

order �; similarly, to this order in � we will have

�A e�ðrercA
dÞ ¼ �Ae�ðrcreA

dÞ þ �Ae�Rcef
d �Af

¼ �Ae �Af�Rcef
d þOð�Þ: (65)

Thus, if Eq. (64) holds, we will have

�ð�T abf
0 K̂e

f
c
dþQ̂K

abc
d
eþQR

abc
d
eÞ�ðrercA

dÞ
¼�ðT̂ abfðK0Þefcd�ðrercA

dÞþcabcd
�Ae �AfRcef

dÞ
þOð�2Þ; (66)

since all the other terms on the right-hand side of (64) are
ofOð�Þ when contracted with �ðrercA

dÞ.8 In essence, the
derivative conditions (63) allow us to ‘‘ignore’’ certain of
the equations arising from the coefficient-matching im-
plicit in (60) at a given order in �.

To perform this decomposition, we first note that by

taking the equation T abf
0 ðK0Þefcd ¼ ðQK0Þabcde and re-

placing the Ci functions with Di functions, we obtain

T abf
0 K̂e

f
c
d ¼ Q̂K

abc
d
e: (67)

[To put this another way, the relations (28) hold to all

orders in �, and so T abf
0 Ke

f
c
d ¼ QK

abc
d
e to all orders.]

Thus, the first two terms on the left-hand side of (64)
cancel, and we merely need to examine QR

abc
d
e to find

out the required form of the tensors on the right-hand side.

The form ofQR
abc

d
e is given by (22); for a T̂

abf
given by

(48), the quantity T̂
abf

Ke
f
c
d is given by

T̂abfKe
f
c
d ¼ V2C1ð �Aða�bÞ

d�
ce � �Aða�bÞc�e

dÞ
þ V1ðC1 þ �A2C4Þð�ab�ce �Ad � �ab�e

d
�AcÞ

þ ðV2C4 þ V3ðC1 þ �A2C4ÞÞ
� �Aa �Abð�ce �Ad � �Ac�e

dÞ
þ V2C4ð �Aða�bÞ

d
�Ac �Ae � �Aða�bÞc �Ad

�AeÞ: (68)

Comparing these equations, we can then see that Eq. (64) is

satisfied if T̂
abc

has

V2C1 ¼ �fs; (69)

with V1 and V3 arbitrary, and

cabcd ¼ fs

�
� 1

2
�ab�c

d þ �cða�bÞ
d

�
: (70)

Note that this latter quantity is independent of the form of

T̂
abf

.
Finally, we confirm that the effective gravitational equa-

tions are of the proper form for these pseudo-Maxwell
models. Applying the massive-mode condition (34) to the
linearized Einstein equation (21), we obtain

�Gab ¼ �

�
fu�G

ab � 1

2
fs �A

a �Ab�Rþ 1

2
fs�

ab �Ac �Ad�Rcd

�

þ ðQK
abc

d
e þ �QR

abc
d
eÞ�ðrercA

dÞ: (71)

Using the linearized vector equation of motion (35) con-

tracted with T abf
0 ¼ �2 �Aða�bÞf, we can eliminate the

Oð�0Þ derivative terms to obtain

�Gab ¼ �

�
fu�G

ab þ 1

2
fs �A

a �Ab�R� 2fs �A
ða�RbÞ

c
�Ac

þ 1

2
fs�

ab �Ac �Ad�Rcd þQR
abc

d
e�ðrercA

dÞ
�
:

(72)

Lastly, the remaining derivatives of Aa in the above equa-
tion can be eliminated using the derivative conditions, as
noted above in Eq. (66); this yields

�Gab ¼ �

�
fu�G

ab þ fs

�
1

2
�Aa �Ab�R� 2 �Aða�RbÞ

c
�Ac

þ �ab �Ac �Ad�Rcd þ �Ac �Ad�Ra
cd

b

��
: (73)

In our parametrization, the bumblebee model [1] is ob-
tained by setting fs ¼ 1 and fu ¼ 0. Plugging in these
values, this effective equation for �Gab reduces to the form
of the effective gravitational equation (15) found by Bailey
and Kostelecký, with an ‘‘effective �u’’ of � 3

4
�A2 and with

�sab ¼ �Aa �Ab � 1
4�

ab �A2.

IV. DISCUSSION

We have systematically examined the dynamics of
vector-tensor gravity theories with spontaneous Lorentz
symmetry breaking. The primary constraints on the form
of these theories were obtained by imposing two of Bailey
and Kostelecký’s conditions: First, we required that the
equations have the correct weak-field Einstein limit
�Gab ¼ 0 when the Lorentz-violating terms (5) are
‘‘turned off’’ (Condition 2 of the list in Sec. II B); second,
we required that the linearized stress-energy of the vector
field vanish automatically when the linearized vector equa-
tions of motion held (Condition 5). The first of these
requirements led us to the conclusion that the kinetic terms
for our vector fields must be of the form (29) or (54). The
vanishing of the linearized vector stress energy was found

8Note that the decomposition in (64) is ambiguous: it does not
address what is to be done with terms of the form Cabc �Ad

�Ae, for
instance. However, it is easily seen from (66) that such terms will
vanish when contracted with the Riemann tensor, so it does not
matter whether we consider them to be part of cabcd or dabce.
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to be a somewhat more subtle issue; we found that under
the imposition of appropriate boundary conditions, the so-
called pseudo-Maxwell vector models [those with kinetic
terms of the form (29)] could lead to effective gravitational
equations expressed solely in terms of the metric.

It is important to reiterate that the imposition of bound-
ary conditions is necessary to obtain effective gravitational
equations of the form used by Bailey and Kostelecký in
their post-Newtonian analysis; as was noted at the begin-
ning of Sec. III B 2, an arbitrary solution of the vector
equations of motion will not have the proper relations
between the derivatives of the vector field to cause the
linearized vector stress energy to vanish. In a certain sense,
this confirms the aptness of the name ‘‘bumblebee model.’’
This name was originally inspired by the notion that ac-
cording to received wisdom, bumblebees should not be
able to fly; naı̈ve calculations by engineers and entomolo-
gists in the 1930s seemed to show that the bumblebee’s
wings were too small to allow it to fly, and only once more
subtle aerodynamic effects were taken into account was the
mystery explained. Similarly, a naı̈ve comparison of the
bumblebee vector equations of motion with its stress-
energy causes us to conclude that we cannot introduce
Lorentz-violating gravitational effects into the model;
only once more subtle effects (namely, proper boundary
conditions) are taken into account can Lorentz violation in
the bumblebee model ‘‘fly.’’

This said, the technique of imposing boundary condi-
tions to obtain the desired effective gravitational equations
is not entirely rigorous. In particular, we used the some-
what vague statement that ‘‘solutions depend continuously
on initial data’’ to argue that the quantity �Aa�ðraAbÞ was
of order �. While this is true, the notion of continuity
associated with well-posedness of an initial-value problem
is defined in terms of the norms of the solutions on certain
Sobolev spaces, and is not easy to gain a simple intuition
about (see Chapter 10 of [15]). The notion of ‘‘continuous
dependence on initial data’’ (and, by Duhamel’s principle,
on sources) does allow us to say that we can always make
�Aa�ðraAbÞ as small as we like by tuning � to be ‘‘suffi-
ciently small’’; however, it is far from clear how small is
‘‘sufficient.’’ It would be instructive to obtain more careful
estimates of how critically the magnitude of �Aa�ðraAbÞ
depends on �; however, such an analysis is well outside the
scope of this paper.

In some sense, the fact that only pseudo-Maxwell kinetic
terms are acceptable for Lorentz violation is not entirely
surprising given the Bailey-Kostelecký formalism’s re-
quirement of cancellations in the equations of motion.
The quantity raAb will, in general, depend both on deriva-
tives of the vector field and derivatives of the metric (this
latter dependence can be thought of as arising from the
Christoffel symbols implicit in raAb). A vector kinetic
term containing an arbitrary contraction of raAb with
itself and other fields will then, in general, lead to a ‘‘cross

term’’ between derivatives of the vector and derivatives of
the metric in the kinetic terms of the theory [16]. However,
the antisymmetrized derivative r½aAb� is independent of

the metric, and so the kinetic terms for the metric and the
vector will be decoupled when we contract r½aAb� with
itself. It is therefore not surprising that this special property
should have some bearing on the relation between the
vector equations of motion and the gravitational equations
of motion.
In the case of C4 ¼ 0 and C1 constant, the pseudo-

Maxwell theories we have been discussing become a sim-
ple Maxwell action for the vector field (albeit without
gauge symmetry, which is broken by the presence of the
potential). However, the theories for which C4 � 0 do not
appear to have been previously considered in the literature,
at least as far as concerns Lorentz-violating effects. In
some sense, the presence of a C4 � 0 term causes
Lorentz violation for the Lorentz-violating field itself: at
the linearized level, small perturbations of the vector field
‘‘see’’ the effective metricH 1g

ab þH 2A
aAb [as defined

in (29)], rather than the spacetime metric gab. In particular,
in the bumblebee model the Nambu-Goldstone modes of
the Lorentz-violating vector field can be interpreted as a
Maxwell field in a particular gauge [17]. If we naı̈vely
extended this interpretation to a general pseudo-Maxwell
theory, one would expect that the ‘‘speed of light’’ would
be different from the ‘‘speed of gravity,’’ as the two fields
would propagate on the null cones of two different metrics.
Under such an interpretation the ‘‘photon’’ would almost
certainly propagate anisotropically; it is also possible that
such an interpretation would predict vacuum birefringence.
Experimental bounds on such phenomena could then place
bounds on the relative values of H 1 and H 2. That said,
this intuitional understanding may be complicated by the
fact that the correspondence in the above-mentioned work
[17] is in a nonstandard gauge. It is also known that this
correspondence does not carry over to theories with more
general kinetic terms than the bumblebee model [18],
though the class of models examined in this last work did
not include the pseudo-Maxwell theories we have found.
More work is needed to elucidate the correspondence (if
any) between Maxwell theory and the Nambu-Goldstone
modes of these new theories.
Finally, it is important to note that our results imply that

the Bailey-Kostelecký formalism cannot successfully ana-
lyze theories with nonstandard kinetic terms [3,4,7,10].
This does not imply that post-Newtonian effects in such
theories cannot be analyzed; in fact, Bailey and Kostelecký
did precisely this in their original paper [12] for a
Lagrangian identical to what Carroll et al. later called
sigma-æther theory [3]. It is further possible that such a
theory might in fact provide a viable model of Lorentz
violation, consistent with current experimental constraints,
even though it does not fit into the Bailey-Kostelecký
formalism. In the absence of a more general formalism
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for gravitational Lorentz violation, however, such theories
will have to be analyzed on a case-by-case basis.
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APPENDIX A: DERIVATION AND
HYPERBOLICITY OF THE OPERATOR Oa

b

Consider the following linearized combination of the
vector equations of motion:

1

2
�ðAbðrbðEAÞa �raðEAÞbÞÞ
¼ � �AfKdec

½a�
b
f��ðrbrcrdAeÞ

� V00ð �A2Þ �Ab �A½arb��ðA2Þ þ �ð�f0u �Ab �A½arb��R

þ f0s �Ab �Ac �Ad �A½arb��Rcd � fs �A
b �Acr½a�Rb�cÞ:

(A1)

Writing out the term � �AfKdec
½a�

b
f� for a theory in which

KðabÞc
d ¼ 0, we find

� �AfKdec
½a�

b
f� ¼ C1ð3 �A½b�d

a�
e�c þ �½d

a
�Ae��bcÞ

þ C4ð �Ab �Ac�½d
a
�Ae� þ �A2�b

a�
c½d �Ae�

� �Aa
�Ab�c½d �Ae�Þ: (A2)

Since �ðr½brc�rdAeÞ �Oð�2Þ and r½arbAc� ¼ 0, we can
rewrite the first term on the right-hand side of (A1) (to
linear order) as

� 2 �AfKdec
½a�

b
f��ðrbrcrdAeÞ

¼ �2 �AfKdec
½a�

b
f��ðrcrbrdAeÞ

¼ 2Oa
d½ �Ae�ðr½dAe�Þ�: (A3)

Further, applying the massive-mode condition �F ¼ 0,
we can eliminate the term proportional to V 00ð �A2Þ from
(A1), yielding

O a
b½ �Ac�ðr½bAc�Þ� ¼ �fs �A

b �Ac@½a�Gb�c (A4)

when the linearized vector equation of motion is satisfied.
Thus, the quantity va � �Ab�ðr½aAb�Þ will satisfy a

second-order differential Eq. (A4) in flat spacetime.
Moreover, the source for this equation is ‘‘small,’’ i.e., of
order �. We are thus led to the following question: under
what conditions will the solution for va itself be of order �?
More precisely, let us pick some time coordinate t on
Minkowski space. We know that if we set � ¼ 0, va ¼ 0
for all t is a valid solution of the Cauchy problem for (A4)
with the boundary condition vaðt0Þ ¼ 0 and @va=@tjt0 ¼
0. We wish to know whether, as we ‘‘tune’’ � to zero, the

solutions of va go ‘‘smoothly’’ to zero for these boundary
conditions.
This is precisely the question of whether the operator

Oa
b has a well-posed initial-value formulation.9 While the

general problem of whether an arbitrary operator possesses
an initial-value formulation can be quite subtle, for opera-
tors in flat spacetime with constant coefficients (such as
Oa

b) the situation is more clear-cut. Suppose Oa
b is a

linear mth-order differential operator which operates on
N-tuples of functions in flat spacetime. (Thus, an equation
of the form Oa

bvb ¼ 0 is a system of N linear mth-order
differential equations.) Associated with any such operator

we can find an N � N polynomial-valued matrix Pa
bð�; ~�Þ

such that

Pa
b

�
@

@t
; ~r

�
¼ Oa

b; (A5)

i.e., if we take Pa
b and replace � by @=@t and ~� by ~r, we

obtain the operator Oa
b. We will further assume that the

matrixPa
b is constant with respect to space and time. It can

then be shown [19,20] that such an operator has a well-
posed initial-value formulation (with respect to an initial-
data surface t ¼ constant) if and only if there exists a real
number c such that the mN roots �i of the equation

det½Pði�; i ~�Þ� ¼ 0 (A6)

satisfy =ð�iÞ>�c for all real vectors ~� . Such an operator
is said to be ‘‘hyperbolic in the sense of Gårding.’’
To apply this result to the case of the operatorOa

b, let us
choose a Cartesian coordinate system on flat spacetime
ft; x; y; zg for which �Ax ¼ �Ay ¼ 0. Then the polynomial
defined by (A6) becomes

ðC1 þ �A2C4Þð�2 � ~�2Þ
� ðC1ð�2 � ~�2Þ � C4ð �At�þ �Az�3Þ2Þ3 ¼ 0: (A7)

This polynomial has roots when �2
i ¼ ~�2 due to its second

factor; these will obviously have =ð�iÞ ¼ 0 for all real ~� .
The third factor, meanwhile, is a slightly more complicated
quadratic polynomial in �; its roots can be shown to be real
if its discriminant is positive:

D � C1ððC1 �C4ð �AtÞ2Þð�2x þ �2y Þ þ ðC1 þC4
�A2Þ�2z Þ> 0:

(A8)

If this quantity is negative for some value of ~� , the imagi-

nary part of these roots will be � ffiffiffiffiffi
D

p
. Moreover, should

this quantity D be negative for some real vector ~� , the
magnitude of the imaginary part of these roots can be made

arbitrarily large: if =ð�iÞ ¼ � ffiffiffiffiffiffiffi
D0

p
for a given ~� ¼ ~�0,

9Note that a small variation in the source terms in (A4) can be
mapped to a small variation in the boundary conditions via
Duhamel’s principle.
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then =ð�iÞ ¼ �M
ffiffiffiffiffiffiffi
D0

p
for ~� ¼ M ~�0. Thus, the operator

Oa
b defined in (37) will be hyperbolic in the sense of

Gårding if and only if D is a positive definite quadratic

form in ~� , i.e., if

C 1ðC1 � C4ð �AtÞ2Þ> 0 and C1ðC1 þ C4
�A2Þ> 0:

(A9)

We can therefore conclude that in any frame in which
these inequalities hold, we can then impose boundary
conditions on some initial-time surface t ¼ t0 such that
�Ab�ðr½aAb�Þ �Oð�Þ throughout the spacetime. We can

further ask that such a frame have At � 0; if this is the
case, then the massive-mode condition (34) can also be

imposed on the surface t ¼ t0, and it will follow (via the
linearized equations of motion) that the massive-mode
condition is satisfied everywhere. Such a frame will nec-
essarily exist if10

C 1ðC1 þ �A2C4Þ> 0: (A10)

For �A2 � 0, this is equivalent to the condition that the
‘‘effective metric’’ appearing in (29) is of signature
(�þþþ) or (þ���).

APPENDIX B: TENSOR COEFFICIENT
MATCHING

For a general vector theory, we will have

ðQK0Þabcde ¼ ðC1 � C3Þ �Aða�bÞc�e
d þ ðC3 � C1Þ �Aða�bÞ

d�
ce � ðC1 þ C3Þ�ða

d�
bÞc �Ae þ

�
C4 � 1

2
C5

�
�Aa �Ab �Ac�e

d

� 2C4 �Aða�bÞ
d
�Ac �Ae þ

�
1

2
C5 � C6

�
�Aa �Ab�ce �Ad � C5 �Aða�bÞc �Ad

�Ae � 1

2
C7 �Aa �Ab�c

d
�Ae

� 1

2
C7�ab �Ac �Ad

�Ae � C8 �Aa �Ab �Ac �Ad
�Ae: (B1)

Assuming that KðabÞc
d � 0, the tensor T abc

0 must have U1 ¼ 0 and U2 þU3A
2 þ 1 ¼ 0; multiplying these two tensors

together, we find that

T abf
0 ðK0Þefcd ¼ U2C3 �Aða�bÞc�e

d þU2C1 �Aða�bÞ
d�

ce �
�
1

2
C5 þ �A�2ð1þU2ÞC3

�
�Aa �Ab �Ac�e

d �
1

2
C7 �Aa �Ab�c

d
�Ae

þU2C4 �Aða�bÞ
d
�Ac �Ae � ðC6 þ �A�2ð1þU2ÞC1Þ �Aa �Ab�ce �Ad þ 1

2
U2C5 �Aða�bÞc �Ad

�Ae

þ 1

2
U2C7 �Aða�bÞe �Ac �Ad �

�
C8 þ �A�2ð1þU2Þ

�
C4 þ 1

2
ðC5 þ C7Þ

��
�Aa �Ab �Ac �Ad

�Ae: (B2)

For a pseudo-Maxwell vector theory, we can obtain
ðQK0Þabcde simply by applying the conditions (28) to

(B1); the result is

ðQK0Þabcde ¼ 2C1 �Aða�bÞc�e
d � 2C1 �Aða�bÞ

d�
ce

þ 2C4 �Aa �Ab �Ac�e
d � 2C4 �Aða�bÞ

d
�Ac �Ae

� 2C4 �Aa �Ab�ce �Ad þ 2C4 �Aða�bÞc �Ad
�Ae:

(B3)

Because of the massive-mode condition, however, the
above constraints on the functions Ui are relaxed; we
thus must allow for arbitrary Ui functions, yielding

T abf
0 ðK0Þefcd ¼ U2C1ð �Aða�bÞ

d�
ce � �Aða�bÞc�e

dÞ
þU1ðC1 þ �A2C4Þ�abð�ce �Ad � Ac�e

dÞ
þ ðU2C4 þU3ðC1 þ �A2C4ÞÞ
� �Aa �Abð�ce �Ad � �Ac�e

dÞ
þU2C4ð �Aða�bÞ

d
�Ac �Ae � �Aða�bÞc �Ad

�AeÞ:
(B4)

At Oð�Þ, we can attempt an analogous coefficient
matching for the tensors in Eq. (60). The left-hand side of
(60) is given by

QR
abðc

d
eÞ þ Q̂K

abðc
d
eÞ ¼ ðD1 �D3 þ fsÞ �Aða�bÞðc�eÞ

d þ ðD3 �D1 � fsÞ �Aða�bÞ
d�

ce þ ð�D1 �D3 þ fsÞ�ða
d�

bÞðc �AeÞ

þ 2f0u�ab�ce �Ad � 2f0u�eða�bÞc �Ad � fs�
ab �Aðc�eÞ

d þ
�
D4 � 1

2
ðD5 þD7Þ

�
�Aa �Ab �Aðc�eÞ

d

� 2D4A
ða�bÞ

d
�Ac �Ae þ

�
1

2
D5 �D6 � f0s

�
�Aa �Ab�ce �Ad � ðD5 � 2f0sÞ �Aða�bÞðc �AeÞ �Ad

�
�
1

2
D7 þ f0s

�
�ab �Ac �Ae �Ad �D8

�Aa �Ab �Ac �Ae �Ad; (B5)

10If �A2 < 0, the frame in which �Az ¼ 0 satisfies our requirements; if �A2 � 0, the required frame is one in which At is nonzero but
sufficiently small that C2

1 > C1C4ð �AtÞ2.
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and the right-hand side is given by

ðV2C3 � 2D3Þ �Aða�bÞðc�eÞ
d þ ðV2C1 � 2D1Þ �Aða�bÞ

d�
ce þ V1ðC1 þ �A2C6Þ�ab�ce �Ad

þ
�
1

2
V2C5 � ðD5 þD7Þ þ V3

�
C3 þ 1

2
�A2C5

�
þU3

�
D3 þ 1

2
�A2ðD5 þD7Þ

��
�Aa �Ab �Aðc�eÞ

d

þ V1

�
C3 þ 1

2
�A2C5

�
�ab �Aðc�eÞ

d þ ðV2C4 � 2D4ÞAða�bÞ
d
�Ac �Ae þ

�
1

2
V2C5 �D5 �D7

�
�Aða�bÞðc �AeÞ �Ad

þ ðV2C6 � 2D6 þ V3ðC1 þ �A2C6Þ þU3ðD1 þ �A2D6ÞÞ �Aa �Ab�ce �Ad þ V1

�
C4 þ 1

2
C5 þ �A2C8

�
�ab �Ac �Ae �Ad

þ
�
V2C8 � 2D8 þ V3

�
C4 þ 1

2
C5 þ �A2C8

�
þU3

�
D4 þ 1

2
ðD5 þD7Þ þ �A2D8

��
�Aa �Ab �Ac �Ae �Ad: (B6)

We have used the fact that both candidate vector kinetic terms found in the previous section have U1 ¼ 0, U2 ¼ �2 and
C7 ¼ 0.
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045001 (2006).

[13] C.M. Will, Theory and Experiment in Gravitational
Physics (Cambridge University Press, New York, 1993),
revised ed.

[14] C.M. Will, Living Rev. Relativity 9, 3 (2006), http://
www.livingreviews.org/lrr-2006-3.

[15] R.M. Wald, General Relativity (University of Chicago
Press, Chicago, 1984).

[16] J. A. Isenberg and J.M. Nester, Ann. Phys. (N.Y.) 107, 56
(1977).

[17] R. Bluhm and V.A. Kostelecký, Phys. Rev. D 71, 065008
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