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We present the first numerical simulations of an initially nonspinning black-hole binary with mass ratio

as large as 10:1 in full general relativity. The binary completes approximately three orbits prior to merger

and radiates ð0:415� 0:017Þ% of the total energy and ð12:48� 0:62Þ% of the initial angular momentum

in the form of gravitational waves. The single black hole resulting from the merger acquires a kick of

ð66:7� 3:3Þ km=s relative to the original center of mass frame. The resulting gravitational waveforms are

used to validate existing formulas for the recoil, final spin, and radiated energy over a wider range of the

symmetric mass ratio parameter � ¼ M1M2=ðM1 þM2Þ2 than previously possible. The contributions of

‘ > 2 multipoles are found to visibly influence the gravitational wave signal obtained at fixed inclination

angles.
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I. INTRODUCTION

Following the breakthroughs of 2005 [1–3], the numeri-
cal relativity community has constructed several indepen-
dent codes [4–12] and proceeded at a breathtaking speed in
generating new insights into the dynamics of inspiralling
and coalescing black-hole binaries (BBH) and the resulting
gravitational wave patterns [13]. For example, numerical
relativity has provided vital information regarding the kick
or recoil in astrophysical mergers [14–23], simulations of
spin flip and precession phenomena [15,24], and the inter-
pretation of gravitational waveforms to be observed in the
future [25–30]. See also [31–35] for binary simulations
involving neutron stars. This progress has come timely, as
earthbound gravitational wave detectors LIGO, VIRGO,
GEO600, and TAMA [36–39] are now collecting data at or
near the design sensitivity. The combined use of theoretical
predictions and sophisticated data analysis methods will be
crucial in achieving the first direct detection of gravita-
tional waves and thus opening a new window to the
Universe.

The purpose of this work is to extend the range of mass
ratios probed by numerical relativity to q � M1=M2 ¼ 10,
corresponding to � � q=ð1þ qÞ2 ¼ 0:0826. This mass
ratio is of particular interest for a variety of reasons.
First, studies of the supermassive black-hole formation
history, starting with light seed black holes, predict a
significant fraction of mergers in the range 1 � q � 10
and, depending on accretion details, the possibility of a
peak near q ¼ 5; . . . ; 10 [40]. Similarly, detailed statistical
analysis of the mass distribution of supermassive galactic
black holes predicts that most mergers will occur in the
range 3 � q � 30 [41]. Finally, accurate numerical simu-
lations with q ¼ 10 will facilitate unprecedented compari-

sons with approximative calculations based on post-
Newtonian expansions (cf. [42–45] as well as [46] for a
review) and extreme mass ratio (EMR) predictions based
on perturbation theory and self-force calculations (see [47–
53] and references therein). By considering, for example,
an expansion in the mass ratio parameter, a naive estimate
of the error in perturbative calculations would be of the
order of 1=q2 or 1% relative to background quantities, or
10% for quantities of first order in 1=q. While such com-
parisons are beyond the scope of this paper, we will lay the
foundation for future work by giving a detailed conver-
gence analysis of the numerical results including estimates
for the uncertainties.
We will also use our results to probe recently published

formulas for calculating the final spin and recoil resulting
from the coalescence of two black holes with given initial
physical parameters. Spin measurements of black holes via
direct astrophysical observations have so far provided
information about several individual holes [54–60] but
appear as yet to be insufficient for constructing reliable
spin-distribution functions. The community has therefore
pursued the alternative path of using theoretical predictions
in the context of the growth history and accretion processes
of the holes [61–67]. It is important for the modeling of the
individual binary mergers in such simulations to have
available mappings between the initial parameters of the
binary and the final spin and recoil of the post-merger
remnant. A better understanding of the distribution func-
tion of the black-hole recoil also generates a great deal of
interest in its own right. In particular, there remain open
questions as to how generically recoil velocities of thou-
sands of km=s result from astrophysically realistic binary
mergers. Such large recoil would not only result in inter-
galactic populations of black holes but would also affect
the central structure of galaxies and put severe constraints
on possible scenarios of the black-hole formation history*sperhake@tapir.caltech.edu
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[68–74]. For recent discussions on direct observational
signatures of recoiling black holes, see also [75–77].

Existing formulas predicting the kick and final spin as
functions of the initial parameters of the binary are based
on simulations using mass ratios 1 � q � 4 or 0:25 �
� � 0:16 and, in the case of Baker et al. [78], using also
q ¼ 6 or � ¼ 0:122 for the final spin. Our results clarify
the validity of these formulas in the case of initially non-
spinning holes. We further analyze the multipolar structure
of the resulting gravitational waveforms and illustrate the
significance of the higher order multipoles in the gravita-
tional wave signal.

The paper is organized as follows. We describe in Sec. II
the numerical simulations together with a calibration of
their uncertainties. In Sec. III, we analyze the gravitational
waveforms generated in the inspiral with regard to the total
amount of energy, linear, and angular momentum radiated,
and test the validity of existing fitting formulas for final
spin and recoil. We further demonstrate that a significant
fraction of the energy is radiated in higher order multi-
poles, which implies that gravitational wave signals differ
significantly from the typical quadrupole shape presented
in most of the numerical relativity literature. We conclude
in Sec. IV and discuss possible future studies based on the
data presented in this work.

II. NUMERICAL SIMULATIONS

We have performed our simulations using the BAM code
as described in [4,79]. In order to obtain sufficient accuracy
for this demanding type of simulation, we use sixth order
discretization for the spatial derivatives [80] and fourth
order accurate integration in time. Initial data are provided
by the spectral solver described in Ref. [81]. Gravitational
waves are calculated in the form of the Newman-Penrose
scalar �4 according to the procedure described in Sec. III
in [4] (but see [82] for an alternative method to extract�4).

The model we are focusing on in this work represents a
black-hole binary with initial parameters as given in
Table I. We follow the convention of [83] and normalize
initial parameters relative to the total black-hole massM ¼
M1 þM2 and dimensional diagnostic quantities by their
total initial values: the Arnowitt-Deser-Misner (ADM)
mass MADM and the total initial angular momentum Jini.
The initial tangential linear momentum P has been calcu-
lated from Eq. (65) of [4] which gives a third order post-

Newtonian estimate for the momentum of a quasicircular
configuration. We calculate the number of orbits com-
pleted by this configuration from the waveform as de-
scribed in Sec. III C of [83] and obtain about three orbits
and six wave cycles.
The mass ratio q ¼ 10 does not require any changes in

the construction of initial data. However, let us point out
one important issue that affects the puncture evolution
method. We use the ‘‘000’’ gauge advection choice; that

is, we evolve the shift according to @0�
i ¼ 3

4B
i and @0B

i ¼
@0~�

i � �sB
i with @0 ¼ @t � �i@i. In second order form

the shift condition is

@20�
i ¼ 3

4@0
~�i � �s@0�

i; (1)

from which it is immediate that the physical dimension of
the shift damping parameter �s is

½�s� ¼ 1=M: (2)

(We have added the label ‘‘s’’ to distinguish �s from the
mass ratio � used elsewhere.) The parameter �s was
introduced to control the dynamics of the shift vector
[84,85]; in particular, it influences the degree of slice
stretching that develops near the black holes during dy-
namic gauge evolution, but �s also affects the drift of
coordinates near the outer boundary. Only certain values
of �s lead to stable evolutions. This also applies to evolu-
tions in the moving puncture framework; see e.g. [4] for a
discussion of some of the �s dependence found in our
evolutions, and [86] for related discussions.
The issue that arises for q ¼ 10 is that �s is chosen to be

a global constant, say �s ¼ 2:0=M, but the effect of �s on
the slice stretching near the black holes is different if the
black-hole masses are different. Assuming that �s ¼
2:0=M is a good choice near the black holes for equal
mass, M1 ¼ M2 � M=2, then increasing M1 by a factor
of 5 means that �s has to be replaced by �s=5 to obtain the
same amount of slice stretching. Similarly, if M2 is re-
duced, then �s should be correspondingly enlarged.
For these reasons the standard choice of �s ¼ 2:0=M

made in [4] did not work for q ¼ 10 evolutions; the
effective �s near the black holes did not lead to stable
and accurate evolutions. A telltale sign for �s being too
large is if the orbits drift outwards rather than spiral
inwards, which is accompanied by a loss of convergence
with time. Numerical experiments revealed that �s can be

TABLE I. Initial parameters and main results of the 10:1 mass ratio simulation studied in this work. m1;2 and M1;2 are the bare
masses and black-hole masses, respectively. The Bowen-York parameters for the tangential linear momentum P and the coordinate
separation D are normalized with respect to the total black-hole mass M ¼ M1 þM2. Radiated energy and angular momentum are
normalized with respect to their total values for the spacetime. Finally, we give the dimensionless spin and kick parameter of the
merged hole.

m1 m2 M1 M2 MADM P=M D=M Erad

MADM

Jrad
Jtot

jfin vkick

2.4831 0.2303 2.5 0.25 2.7381 0.0415 7.0 ð0:415� 0:017Þ% ð12:48� 0:62Þ% 0:259� 0:003 66:7� 3:3 km=s
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chosen in a certain interval without loss of convergence,
which warrants a detailed study in the future. For the
present purpose it is sufficient to note that choosing

�s ¼ 1:375=M (3)

works near both black holes even for q ¼ 10. We plan to
investigate possible benefits of a nonconstant, position
dependent �s (as already suggested in [84,85]) in a future
publication.

A computational issue arising for increasing mass ratios
is that such simulations typically require more computer
time than simulations for comparable masses. The resolu-
tion requirement and the time step size is determined by the
smaller mass, while the physical time required for one orbit
increases with the total mass. We illustrate this by giving
rough estimates for the number of computational time
steps required for simulating the last three orbits prior to
merger. In the equal-mass case q ¼ 1, reasonable accuracy
can be obtained by using a resolution h ¼ M=48 on the
finest refinement level corresponding to about 25 000 time
steps for the last three orbits. For the present simulation
with q ¼ 10, on the other hand, we obtain the same number
of orbits after about 250 000 time steps in the medium
resolution case labeled N ¼ 68 below. It is imperative,
therefore, to maintain high numerical accuracy over a
longer evolution time as we increase q. A similar increase
in computational demands was noted by Lousto and
Zlochower [87], who used an additional refinement level
for spinning binaries with q ¼ 4 (see their Sec. III).

For these reasons, it is not permissible to infer informa-
tion on the numerical uncertainties of our simulations by
merely extrapolating convergence studies of equal-mass or
mildly unequal-mass binaries as obtained, for example, in
[4,25]. Instead, we need to study convergence of the
present scenario using three resolutions. In the notation
of Sec. VI A of [4], our grid setup is given by ��s¼1:375½3�
N:6� 2N:6�, where the number of grid points is N ¼ 60,
68, and 76 for the low, medium, and high resolution runs,
respectively. In Fig. 1 we show the resulting convergence
analysis obtained for the ‘ ¼ 2, m ¼ 2 mode of the
Newman-Penrose scalar and the radiated energy E and
linear momentum P extracted at rex ¼ 36:5 MADM. For
this purpose, we have decomposed the wave signal accord-
ing to

c 22 ¼ Aei�; (4)

and studied amplitude A and phase � separately. We ob-
serve sixth order convergence for both quantities and the
total radiated energy. For the linear momentum P ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
x þ P2

y

q
, the convergence is closer to fifth order. We

estimate the error due to discretization by comparing the
high resolution solution with the Richardson extrapolated
result assuming fourth order convergence. We use this
more conservative fourth order extrapolation to account
for fourth order accurate ingredients in the BAM code. The

uncertainties thus obtained are about 5% for the phase, 1%
for the amplitude and radiated energy, and 3% for the recoil
and radiated angular momentum. We emphasize that no
alignment in phase or time of the wave signal has been
applied for this analysis.
We similarly determine the error arising from extracting

the waves at finite radius. The extraction radii available for
this analysis are rex ¼ 18:3, 27.4 and 36:5 MADM. For the
radiated angular momentum, for example, we obtain at
these radii Jrad ¼ 12:06, 12.31, and 12.46%, respectively,
of Jini. These values are well modeled by a function a0 þ
a1=rex which gives us a relative error of about 3.5% for the
value extracted at the largest radius 36:5 MADM. Similar
results are obtained for the other radiated quantities. In the
same way, we investigate the phase error of the 22 mode
due to the extraction radius. We consider the phase as a
function of retarded time u ¼ t� rex and fit for each value
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FIG. 1 (color online). Convergence plots for the amplitude A
and phase � of the ‘ ¼ 2, m ¼ 2 mode of the Newman-Penrose
scalar �4 (upper panels) as well as the radiated energy E and
linear momentum P (lower panels). The scaling factors for fifth
and sixth order convergence are Q5 ¼ 2:04 and Q6 ¼ 2:30.
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of u the function �ðu; rexÞ ¼ �0ðuÞ þ�1ðuÞ=rex. The dif-
ference between the extrapolated phase and the result
obtained at rex ¼ 36:5 MADM is shown in Fig. 2. The
accumulated phase error after coalescence is about �� ¼
1:5 rad, corresponding to a relative error of about 2%. The
magnitude of these errors obtained at comparatively small
extraction radii seems to suggest that for q ¼ 10 certain
near zone effects are reduced compared to q ¼ 1, although
this is to be examined more closely in future work.

We combine the uncertainty estimates due to discretiza-
tion and extraction radius assuming standard error propa-
gation and adding the squares of the individual errors. We
thus obtain error estimates of about 4% for the wave
amplitude and radiated energy, 5% for the radiated mo-
menta, and 5.5% for the phase. Note that most of the phase
error builds up during the late stages of the inspiral and
merger, so that phase uncertainties for performing a com-
parison with post-Newtonian results will be smaller than
the estimate given here. We summarize the results for the
radiated energy, momenta, and final spin in Table I, with
error bars based on the above analysis.

III. GRAVITATIONALWAVE EMISSION

In this section, we study in more detail the gravitational
wave emission of the binary. We also discuss the resulting
values for radiated energy, final spin, and recoil in the
context of general formulas suggested in the literature.

A. Comparison with phenomenological formulas

All theoretical modeling of the mass and spin evolution
of black holes in the context of their merger history re-
quires a mapping between initial and final black-hole
parameters for each individual merger. The generation of
such mappings has recently become an industrious area of
research, largely because of the breakthroughs in numeri-

cal relativity which make it possible now to simulate black-
hole binaries accurately through inspiral, merger, and ring-
down. Results are currently available for a relatively small
subset of the parameter space only, and have resulted in
various efforts to ‘‘extrapolate’’ to wider ranges of the
input parameter space using (semi)analytic methods [88–
94]. The fitting formulas thus generated have been rela-
tively well tested in the regime of binaries with nearly
equal mass or in the test particle limit, but in the regime
in between, corresponding to a symmetric mass ratio in the
range � ¼ 0:05; . . . ; 0:12, accurate data have not as yet
been available. Here, we fill this gap and test existing
predictions for the case of a nonspinning binary with � ¼
0:0826 or q ¼ 10.
In Fig. 3, we show the results for the energy radiated in

the form of gravitational waves during the last three orbits
of the inspiral, the merger, and the ringdown as a function
of �. To be precise, we start the integration at a phase
�� ¼ 43:3 rad in the ‘ ¼ 2, m ¼ 2 mode prior to the
maximum amplitude in that mode. Similar results for
mass ratios 1 � q � 4 were presented in [14] and approxi-
mated with a polynomial fit in Eq. (3.13) in [25]. Our
simulations with q ¼ 10 are in excellent agreement with
the amount of gravitational wave energy expected from the
polynomial fit. We observe similar agreement with the
extrapolated prediction of the peak of the energy flux given
in Baker et al. [78]. Using their relation (6), we obtain
_E22;max ¼ 3:26� 10�5 to be compared with our numerical

result _E22;max ¼ 3:18� 10�5. The difference is comfort-

ably within either study’s error estimates.
In Fig. 4, we consider fitting formulas for the final spin

of the merged hole taken from Berti et al. [25], Rezzolla
et al. [89], Tichy and Marronetti [91], and Buonanno et al.
[95] [Eq. (C6) in Baker et al. [78]], as well as the effective-
one-body predictions by Damour and Nagar [96]. The

100 200 300 400

T / MADM

-1

-0.5

0

0.5

1
∆φ

φinf -φ(rex=36.5 MADM)

FIG. 2. Difference in phase of the ‘ ¼ 2, m ¼ 2 mode ex-
trapolated to infinite extraction radius and extracted at rex ¼
36:5 MADM.
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FIG. 3 (color online). Predictions for the energy radiated dur-
ing the last three orbits (starting at phase 43.3 rad before the
maximum in the ‘ ¼ 2, m ¼ 2 mode), merger, and ringdown are
compared with numerical data from [14] as well as new results
obtained for the mass ratio q ¼ 10:1.
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figure demonstrates that all formulas agree very well with
both the results of our previous study [14] in the range � ¼
0:16; . . . ; 0:25 and the new value at � ¼ 0:0826. On the
other hand, we are not able to discriminate between the
different formulas based on our results of nonspinning
binaries. The figure also contains the predicted final spin
of the model proposed by Buonanno, Kidder, and Lehner
(BKL) [94]. The values have been obtained by numerically
solving their Eqs. (2–5). Given that they do not fit existing
numerical data but model the final spin, their agreement
with the numerical results is remarkable. Even for nearly
equal masses, the deviations are relatively small, of the
order of 5%.

Figure 5 shows a similar analysis for the gravitational
recoil using analytic predictions by González et al. [14],
Baker et al. [97], and Schnittman and Buonanno [98]. We

thereby additionally test Eq. (2) of Lousto and Zlochower
[23], which by construction reduces to the prediction of
[14] in the limit of initially nonspinning holes. We further
emphasize that Schnittman and Buonanno model the recoil
using the effective-one-body method instead of merely
fitting available numerical data (cf. BKL for the final
spin above). It is natural in this case to expect larger
deviations from the numerically obtained values. In anal-
ogy to the comparison of the final spin, we observe gen-
erally good agreement between predicted values and the
numerical results, including q ¼ 10. This agreement is
encouraging, as we believe it highly unlikely that there
exist local extrema in either curve in the range � ¼
0:05; . . . ; 0:15, and therefore provides strong support for
all formulas in the limit of vanishing initial spin of the
holes.

B. Multipolar structure

Gravitational waves are commonly decomposed into
multipoles using spherical harmonics of spin weight �2.
Specifically, the complex Newman-Penrose scalar �4 ex-
tracted at constant radius rex is written as a sum (see e.g.
[99])

�4ðt; �;�Þ ¼ X

‘;m

c ‘mðtÞ�2Y‘mð�;�Þ: (5)

For illustration, we show in Fig. 6 the real part of the
multipole coefficients for ‘ ¼ m ¼ 2; . . . ; 5. Most of the
earlier studies of black-hole binaries focused on nonspin-
ning, equal-mass systems where >98% is radiated in the
quadrupole terms ‘ ¼ 2. For more general classes of bi-
naries, however, a significant fraction of the gravitational
wave energy is radiated in higher order modes; see e.g.
[25]. Simultaneously, the gravitational wave signal pre-
dicted for a given orientation of the binary’s orbital plane
will contain substantial contributions from higher order
multipoles and may thus exhibit a pattern much more
complex than visible in the quadrupole amplitude
c 2�2ðtÞ. While this complex multipolar structure places
higher demands on the modeling of the gravitational wave
sources, it provides us with a large amount of information
in the effort to estimate parameters from gravitational wave
observations.
A comprehensive study of exploiting such information

of higher order multipoles in the context of gravitational
wave data analysis is beyond the scope of this paper. In this
section we therefore restrict ourselves to a discussion of the
multipolar distribution of the gravitational wave energy
and merely illustrate the significance of including higher
order modes in the waveform for fixed inclination angle of
the orbital plane relative to an observer.
The amount of energy contained in different multipoles

for the inspiral of binaries with mass ratio q ¼ 1; . . . ; 4 has
been given in Table IV of [25].
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FIG. 5 (color online). Same as Fig. 3 but for the recoil.
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this plot and have been represented as the single dash-dotted
line. The same applies to the curves resulting from Berti et al
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assume the Kepler law (see their Sec. II).
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We graphically display the energy contained in the
multipoles in Fig. 7. Here, the upper panel displays the
energy contained in the multipoles corresponding to a
particular value of ‘, whereas the symbols in the lower
panel show the fractional energy contained in all modes up
to ‘ � ‘max. We discard the first 50 MADM of the wave-
form, which is dominated by spurious radiation inherent to
the initial data. This corresponds to the radiated energy
starting at phase 43.3 rad prior to the maximum in the ‘ ¼
2,m ¼ 2mode. The resulting energy is well approximated
by quadratic polynomials. Specifically, we obtain the fol-
lowing fits for the numerical data in the range 1 � q � 10
corresponding to 0:25 � � � 0:0826:

E‘¼2=Erad ¼ 68:0þ 80:4�þ 159:2�2; (6)

E‘�3=Erad ¼ 84:6þ 108:8�� 212:7�2; (7)

E‘�4=Erad ¼ 93:8þ 49:9�� 101:3�2; (8)

E‘�5=Erad ¼ 96:9þ 30:0�� 72:1�2: (9)

The trend for higher order multipoles to carry a larger
fraction of the total radiated energy Erad is clearly main-
tained for q ¼ 10. Close inspection of E‘¼3 reveals a local
maximum near � ¼ 0:04. We believe this to be an artifact
of the limited accuracy of the data and the polynomial fits.
The significance of higher multipoles also reveals itself

in the gravitational wave signal observed at fixed values for
the inclination angle � of the orbital plane of the binary.
The combination of all multipoles in the signal�4 shows a
much more complex structure than the quadrupole on its
own. We illustrate this in Fig. 8 where we plot the real and
imaginary parts of�4 at rex ¼ 36:5 MADM and � ¼ 45:5	.
The inclination angle has been chosen somewhat arbi-
trarily, but we get the same general result for other choices
of �. The pattern resulting from the inclusion of the octu-
pole and higher order modes in the bottom panels of Fig. 8
shows a nonmonotonic increase in the local maxima of the
wave signal during inspiral which is reminiscent of the
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pure quadrupole signal in eccentric inspirals (cf. the
‘‘MayaKranc e02’’ entry in Fig. 1 of Ref. [100]). In con-
trast, there is little evidence of eccentricity if we consider
the individual modes of our simulation in Fig. 6. As a
further impact of the higher order multipoles, we note the
significant increase in the amplitude between the top and
bottom panels of Fig. 8.

These observations qualitatively illustrate the impor-
tance of including higher order multipoles in gravitational
wave data analysis, as has been pointed out quantitatively
in the literature [25,78,101–106].1 In future work, we plan

to investigate this issue more systematically using our
numerical data in the context of matched filtering.

IV. CONCLUSIONS

In this work, we have pushed the mass ratio in numerical
simulations of inspiralling black-hole binaries significantly
beyond what has previously been published. Our simula-
tions have been demonstrated to be convergent consistently
with the discretization properties of the numerical code.
We have resolved an issue specific to larger mass ratios by
choosing a specific value of the shift damping parameter.
The overall errors in wave amplitude and phase as well as
radiated energy and momenta are about 5%. We have thus
been able to validate existing fitting formulas for the
amount of energy and linear momentum as well as the
final spin of the merging hole in a range of the mass ratio
previously unexplored. Within the error bars, we find our
numerical results to be in agreement with phenomenologi-
cal formulas. These are of high importance in the modeling
of astrophysical phenomena, such as the growth of super-
massive black holes. At least in the case of nonspinning
holes, we conjecture that the fitting formulas can be used
over the entire range of the dimensionless mass ratio
parameter �.
Extending previous work [25], we have further demon-

strated that the percentage of gravitational wave energy
radiated in higher order multipoles increases significantly
as the mass ratio deviates from the equal-mass limit � ¼
0:25 or q ¼ 1. Quadratic fitting of our numerical data
indicates that about 32% of the total radiated energy will
be contained in ‘ > 2 as the EMR limit is approached. For
the q ¼ 10 case at hand, we find about 25% of the energy
to be contained in modes higher than the quadrupole. This
distribution of the energy also manifests itself in the shape
of the gravitational waveform as measured for a fixed
inclination of the binary orbit relative to the observer.
The case � � 45	 exhibits a significant change in the
wave signal as we include higher order multipoles. While
we only display results for one value of �, we find this
behavior to be similar for arbitrary alternative inclinations.
It will be important to extend the current study to spin-

ning binaries in the future. This will allow us to address
various important questions in astrophysics and gravita-
tional wave physics. For example, there remain uncertain-
ties about the magnitude of the recoil effect for spinning
binaries of unequal mass [15,87,97]. Also, it will be im-
portant to compare fitting formulas for final spin and recoil
with numerical results for initially spinning black holes.
The use of numerical waveforms in gravitational wave

data analysis further requires careful comparisons with
post-Newtonian predictions and the combination of nu-
merical with post-Newtonian waveforms (e.g. [105,107–
114]). In future work, we plan to perform such compari-
sons, including various post-Newtonian techniques. We
also believe that the current simulations facilitate approxi-
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FIG. 8 (color online). The Newman-Penrose scalar �4 ob-
tained at an inclination of the orbital plane of � ¼ 45:5	 includ-
ing multipoles up to and including ‘max ¼ 2, 3, 4, and 5 (from
top to bottom).

1Higher order harmonics as discussed in some of these refer-
ences are not strictly equivalent to higher order multipoles but
often imply the inclusion of additional multipoles.
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mate comparisons with perturbative calculations of EMR
binaries. Finally, an intriguing question concerns the prop-
erties of black-hole collisions or scattering experiments
involving unequal-mass binaries traveling close to the
speed of light. Studies have so far been restricted to colli-
sions of nonspinning equal-mass binaries [115,116] and
predict that as much as 
14% of the total energy of the
system can be radiated in head-on collisions and even
larger quantities for nonzero impact parameters.

In summary, accurate simulations of black-hole binaries
with mass ratio q ¼ 10 are not only possible using current
numerical techniques (if somewhat expensive), but also
reveal a richness in structure beyond what has been ob-
served in the nearly equal-mass case. We consider our
simulations of the nonspinning case to be the starting point
of more exhaustive studies involving spins and/or eccen-
tricity, which will be of significant value for current efforts
to observe gravitational waves and improve our under-

standing of astrophysical questions involving the merger
of black-hole binaries.
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