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The future finite-time singularities emerging in alternative gravity dark energy models are classified and

studied in Jordan and Einstein frames. It is shown that such singularity may occur even in flat spacetime

for the specific choice of the effective potential. The conditions for the avoidance of finite-time

singularities are presented and discussed. The problem is reduced to the study of a scalar field evolving

on an effective potential by using the conformal transformations. Some viable modified gravity models are

analyzed in detail and the way to cure singularity is considered by introducing the higher order curvature

corrections. These results may be relevant for the resolution of the conjectured problem in the relativistic

star formation in such modified gravity where finite-time singularity is also manifested.
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I. INTRODUCTION

Several assumptions of the cosmological standard model
have been ruled out by the advent of the so-called precision
cosmology capable of probing physics at very large red-
shifts. The old picture, based upon radiation and baryonic
matter, has to be revised. Besides the introduction of dark
matter, needed to fit the astrophysical dynamics at galactic
and galaxy cluster scales (i.e. to explain clustered struc-
tures), a new ingredient is requested in order to explain the
observed accelerated behavior of the Hubble flow: the so-
called dark energy. Essentially, data coming from the
luminosity distance of type Ia supernovae [1], the deep
and wide galaxy surveys [2], and the anisotropy of cosmic
microwave background [3] suggest that the so-called cos-
mological concordance model (�CDM) is spatially flat,
dominated by cold dark matter (CDM� 25%) and dark
energy (�� 70%). The first ingredient should be able to
explain the dynamics of clustered structures while the
latter, in the form of an ‘‘effective’’ cosmological constant,
should give rise to the late-time accelerated expansion.

The cosmological constant is the most relevant candi-
date to interpret the cosmic acceleration, but, in order to
overcome its intrinsic shortcomings associated with the
energy scale, several alternative proposals have been sug-
gested (see recent reviews [4–6]): quintessence models,
where the cosmic acceleration is generated by means of a
scalar field, in a way similar to the early-time inflation,
acting at large scales and recent epochs [7]; models based
on exotic fluids like the Chaplygin gas [8], or nonperfect
fluids [9]; phantom fields, based on scalar fields with
anomalous signature in the kinetic term [10], higher di-
mensional theories (braneworld) [11]. All of these models

have the common feature to introduce new sources into the
cosmological dynamics, but, from an ‘‘economic’’ point of
view, it would be preferable to develop scenarios consistent
with observations without invoking extra parameters or
components nontestable (up to now) at a fundamental
level.
Alternative theories of gravity, which extend in some

way general relativity (GR), allow one to pursue this differ-
ent approach (no further unknown sources), giving rise to
suitable cosmological models where a late-time acceler-
ated expansion is naturally realized.
The idea that Einstein gravity should be extended or

corrected at large scales (infrared limit) or at high energies
(ultraviolet limit) is suggested by several theoretical and
observational aspects. Quantum field theories in curved
spacetime, as well as the low-energy limit of string theory,
both imply semiclassical effective Lagrangians containing
higher order curvature invariants or scalar-tensor terms. In
addition, GR has been definitely tested only at Solar
System scales while it may show several shortcomings, if
checked at higher energies or larger scales. Besides, in the
opinion of several authors, the Solar System experiments
are not so conclusive as to state that the only reliable theory
at these scales is GR.
Of course modifying the gravitational action asks for

several fundamental challenges. These models can exhibit
instabilities [12] or ghostlike behaviors [13], while, on the
other hand, they should be matched with observations and
experiments in the low-energy limit [in other words, Solar
System tests and parametrized post-Newtonian limits
should reproduce the results of GR appropriately].
Despite all of these issues, in the past years, several inter-
esting results have been achieved in the framework of the
so-called modified gravity at cosmological, galactic and
solar system scales (see Refs. [14,15] for a review).*Also at Center of Theoretical Physics, TSPU, Tomsk, Russia.
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For example, cosmological solutions exist that lead to
the accelerated expansion of the Universe at late times in
specific models of fðRÞ gravity as is discovered in
Refs. [16–18]. In some of the realistic theories of this
sort the problems indicated in [19] may be overcome [14].

Viable fðRÞ models exist that can satisfy both back-
ground cosmological constraints and stability conditions
[20–26] as well as local tests. Recently many works have
been devoted to place constraints on fðRÞmodels using the
observations of cosmic microwave background anisotro-
pies and galaxy power spectrum [27,28].

Besides, considering fðRÞ gravity in the low-energy
limit, it is possible to obtain corrected gravitational poten-
tials capable of explaining the flat rotation curves of spiral
galaxies and galaxy cluster haloes without considering
huge amounts of dark matter [25,29–34] and, furthermore,
this seems the only self-consistent way to reproduce the
universal rotation curve of spiral galaxies [35]. On the
other hand, several anomalies in Solar System experiments
could be framed and addressed in this picture [36].

However, a fundamental task which has to be faced for
any alternative gravity model is to classify singularities
which could emerge at a finite time and propose the way to
avoid it. From a physical point of view, this point is crucial
in order to achieve viable and self-consistent models,
especially in the possible applications.

In this paper, we discuss the future singularities which
can, in principle, appear in dark energy models coming
from alternative gravity theories (higher order or nonmi-
nimally coupled gravity).

In fact, when dark energy models with the effective
equation of state parameter close to �1 were added to
the list of admissible cosmological theories to explain the
observed accelerated behavior, due to the violation of all
(or part) of the energy conditions, strange features
emerged. For instance, it is well known that phantom
dark energy brings the universe to a finite-time big rip
singularity [37,38]. Moreover, the effective quintessence
dark energy cosmologies may end up in (softer) finite-time
singularity [39,40]. For such effective quintessence dark
energy models only part of the energy conditions does not
work in the standard way. Nevertheless, they show the rip
singularity behaviors which have been classified in
Ref. [39].

It is clear that, qualitatively, the same situation should
also occur in modified gravity cosmologies [14]. Indeed, it
is quite well known that some versions of modified gravity
[like fðRÞ] have an effective ideal fluid description [41].
Hence, precisely the same singular behavior should be
typical for the (effective phantom/quintessence) modified
gravities in the future too. Indeed, it was found some time
ago [42] that modified gravity becomes invalid (complex
theory) at the point where mathematically equivalent
scalar-tensor dark energy theory enters the big rip singu-
larity. Moreover, the effective phantom behavior may enter

a transient phase and future singularity does not occur if
some higher order terms (like R2) are added to initially
phantomlike models [43]. The same approach has recently
been considered in Ref. [44] to remove the singularity in
order to avoid the conjectured problems with neutron stars
formation in modified gravity.
In this paper we want to discuss, in general, the problem

of finite-time singularities and discuss some ways to avoid
them in viable models which well fit data at local and
cosmological scales.
The layout of the paper is the following. In Sec. II, we

describe, in general, the problem of finite-time singularities
in dark energy models coming from fðRÞ to scalar-tensor
modified gravities. Section III is devoted to the conditions
for singularity avoidance in fðRÞ gravity and in its scalar-
tensor counterpart. In Sec. IV, we discuss the singularity
problem in some physically viable fðRÞ models adopting a
conformal transformation approach. This method allows,
in principle, to discriminate singularities by studying the
behavior of effective scalar field potential after dynamics
has been conformally reduced to the Einstein frame. In
particular, we study the effect of adding a correction term,
proportional to Rn with n � 2, to modify the structure of
the potential at large values of R and cure the singularity.
Discussion and conclusions are drawn in Sec. V.

II. FINITE-TIME SINGULARITIES IN DARK
ENERGY MODELS: FROM FðRÞ GRAVITY TO

SCALAR-TENSOR THEORY

Let us start with a generic action of FðRÞ gravity which
is a straightforward extension of general relativity:

SFðRÞ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
FðRÞ
2�2

þLm

�
: (1)

Here FðRÞ ¼ Rþ fðRÞ is an appropriate function of the
scalar curvature R and Lm is the Lagrangian density of
matter. By the variation over the metric tensor g��, we

obtain the fourth-order field equations:

1

2
g��FðRÞ � R��F

0ðRÞ � g��hF0ðRÞ þ r�r�F
0ðRÞ

¼ ��2

2
TðmÞ��: (2)

In Eq. (2), TðmÞ�� is the matter energy-momentum tensor.

Contracting Eq. (2) with respect to � and �, we obtain the
trace equation:

2FðRÞ � RF0ðRÞ � 3hF0ðRÞ ¼ ��2

2
T: (3)

To recover, formally, general relativity, Eq. (3) can be
rewritten as

Rþ 2fðRÞ � Rf0ðRÞ � 3hf0ðRÞ ¼ ��2

2
T: (4)
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In order to study how finite-time singularities emerge and
can be discussed, let us consider, for the moment, classes of
models which are paradigmatic for our purposes. For ex-
ample, in Ref. [22], a model which easily passes local tests
and several cosmological bounds, has been proposed:

fHSðRÞ ¼ � m2c1ðR=m2Þn
c2ðR=m2Þn þ 1

; (5)

or otherwise written as

fHSðRÞ ¼ ��Rc

ð RRc
Þn

ð RRc
Þn þ 1

: (6)

Here m is a proper scale and c1, c2, n, and � are dimen-
sionless positive constants (n is not restricted to be an
integer) and Rc is a positive constant. When the curvature
is sufficiently large at dark energy epoch, this model can be
approximated as follows:

fðRÞ � �2�þ �

Rn : (7)

In case of (5), one may identify

2� ¼ m2c1
c2

; � ¼ m2mþ2c1
c22

: (8)

Then Eq. (4) reduces to

Rþ 3�hðR�n�1Þ � 0: (9)

Since the large curvature regime is considered, the cosmo-
logical constant term appears as a next-to-leading order
correction, compared with the first term in (9), and we
neglect it. If we define � as

� � R�n�1; (10)

and the Friedmann-Robertson-Walker (FRW) metric with a
flat spatial part is chosen,

ds2 ¼ �dt2 þ aðtÞ2 X
i¼1;2;3

ðdxiÞ2: (11)

Equation (9) has the following form:

€�þ 3H _� ¼ 1

3�
��1=ðnþ1Þ: (12)

Note � ¼ 0 corresponds to the curvature singularity R !
1. Note that as other dark energy models with an equation
of state (EoS) parameter around �1, the above gravita-
tional alternative for dark energy also has the singularity as
will be explained below. The fact that such FðRÞ gravity
may show the phantomlike behavior has been established
in Ref. [43]. It was demonstrated there that account of R2

(or similar nature term) makes the phantom phase transient
and removes the singularity. In principle, the phantom
phase in FðRÞ gravity may end up as a big rip-like type
singularity [37] as was demonstrated in Ref. [42].

First we consider the classical equation of motion:

€x ¼ 1

3�
x�1=ðnþ1Þ: (13)

The difference between the cosmological equation (12)
and the classical equation (13) is the second term depend-
ing on H. This second term gives the only subleading
contribution, which will be shown in the analysis from
(15), where the H dependence will be explicitly included
and it will be shown that the result from the classical
analysis here will be reproduced. For Eq. (13), one gets
an exact solution:

x ¼ Cðt0 � tÞ2ðnþ1Þ=ðnþ2Þ: (14)

Here C and t0 are constants. Note 2> 2ðnþ 1Þ=ðnþ 2Þ>
1. Then x vanishes in a finite time t ¼ t0, which corre-
sponds to the curvature singularity in (13).
We now investigate the asymptotic solution when the

curvature is large, that is, � is small. As there is a curvature
singularity, one may assume

H � h0ðt0 � tÞ��: (15)

Here h0 and � are constants, h0 is assumed to be positive,
and t < t0 as it should be for the expanding universe. Even
for noninteger �< 0, some derivative of H and therefore
the curvature becomes singular. The case � ¼ 1 corre-
sponds to the big rip singularity, Fig. 1. Furthermore, since
� ¼ 0 corresponds to the de Sitter space, which has no
singularity, it is assumed � � 0.
When �> 1, the scalar curvature R behaves as

R� 12H2 � 12h20ðt0 � tÞ�2�: (16)

On the other hand, when �< 1, the scalar curvature R
behaves as

R� 6 _H ��6h0�ðt0 � tÞ���1: (17)

Then R diverges when �>�1 but � � 0.
We now consider four cases (compare with [45]):

(1) � ¼ 1, (2) �> 1, (3) 1>�> 0, and
(4) 0>�>�1; see Fig. 2.

2 3 4 5 6 7 8 9 10
−15

−10

−5

0

5

10

15

t

H
=

h0
(−

t+
t0

)−
β big rip

FIG. 1. Plot of H � h0ðt0 � tÞ��. The big rip singularity oc-
curs for � ¼ 1 and t ¼ t0 ¼ 6.
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(i) In case (1) � ¼ 1, since

R� 12h20 þ 6h0
ðt0 � tÞ2 ; (18)

and therefore, from (10), we find

�� ðt0 � tÞ2ðnþ1Þ; (19)

and the left-hand side (lhs) of (12) behaves as

€�þ 3H _�� ðt0 � tÞ2n; (20)

but the right-hand side (rhs) behaves as

1

3�
��1=ðnþ1Þ � ðt0 � tÞ�2; (21)

which is inconsistent since the powers of both sides
do not coincide with each other. Therefore, � � 1.

(ii) In case (2) �> 1, we find

R ¼ 12H2 þ 6 _H � 12H2 � ðt0 � tÞ�2�; (22)

and therefore

�� ðt0 � tÞ2�ðnþ1Þ: (23)

In the lhs of (12), the second term dominates and the
lhs behaves as

€�þ 3H _�� 3H _�� ðt0 � tÞ�ð2nþ1Þ�1: (24)

On the other hand, the rhs behaves as

1

3�
��1=ðnþ1Þ � ðt0 � tÞ�2�: (25)

Then by comparing the powers of both sides, one
gets

�ð2nþ 1Þ � 1 ¼ �2�; (26)

which gives � ¼ 1=ð2nþ 3Þ, but this conflicts with
the assumption �> 1.

(iii) In case (3) 1>�> 0 or case (4) 0>�>�1, we
find

R ¼ 12H2 þ 6 _H � 6 _H � ðt0 � tÞ���1; (27)

and therefore

�� ðt0 � tÞð�þ1Þðnþ1Þ: (28)

Then on the lhs of (12), the first term dominates and
the lhs behaves as

€�þ 3H _�� €�� ðt0 � tÞ�ðnþ1Þþn�1: (29)

On the other hand, the rhs behaves as

1

3�
��1=ðnþ1Þ � ðt0 � tÞ���1: (30)

Then by comparing the powers of the left-hand side
and the right-hand side, the consistency gives

�ðnþ 1Þ þ n� 1 ¼ ��� 1 or

� ¼ �n=ðnþ 2Þ: (31)

This conflicts with case (3) 0<�< 1 but is consis-
tent with case (4) 0>�>�1. In fact, by substitut-
ing (31) into (28), we get

�� ðt0 � tÞ2ðnþ1Þ=ðnþ2Þ; (32)

which corresponds to (14). Since 0>�>�1, this
singularity corresponds to type II in [39].

Thus, the sudden finite-time curvature singularity really
appears in the Hu-Sawicki (HS) model.
In [39], the classification of the finite-time singularities

was suggested in the following way:
(i) Type I (big rip): For t ! ts, a ! 1, � ! 1, and

jpj ! 1. This also includes the case of �, p being
finite at ts.

(ii) Type II (‘‘sudden’’): For t ! ts, a ! as, � ! �s,
and jpj ! 1

(iii) Type III: For t ! ts, a ! as, � ! 1, and jpj ! 1
(iv) Type IV: For t ! ts, a ! as, � ! 0, jpj ! 0, and

higher derivatives of H diverge. This also includes
the case when p (�) or both of them tend to some
finite values while higher derivatives of H diverge.

Here ts, as, and �s are constants with as � 0. We now
identify ts with t0. Type I corresponds to the �> 1 or the
� ¼ 1 case and we have a big rip singularity [38], whereas
type II to the �1<�< 0 case and corresponds to the
sudden future singularity, type III to the 0<�< 1 case
and is different from the sudden future singularity in the
sense that � diverges, and type IV to �<�1 but � is not
any integer case.
Let us now remember that the type II singularity has

been already discussed in several dark energy models [40]
besides FðRÞ gravity. Here we consider several theories in
the FRW spacetime with the flat spatial part (11). For
type II singularity the Hubble rate H � _a=a has the fol-
lowing form:

H ¼ H0 þH1ðt0 � tÞ	: (33)

0 1 2 3 4 5 6 7 8 9 10
−10

0

10

20

30

40

50

60

70

t

R
(t

)

 

 
R(t) in case 1
R(t) in case 2
R(t) in case 3
R(t) in case 4β=1

β>1

1>β>0

0>β>−1

FIG. 2. Behavior of RðtÞ for the four cases in the text. The
dash-dotted line represents R for � ¼ 1 in Eq. (18); the dashed
line is for �> 1 in Eq. (22); the dotted line is RðtÞ for 1>�>
0; and finally, the solid line RðtÞ is for 0>�>�1 in Eq. (27),
respectively.
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Here H0, H1, t0, and 	 are constants. We now choose 0<
	< 1. ThenH is finiteH ! H0 in the limit of t ! t0 but _H
diverges as

_H ¼ H1	ðt0 � tÞ	�1; (34)

which generates the singularity in the scalar curvature R
since (see Fig. 3)

R ¼ 12H2 þ 6 _H � 6H1	ðt0 � tÞ	�1: (35)

We should note that the energy density � is finite since the
first FRW equation gives

� ¼ 3

�2
H2; (36)

and therefore � ! ð3=�2ÞH2
0 <1 in the limit t ! t0.

Hence, the curvature singularity could occur even if the
energy density is finite as in some other quintessence
models.

We now give an explicit example of the ideal fluid which
gives the singularity in (33). First we should note that the
second FRW equation has the following form:

p ¼ � 1

�2
ð2 _Hþ 3H2Þ: (37)

For the Hubble rate H in (33), Eqs. (36) and (37) give

� ¼ 3

�2
ðH0 þH1ðt0 � tÞ	Þ2;

�þ p ¼ � 2H1	

�2
ðt0 � tÞ	�1: (38)

Then by deleting t in the two equations of (38), we find

� ¼ 3

�2

�
H0 þH1

�
��2ð�þ pÞ

2H1	

�
	=ð	�1Þ�2

: (39)

Equation (39) can be regarded as an EoS. Conversely if we
consider the perfect fluid satisfying the EoS (39), the
singularity (33) occurs.

We now consider the occurrence of singularity (33), in
terms of the scalar-tensor theory, whose action is given by

S ¼
Z

dx4
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

2
!ð
Þ@�
@�
� Vð
Þ

�
;

(40)

where Vð
Þ is the scalar potential and !ð
Þ is the kinetic
function, respectively. Note that for convenience the ki-
netic factor is introduced. We should note that the scalar
field may be always redefined so that the kinetic function is
absorbed. In the spatially flat FRW spacetime (11), the
energy density and the pressure of the scalar field are given
by

�
 ¼ 1
2!ð
Þ _
2 þ Vð
Þ; p
 ¼ 1

2!ð
Þ _
2 � Vð
Þ:
(41)

Combining the FRWequations (36) and (37) with (41), one
obtains

!ð
Þ _
2 ¼ � 2

�2
_H; Vð
Þ ¼ 1

�2
ð3H2 þ _HÞ: (42)

We now consider the theory in which Vð
Þ and !ð
Þ are
given by

!ð
Þ ¼ � 2

�2
f0ð
Þ; Vð
Þ ¼ 1

�2
½3fð
Þ2 þ f0ð
Þ�;

(43)

where fð
Þ is a proper function of 
. Then the following
solution is found:


 ¼ t; HðtÞ ¼ fðtÞ: (44)

In case of (33), we find

!ð
Þ ¼ � 2H1	

�2
ðt0 �
Þ	�1;

Vð
Þ ¼ 1

�2
½ð3H0 þ 3H1ðt0 �
Þ	Þ2 þH1	ðt0 �
Þ	�1�:

(45)

Thus, with such potential choice, the singularity (33) could
be easily realized and the energy density is, of course,
finite. It is easy to construct the models showing the finite
future singularity in other models, say, the scalar Gauss-
Bonnet theory, nonminimal theories [46], etc.
We now consider what kind of scalar potential can

generate the singularity in the scalar field in the flat space-
time background. As a form of the singularity, we now
assume


 ¼ 
0 þ
1ðt0 � tÞ	: (46)

Here 
0, 
1, and 	 are constants. One may take 	 to be
positive but not an integer. Then some derivative of the
scalar field has singularity.
In the next section, we will rewrite the FðRÞ gravity in

the scalar-tensor form, where the metric is rescaled as
given in (53). Because of the scale transformation, the
curvature singularity in the original frame of the
FðRÞ gravity does not appear in the rescaled metric in the

0 1 2 3 4 5 6 7 8 9 10
−1

0
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7
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t
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(t

)

 

 
R(t)

t=t0=6

FIG. 3. Behavior of R as given in Eq. (35). We have assumed
	 ¼ 1

2 .
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the scalar-tensor frame. The singularity occurs in the scalar
field as follows from (46). Hence, such scalar field singu-
larity (46) is called finite-time singularity even in flat
Minkowski space.

In the flat spacetime background, the equation of the
scalar field is given by

€
þ V0ð
Þ ¼ 0: (47)

Here Vð
Þ is a potential of the scalar field. By substituting
(46) into (47), we find


1	ð	� 1Þðt0 � tÞ	�2 þ V 0ð
Þ ¼ 0: (48)

Since (46) can be rewritten as

t0 � t ¼
�

�
0


1

�
1=	

; (49)

by substituting the expression (49) into (48), we find


1	ð	� 1Þ
�

�
0


1

�
1�2=	 þ V 0ð
Þ ¼ 0; (50)

which gives the form of the potential as

Vð
Þ ¼ V0 �
1	
2

2

�

�
0


1

�
2�2=	

: (51)

Hence, it is found that finite-time singularity (46) can be
realized by the potential (51) even in flat spacetime. Thus,
we demonstrated that for variety of dark energy models
including modified gravity the finite-time singularity easily
occurs even in the situation when the effective EoS pa-
rameter is bigger than �1 (the effective quintessence).

III. THE AVOIDANCE OF FINITE-TIME
SINGULARITY IN MODIFIED FðRÞ GRAVITY

Let us consider the action (1) again. By introducing the
auxiliary field A, we rewrite the action (1) of the
FðRÞ gravity in the following form:

S ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p fF0ðAÞðR� AÞ þ FðAÞg: (52)

Here we neglect the contribution from the matter. By the
variation over A, one obtains A ¼ R. Substituting A ¼ R
into the action (52), one can reproduce the action in (1).
Furthermore, we rescale the metric in the following way
(conformal transformation) [18]:

g�� ! e�g��; � ¼ � lnF0ðAÞ: (53)

Hence, the Einstein frame action is obtained:

SE ¼ 1

2�2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

R� 3

2
g��@��@���Vð�Þ

�
;

Vð�Þ ¼ e�gðe��Þ � e2�fðgðe��ÞÞ ¼ A

F0ðAÞ �
FðAÞ
F0ðAÞ2 (54)

Here gðe��Þ is given by solving the equation � ¼
� lnð1þ f0ðAÞÞ ¼ lnF0ðAÞ as A ¼ gðe��Þ. In terms of

fðRÞ the potential Vð�Þ could be rewritten as

Vð�Þ ¼ Af0ðAÞ � fðAÞ
ð1þ f0ðAÞÞ2 : (55)

For the class of models with fðRÞ behaving as in (7), we
find

Vð�Þ � �2�� ðnþ 1Þ�
Rn ; (56)

for large scalar curvature. When the curvature is large in
the model (7), one gets

�� �n

Rnþ1
: (57)

By combining (56) and (57), the potential Vð�Þ is given in
terms of � as

Vð�Þ � �2�� ðnþ 1Þ�
�
�

�n

�
n=ðnþ1Þ

: (58)

By comparing (56) with (51) and identifying � with ð
�

0Þ=
0, we find

n

nþ 1
¼ 2� 2

	
; (59)

or

	 ¼ 2ðnþ 1Þ
nþ 2

: (60)

Since 	 is fractional in general, the scalar field � generates
the singularity in (46), which now corresponds to the
curvature singularity in the Jordan frame. We should note
that the curvature in the Einstein frame is in general not
singular.
Let us consider the realistic models which unify the

early-time inflation and late-time acceleration and which
were introduced in Refs. [25,26].
In order to construct such models, the following con-

ditions are used:
(i) Condition that inflation occurs:

lim
R!1fðRÞ ¼ ��i: (61)

Here �i is an effective early-time cosmological
constant.

(ii) The condition that there is flat spacetime solution is
given as

fð0Þ ¼ 0: (62)

(iii) The condition that late-time acceleration occurs
should be

fðR0Þ ¼ �2 ~R0; f0ðR0Þ � 0: (63)

Here R0 is the current curvature of the Universe and
we assume R0 > ~R0. Because of the condition (63),
fðRÞ becomes almost constant in the present uni-
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verse and plays the role of the effective small cos-
mological constant: �eff ��fðR0Þ ¼ 2 ~R0.

An example which satisfies the conditions (61)–(63) is
given by the following action [25]:

fðRÞ ¼ � ðR� R0Þ2nþ1 þ R2nþ1
0

f0 þ f1fðR� R0Þ2nþ1 þ R2nþ1
0 g : (64)

Here n is a positive integer.
The conditions (61) and (63) require

R2nþ1
0

f0 þ f1R
2nþ1
0

¼ 2 ~R0;
1

f1
¼ �i: (65)

One can show that for the above class of models, the
singularity does not occur or it is difficult to see that the
singularity occurs in the visible future. We will now work
in the scalar-tensor form or the Einstein frame (54).

In the case of the model in [22], in the limit of A ¼ R !
þ1, fðAÞ becomes a small constant ��eff corresponding
to the small effective cosmological constant in the present
universe. In the limit, we find f0ðAÞ ! 0 and the potential
(55) behaves as in (56) and therefore

Vð�Þ ! �eff : (66)

Then the value of V is very small and the curvature
singularity could be easily generated. In the models exhib-
iting this kind of singularity due to the fact that singularity
is at a finite distance with the current energy scale, it was
conjectured [44] that neutron stars cannot be formed. [This
is really a conjecture because the derivation of the stars
formation follows the same approximation as in the usual
Einstein gravity, actually neglecting the higher derivative
terms typical in FðRÞ gravity. This derivation should be
reconsidered within the real FðRÞ gravity with account of
higher derivative terms as well as nonlinearity that is
technically not an easy task. For instance, the nonlinear
structure of modified gravity leads to oscillations [47] al-
ready in the very simple approximation.] The conjecture is
that if the density of the matter becomes finite but large and
reaches a critical value, the curvature singularity occurs
and the star could collapse. Therefore the star with density
larger than the critical value could not be formed. As is
mentioned above these simple considerations may be not
valid with account of higher derivative terms where the star
formation process should be reconsidered from the very
beginning.

On the other hand, for the class of models satisfying the
conditions (61)–(63) like the model (65), the singularity
does not occur easily. For this class of the models, f0ðRÞ
vanishes at R ¼ R0 and in the limit of R ! 1. When R ¼
R0, the condition (61) gives

Vð�Þ ! 2 ~R0; (67)

which could be quite small. Since the value of R is finite,
(67) does not correspond to any singularity. On the other
hand, in the limit of R ! þ1, by using the condition (63),

we find

Vð�Þ ! �i: (68)

Since �i corresponds to the effective cosmological con-
stant during the inflation, the energy scale is not small,
typically it is the grand unification scale. Therefore the
value of Vð�Þ could be very large. Then the singularity
could be generated only at the energy density larger then
the energy density corresponding to the inflation of the
early universe but it does not occur around the energy
density which is typical for neutron star.
Even for the class of dark energy models where singu-

larity occurs at smaller energies, there is a scenario to avoid
the singularity proposed in Ref. [43]. Indeed, let us con-
sider the model where fðRÞ behaves as

fðRÞ � f0R
�; (69)

with constants f0 and �> 1. If the ideal fluid, which could
be the matter with the constant EoS parameter w: p ¼ w�,
couples with the gravity, when the fðRÞ term dominates
compared with the Einstein-Hilbert term, an exact solution
is [43]

a ¼ a0t
h0 ; h0 � 2�

3ð1þ wÞ ;

a0 �
�
� 6f0h0

�0

ð�6h0 þ 12h20Þ��1fð1� 2�Þð1� �Þ

� ð2� �Þh0g
��1=3ð1þwÞ

: (70)

When � ¼ 1, the result h0 ¼ 2
3ð1þwÞ in the Einstein gravity

is reproduced. The effective EoS parameter weff may be
defined by

h0 ¼ 2

3ð1þ weffÞ : (71)

By using (70), one finds

weff ¼ �1þ 1þ w

�
: (72)

Hence, if w is greater than �1 (effective quintessence or
even usual ideal fluid with positive w), when � is negative,
we obtain the effective phantom phase where weff is less
than �1. This is different from the case of pure modified
gravity. On the other hand, when�> wþ 1 (it can be even
positive), weff could be negative for negative w. Hence, it
follows that modified gravity minimally coupled with
usual (or quintessence) matter may reproduce a quintes-
sence (or phantom) evolution phase for the dark energy
universe in an easier way than without such a coupling.
If we choose� to be negative in (69), when the curvature

is small, the fðRÞ term becomes dominant compared with
the Einstein-Hilbert term. Then from (72), we have an
effective phantom even if w>�1. Usually the phantom
generates the big rip singularity. However, near the big rip
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singularity, the curvature becomes large and the Einstein-
Hilbert term becomes dominant. In this case, we have
weff � w>�1, which prevents the big rip singularity.

One may add an extra term to fðRÞ (69) as [43,46]
fðRÞ ¼ f0R

� þ f1R
�: (73)

Here we choose f1 > 0 and �> 1. Then for the large
curvature, the second term could dominateand the potential
(55) behaves as

V ¼ �� 2

f1R
��2

: (74)

Then if 1<�< 2, the potential is positive and diverges
near the curvature singularity R ! 1, which could prevent
the curvature singularity even if the singularity is the big
rip type (type I) or type II [46] or other softer singularity
[46].

Thus, we demonstrated that for a large class of viable
FðRÞ gravities the finite-time singularity occurs in such a
distant future that it cannot influence the current universe
processes. From another side, there exists the trick intro-
duced in Refs. [43,46] of adding an extra term to modified
gravity to remove the singularity.

As is clear from (52), for F0ðRÞ ¼ 1þ f0ðRÞ> 0, the
square of the effective gravitational coupling is positive.
However, due to �2

eff � �2=F0ðAÞ, the theory could enter an
antigravity regime. In order to avoid this antigravity prob-
lem from the very beginning, we may consider a model
given by

fðRÞ ¼ �f0
Z R

0
dRe�½�R2n

1
=ðR�R1Þ2n��ðR=��iÞ: (75)

Here �, �, f0, and R1 are constants and we assume 0<
R1 � �i. In this model, the correction to the Newton law
is very small. Then by construction, as long as 0< f0 < 1,
we find f0ðRÞ>�1 or F0ðRÞ> 0 and therefore there is no
antigravity problem. Since

fðR1Þ � �f0
Z R1

0
dRe�½�R2n

1
=ðR�R1Þ2n� ¼ �f0Anð�ÞR1;

Anð�Þ �
Z 1

0
dxe��=x2n ; (76)

and �fðR1Þ could be identified with the effective cosmo-
logical constant 2 ~R0, we find

f0Anð�ÞR1 ¼ ~R0: (77)

Note that Anð0Þ ¼ 1, Anðþ1Þ ¼ 0, and A0ðxÞ< 0. On the
other hand, since

fðþ1Þ �
Z 1

0
dRe�R=��i ¼ �f0��i; (78)

and�fðþ1Þ could be identified with the effective cosmo-
logical constant at the inflationary epoch, �i, we find

f0� ¼ 1: (79)

Then the conditions (61) and (63) are satisfied. The con-
dition (61) is, of course, satisfied by construction (75). As
discussed around Eq. (68), as long as �i is large enough,
the potential becomes large when the scalar curvature R is
large and there could not occur or could be difficult to
realize the singularity. We also note that if we add the
second term f1R

� with 1<�< 2 in (73), the singularity is
completely removed since the potential diverges in the
limit of R ! 1. Thus, for a large class of viable modified
gravity models the singularity may be easily removed by
adding anextra term which is actually relevant at the early
universe. Moreover, the typical energy scales of the neu-
tron star and the singularity formation process (above the
inflation scale) are at large distances and they are not
relevant to each other.

IV. THE SINGULARITY PROBLEM IN
fðRÞ-VIABLE MODELS

In this section, we are going to discuss the curvature
singularity problem that affects several infrared-modified
fðRÞ models [22]. As we have said previously, considering
fðRÞ � R gravity means that a new scalar degree of free-
dom has to be taken into account. Conformal transforma-
tions of the metric can be used to make it explicit in the
action [48,49].
For our goals, we consider a class of fðRÞ models which

do not contain a cosmological constant and are explicitly
designed to satisfy cosmological and Solar System con-
straints [50]. In practice, we choose a class of functional
forms of fðRÞ capable of matching, in principle, observa-
tional data [51]. First of all, any viable cosmological model
has to reproduce the cosmic microwave background radia-
tion constraints in the high-redshift regime. Secondly, it
should give rise to an accelerated expansion, at low red-
shift, according to the �CDM model. Thirdly, these mod-
els should give rise to a large mass for the scalaron [52] in
the high-density region where local gravity experiments
are carried out. In such a regime, the perturbation in R can
be larger than the background value R0, which means that
the linear approximation to derive the Newtonian effective
gravitational constant in a spherically symmetric space-
time ceases to be valid [53,54]. In the nonlinear regime
with a heavy scalaron mass, however, it is known that a
spherically symmetric body has a thin shell [22,28,53,55]
through the so-called chameleon mechanism [56,57] (see
also Refs. [58,59]). When a thin shell is formed, an effec-
tive coupling that mediates the fifth force gets smaller. This
allows the possibility that the fðRÞ models which have a
large scalaron mass in the high-density region can be
compatible with local gravity experiments. Then there
should be sufficient degrees of freedom in the parametri-
zation to encompass low redshift phenomena (e.g. the large
scale structure) according to the observations [60]. Finally,
small deviations from GR should be consistent with Solar
System tests. All these requirements suggest that we have
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to assume the limits

lim
R!1fðRÞ ¼ const; (80)

lim
R!0

fðRÞ ¼ 0; (81)

which are satisfied by a general class of broken power law
models, as those proposed in [22]

fHSðRÞ ¼ ��Rc

ð RRc
Þ2n

ð RRc
Þ2n þ 1

: (82)

Since fðR ¼ 0Þ ¼ 0, the cosmological constant has to
disappear in a flat spacetime. The parameters fn; �; Rcg are
constants which should be determined by experimental
bounds.

Other interesting models with similar features have been
studied in [23–26]. In all these models, a de Sitter stability
point, responsible for the late-time acceleration, exists for
R ¼ R1ð>0Þ, where R1 is derived by solving the equation
R1f;RðR1Þ ¼ 2fðR1Þ [61].

In the region R � Rc, model (82) behaves as

fhybrid 1ðRÞ ’ ��Rc½1� ðRc=RÞ2s�; (83)

where s is a positive constant. The model approaches
�CDM in the limit R=Rc ! 1.

Finally, let also consider the class of models [20,21,28]

fhybrid 2ðRÞ ¼ ��Rc

�
R

Rc

�
q
: (84)

Also in this case �, q, and Rc are positive constants (note
that n, s, and q have to converge toward the same values to
match the observations). We do not consider the models
with negative q, because they suffer for instability prob-
lems associated with negative f;RR [27].

A. The role of conformal transformations

Conformal transformations can play a key role in clas-
sifying singularities in modified gravity (apart from the
general classification presented in the second section). As
we have shown in the previous section, at scale Rc and
beyond, the expansion rate of the Universe is set primarily
by the matter density, just as in standard cosmology, with
small corrections. Once the local curvature drops below
Rc, according to the chameleon mechanism, the expansion
rate feels the effect of modified gravity. The spacetime
curvature, on the other hand, is controlled by the further
scalar degree of freedom�which gravity acquires. It obeys
the usual scalar field equation with potential Vð�Þ, the
shape of which is directly determined by function fðRÞ,
and a driving term from the trace of matter stress-energy
tensor. But a problem surfaces at this point: it turns out that
precisely those functions fðRÞ that lead to Einstein-like
gravity action in the large curvature regime yield a poten-
tial V with an unprotected curvature singularity. (Note that

just the same occurs for a number of realistic quintessence
dark energies.) Let us consider, for example, the model
(82) which has been constructed to avoid linear instabil-
ities. The conformal transformation gives � ¼ � lnð1þ
f0ðRÞÞ ¼ � lnF0ðRÞ with the potential defined in Eq. (55).
For the model (82), the scalar field � is given by

�ðxÞ ¼ � ln

�
2� 2nx2n�1�

ðx2n þ 1Þ2
�
; (85)

where the crossover curvature scale Rc can be reabsorbed
into a rescaling of coordinate (which can be assumed
dimensionless and can be measured in length units corre-
sponding to Rc). Suitable coordinates are x ¼ R

Rc
> 0 and

Rc � �g � 10�24 g=cm3 for the galactic density in the

solar vicinity and Rc � �g � 10�29 g=cm3 for the present

cosmological density. For the large curvature limit R !
�1, we have that � ¼ �0:70 while, for R ! 0, it corre-
sponds to � ¼ �0:70, which gives us a hint that the
potential is going to be a multivalued function. For R !
1, we have� ¼ 0. We have Vð�Þ ! 1 forR ! 1, then it is
singular for this curvature value, while forR ! 1, we have
Vð�Þ ¼ 2 and flat spacetime in the limit R ! 0. The
analytic expression is

Vð�ðxÞÞ ¼ x2ðx2n � 2nþ 1Þðxn þ x3nÞ2�
ð2ðx� n�Þx2n þ x4nþ1 þ xÞ2 : (86)

For our goals, it is important to study the trend of the
potential and of the field� through a parametric plot of two
functions with respect to x ¼ R

Rc
. In this way, singularities

can be easily identified (see Fig. 4).
For the hybrid-1 model, � assumes the form

� ¼ � ln

�
2� 2s

�
1

x

�
2sþ1

�

�
: (87)

From Fig. 5, for � ¼ 2 and s ¼ 1, we can see that we
have � ¼ 0 in the limit R ! �1 and � ! 1 for R ¼ 0.
The effective potential is

Vð�Þ ¼ x2sþ2ðx2s � 2s� 1Þ�
ðx2sþ1 � 2s�Þ2 ; (88)

and, from a rapid inspection of Fig. 6 with � ¼ 2 and s ¼
1, we have V ¼ 2 for R ! �1.
Finally, let us analyze the model (84). The scalar field

assumes the form

� ¼ � ln

�
q�

�
1

x

�
qþ1 þ 2

�
(89)

and then � ! �1 for R ! 0; see Fig. 7.
The potential is

Vð�Þ ¼ ðqþ 1Þxqþ2�

ðxqþ1 þ q�Þ2 (90)

which gives V ¼ 0 for R ! �1 and for R ¼ 0; see Figs. 8
and 9.
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As a concluding remark, we can say that the conformal
transformations allow one to recast the singularity problem
in terms of the scalar field and its potential. This fact
suggests an easier interpretation of the singularities, at
least, in some specific cases.

B. Singularities vs chameleon mechanism

In order to compare these results, we can take into
account another approach where the matter coupling is
considered as has also been studied by Dev et al. [62].
This allows one to compare singularities with density scale

and could be particularly useful to construct models where
finite singularities are avoided at infrared scales.
Starting again with action (1) which leads to the equa-

tions of motion (2), the evolution of the scalar degree of
freedom is given by the trace:

2FðRÞ � RF0ðRÞ � 3hF0ðRÞ ¼ ��2

2
T: (91)

Another convenient way to define the scalar function � is

� � F0ðRÞ � 1; (92)

which is expressed through the Ricci scalar once FðRÞ is
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FIG. 5. Plot of Eq. (87) for � ¼ 2 and s ¼ 1.
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FIG. 6. Plot of Eq. (88) for � ¼ 2 and s ¼ 1.
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FIG. 4 (color online). Qualitative evolution of the scalar degree of freedom for the model (82) in two dimensions fVð�Þ; �g and in
three dimensions fVð�Þ; �; xg with � ¼ 2 and n ¼ 1.
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specified. We can write the trace equation [Eq. (3)] in terms

of V and T as

h� ¼ dV

d�
þ �2

6
T: (93)

The potential can be evaluated using the following relation:

dV

dR
¼ dV

d�

d�

dR
¼ 1

3
ð2FðRÞ � F0ðRÞRÞF00ðRÞ: (94)

Then Vð�Þ is given by the pair of functions f�ðRÞ; VðRÞg.
Let us consider now the model (82) as is also shown in
[62]. The scalar field � is given by

�ðRÞ ¼ � 2nx2n�1�

ðx2n þ 1Þ2 : (95)

We can compute VðRÞ for a given value of n. In the case of
n ¼ 1 and � ¼ 1, we have

V ¼ 1

24

��3x7 � 24x6 þ 21x5 � 56x4 þ 11x3 � 40x2 þ 3x� 8

ðx2 þ 1Þ4 � 3tan�1ðxÞ
�
; (96)

where x ¼ R=Rc. In the FRW background, the trace equa-
tion can be rewritten in the convenient form

€�þ 3H _�þ dV

d�
¼ ��2

6
�: (97)

The effective scalar potential is plotted in Fig. 10 for
� ¼ 1, and it is multivalued indeed. It has a minimum
depending on the values of n and �. For generic values
of the parameters, the minimum of the potential is close to

� ¼ 0, corresponding to infinitely large curvature R ¼
�1. Thus, while the field is evolving toward the mini-
mum, it evolves oscillating toward a singular point. We
have a stable de Sitter minimum and an unstable de Sitter
maximum. The point R ! 0 corresponds to a flat space-
time, which, although a solution for the model, is unstable.

Cusps that occur at R ¼ �1=
ffiffiffi
3

p
are critical points with

f00 ¼ 0. However, depending upon the values of the pa-
rameters, we can choose a finite range of initial conditions
for which scalar field � evolves to the minimum of the
potential without hitting the singularity. Note again that as
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FIG. 7. Plot of Eq. (89) for � ¼ 2 and q ¼ 1.

−3 −2 −1 0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x=R/Rc

V
(σ

)

 

 

hybrid2 potential

FIG. 8. Plot of Eq. (90) for � ¼ 2 and q ¼ 1. It is worth noting
the double sigmoid trend.
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it was demonstrated in the second section, it is just a
manifestation of type II finite-time singularity. In Fig. 11,
the cosmological behavior of � is plotted. It is clear the
contribution of matter in changing the local behavior.

The time-time component of the equation of motion (2)
gives the Hubble equation

H2 þ dðlnF0ðRÞÞ
dt

H þ 1

6

FðRÞ � FðRÞR
f0ðRÞ ¼ ��2

6
�: (98)

The Einstein gravity is recovered in the limit f0 ¼ 1. The
picture of dynamics which appears here is the following:

above the infrared scale (Rc), the expansion rate is set by
the matter density and once the local curvature falls below
Rc the expansion rate gets the effects of modified gravity.
For pressureless dust, the effective potential presents an

extremum at

2FðRÞ � RF0ðRÞ ¼ ��2

2
�: (99)

For viable late-time cosmologies, the field evolves near the
minimum of the effective potential. The finite-time singu-
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FIG. 11. Cosmological behavior of the scalar field � as given in Eq. (97) plotted vs the cosmological time in the presence of matter
(left panel) and without matter (right panel). It is possible to note that the matter contribution changes the local behavior toward t ¼ 0.
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FIG. 10 (color online). Qualitative parametric plot of the evolution of the scalaron potential V vs � and x for n ¼ 1 and � ¼ 1 in two
and three dimensions for the model (82).
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larity, which occurs for the class of models under consid-
eration, severely constrains the field dynamics.

C. Adding higher curvature corrections to cure
singularities

It is well known that for large curvature regimes, the
quantum effects become important leading to higher cur-
vature corrections. Then the program of this paper can be
enhanced by considering if higher curvature corrections (as
is already stressed in the third section) added to the original
models can solve the singularity problem. In general,
higher curvature corrections change the structure of the
effective potential around the singularity [62]. Keeping this
in mind, let us consider the modification of the model (82).
Although we focus on a specific model, similar results hold
for the models of the classes considered here. In cosmol-
ogy, higher curvature corrections appear as Lagrangian
contributions like L ¼ �2R

2 þ �3R
3 þ 	 	 	 , and so the

most natural choice for the leading order term is
�R2=R2

c.
1 It is well known that the R2 term may be respon-

sible for inflation in the early Universe if Rc is set to be at
an inflationary scale [62]. In the case we are considering,
we have

FðRÞ ¼ � �ð RRc
Þ2n

ð RRc
Þ2n þ 1

þ �
R2

R2
c

þ R

Rc

; (100)

then the field � becomes

�ðRÞ ¼ 2
R

Rc

�� 2n�

ð RRc
Þ2nþ1 þ R

Rc

þ 2n�
R
Rc
ðð RRc

Þ2n þ 1Þ2 : (101)

When jRj is large in modulus, the first term which comes
from �R2 dominates. In this case, the curvature singularity
R ¼ �1 corresponds to � ¼ �1. Hence, by this modifi-
cation, the minimum of the effective potential is separated
from the curvature singularity by the infinite distance in the
f�;Vð�Þg plane.
For n ¼ 2, � ¼ 2, and� ¼ 0:5, we have a large range of

the initial condition for which the scalar field evolves to the
minimum of the potential as shown in Fig. 12. In conclu-
sion, the introduction of the R2 term formally allows one to
avoid the singularity as it was suggested earlier in
[43,45,46].

V. CONCLUSIONS

In this paper we have discussed the future finite-time
singularities which can, in principle, appear in the dark
energy universe coming frommodified gravity as well as in
other dark energy theories. Considering fðRÞ gravity mod-
els that satisfy cosmological viability conditions (chame-
leon mechanism), it is possible to show that finite-time
singularities emerge in several cases. Such singularities
can be classified according to the values of the scale factor
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FIG. 12 (color online). Parametric plot of the effective potential for n ¼ 2, � ¼ 2, and � ¼ 1=2 in the presence of the R2 correction
in two and three dimensions for the model (82).

1Higher order corrections naturally include terms like
R��R

��, but in this paper we focus on the fðRÞ-type modified
gravity and hence simply assume that the corrections are also
given by a function of the Ricci scalar.
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aðtÞ, the density �, and the pressure p as done in Sec. II. To
avoid the singularities, suitable boundary conditions have
to be imposed which depend, in general, on the parameters
of the model as seen in Sec. III. It is interesting that in static
spherically symmetric spacetime the finite-time singularity
manifests itself as singularity at some specific value of
curvature.

Besides, the problem can be analyzed by considering the
mass of an auxiliary scalar field coming from the further
degrees of freedom of fðRÞ gravity. Such a scalar field is
heavy in the high-curvature regime whose density is much
larger than the present cosmological density. Such a field
allows one to study the singularity problem using the
conformal transformations. In this case, we have to con-
sider singularities of the scalar field and the related effec-
tive potential and try to see if they can be avoided in the
conformal picture. For example, the most striking feature
of the potential in Fig. 4, and the core of the problem for
infrared-modified fðRÞ models, is that curvature singular-
ity is at a finite distance both in field and energy values.
The scalar field � directly feels the matter distribution; for
suitable values of the parameters, the force is directed to
the right, and drives the field � up the wall toward infinite
curvature. The characteristic scale of the potential Vð�Þ is
the curvature Rc which is of the same order of magnitude of
the today observed cosmological constant. Such a value is
extremely low compared to the matter densities we en-
counter at local Solar System and Galactic scales. Given
the scales involved, it is easy to drive the scalar field in
order to jump the potential well considering the dynamics

of standard matter which could cause catastrophic curva-
ture singularity. If this were to happen, this is in contrast
with any viable model. Similarly, matter with a sufficiently
stiff equation of state can destabilize the model by driving
the field to unstable points. It is also remarkable that even
in flat spacetime, some classes of the classical potential
may bring the theory to finite-time singularity.
Finally we have discussed the possibility to address and

solve the singularity problem adopting higher curvature
corrections. In such a way, the future cosmological era has
no singularity as was demonstrated earlier in [43,45,46].
Then, it also does not manifest itself in spherically sym-
metric spacetime. The interesting result of this analysis is
the fact that finite-time singularities, which are present in
some modified gravity, may not influence the conjectured
problem with relativistic star formation indicated in
Ref. [44]. Of course, this fact depends on the specific
characteristics of the adopted modified gravity model
which can be even totally free of future, finite-time
singularities.
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