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Based on a generalized uncertainty principle, Salecker-Wigner inequalities are modified. When applied

to black holes, they give a modified black hole lifetime: TMB � M3

m3
p
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2Þtp, and the number of bits

required to specify the information content of the black hole as the event horizon area in Planck units
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p
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2Þ.
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I. INTRODUCTION

The conventional derivation of the Hawking lifetime
uses the Heisenberg’s uncertainty principle on the event
horizon scale Rg to determine a temperature for the black

hole which, under the assumption that the black hole is a
black body, then allows one to use the Stefan-Boltzmann
law to calculate the lifetime of the black hole for complete
evaporation (see, e.g., [1,2]).

By applying Salecker-Wigner’s clock inequalities to
black holes, Barrow obtained the same result [3]. The
heuristic way is as follows: According to Heisenberg’s
uncertainty principle: �p� @=�x, if a clock of mass M
has quantum position uncertainty �x, then its momentum
uncertainty is @�x�1. The clock to be considered should
have an accuracy � (the minimum time interval that the
clock is capable of resolving) and be able to measure time
intervals up to a maximum T. After a time t, the uncertainty
in position of the clock will grow to �x0 ¼ �xþ
@tM�1�x�1. If the effects on mass are neglected, then

this will be a minimum when �x ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
@t=M

p
. Hence, to

keep the clock accurate over the total running time T, its
linear spread � must be limited:

� � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@T=M

p
; (1)

the same order of magnitude of the position uncertainty,
meaning that the size of the clock must be larger than the
uncertainty in its position. This is Salecker-Wigner’s first
clock inequality [4]. To give time to within an accuracy �,
the quantum position uncertainty must not be larger than
the minimum wavelength of the quanta striking it (in order
to read the time); that is,�x0 � c�. The use of a signal with
nonzero rest mass would give a more rigorous limit. This
condition gives a bound on the minimummass of the clock:

M � 4@

c2�

�
T

�

�
: (2)

This is Salecker-Wigner’s second clock inequality [4]. This
inequality is more restrictive than that imposed by
Heisenberg’s energy-time uncertainty principle because it
requires that a clock still show proper time after being read:
the quantum uncertainty in its position must not introduce
significant inaccuracies in its measurement of time over the
total running time. To derive Salecker-Wigner’s clock in-
equalities (1) and (2), it assumes unsqueezed, unentangled,
and Gaussian wave packets without any detailed phase
information; they are valid only for single analog clocks
(black holes can be seen as analog clocks [5]), not for
digital quantum clocks.
Barrow applied Salecker-Wigner’s size limit (1) to a

black hole, assuming that the minimum clock size is the
Schwarzschild radius Rg ¼ 2GM=c2 and found the maxi-

mum running time of the black hole is [3]

T �G2M3

@c4
¼ M3

m3
p

tp; (3)

where tp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G@=c5

p
andmp � ffiffiffiffiffiffiffiffiffiffiffiffi

c@=G
p

are the Planck time

and mass. The maximum running time of a black hole is
the Hawking lifetime [6]. If we had not known of the
existence of black hole evaporation, Eq. (3) would have
implied that there is a maximum lifetime for a black hole
state. Compared with the conventional method, the appli-
cation of the Salecker-Wigner inequality (1) to the event
horizon scale predicts the Hawking lifetime (3) without the
assumption that the black hole is a black body radiator.
But, one may suggest, when considering black holes, the

effect of gravity may be taken into account. In this work,
we obtain modified clock inequalities based on a general-
ized uncertainty principle that takes into account some
properties of black holes, and find a modified black hole
lifetime, which may throw light on quantum gravity at the
Planck scale.
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II. MODIFIED CLOCK INEQUALITIES

Salecker-Wigner’s clock inequalities are based on the
Heisenberg’s position-momentum uncertainty principle:
p� @=�x. But, if we combine quantum theory and some
basic concepts of gravity, Heisenberg’s position-
momentum uncertainty principle may be modified [7–
24], and so do Salecker-Wigner’s clock inequalities.
Using Heisenberg’s uncertainty principle and some prop-
erties of black holes, Scardigli had shown how a general-
ized uncertainty principle (GUP) can be derived from a
measure gedanken experiment [25]

�x � @

�p
þ l2p

�p

@
; (4)

where l2p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G@=c3

p
is the Planck distance. As Scardigli

argued, this GUP is independent from particular versions
of quantum gravity. This GUP also arises from quantum
fluctuation of the background space-time metric [26].
Note, however, this GUP is firstly derived in Ref. [13].
The GUP (4) can be written in a general form �x �
@ð1=�pþ ��pÞ, where � is a constant [27].
Introduction of the GUP has drawn considerable attention,
and many authors considered various problems in the
framework of GUP, such as Refs. [28–60]. Note, however,
it should be kept in mind that this GUP is derived based
upon only heuristic arguments, and is thus far from proven.

Basing on the GUP (4), Adler et al. obtained a modified
black hole lifetime with the conventional method [2].
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þ 4 arccos
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mp

M

�
þ 19

3

�
tch; (5)

where tch ¼ 162 � 60�tp. To derive this black hole life-

time, Adler et al. also assume that the black hole is a black
body radiator, and the dispersion relation E ¼ pc holds.
But if the uncertainty principle is modified, the dispersion
relation may also be modified (see, e.g., [61]).

Because the space-time fluctuation will be significant
when the measured length scale approaches to the Planck
distance, it is reasonable to expect that the linear spread of
a clock must not be less than the Planck distance. In fact,
the GUP (4) implies a minimum length 2lp, which can be

considered as a limit on the linear spread of a clock. This
limit can be improved, as we see below. From Eq. (4), if a
clock of mass M has quantum position uncertainty �x,

then its momentum uncertainty will be �p� �x@
2l2p

�
½1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4l2p=�x

2
q

� [2]. Following the steps to derive

the Salecker-Wigner’s clock inequalities, Eq. (1) is modi-
fied as (see Appendix)

� � 2lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @T

Ml2p

s
; (6)

stronger than limit (1) and come back to limit (1) for @T �
Ml2p. Here, we also require that the position uncertainty

created by the measurement of time must not be larger than
the minimum wavelength of the quanta used to read the
clock. Then Salecker-Wigner’s second clock inequality (2)
is modified as

M � 4@T

c2�2
1

1� 4t2p=�
2
: (7)

This inequality links the mass, total running time, accuracy
of the clock, and the Planck time together, and may link
together our concepts of gravity and quantum uncertainty.
Obviously, it firstly gives a limit on the accuracy of the
clock � > 2tp. Like Salecker-Wigner inequalities, (1), (2),

(6), and (7) are valid for single analog clocks, not for digital
quantum clocks.

III. MODIFIED BLACK HOLE LIFETIME

Now applying modified clock inequality (6) to black
holes and assuming that the minimum clock size is the
Schwarzschild radius Rg ¼ 2GM=c2, one may find the

maximum running time of the black hole is modified as

TMB �MR2
g

4@
ð1� 4l2p=R

2
gÞ ¼ M3

m3
p

ð1�m2
p=M

2Þtp; (8)

which has a term Mtp=mp different from the Hawking

lifetime (3) and holds for M � mp. This difference may

throw light on quantum gravity in some sense at Planck
scale. Using the GUP (4), Adler et al. found that the
thermal radiation of the black hole will stop at the Planck
distance, and the black hole becomes an inert remnant,
possessing only gravitational interaction [2], consistent the
results obtained in modified clock inequalities background.
Aside from about a factor of 162 � 60�, the first two terms
of the Adler-Chen-Santiago lifetime TACS is consistent
with the modified black hole lifetime TMB. The comparison
among the Hawking lifetime TH, the modified black hole
lifetime TMB, and Adler-Chen-Santiago lifetime TACS are
shown in Fig. 1.
The minimum interval that the black hole can be used to

measure is given by the light travel time across the black
hole [3,5]: �� 2GM=c3 ¼ Rg=c. Thus, we are led to view

the black hole as an information-processing system in
which the number of computational steps is

N � TMB

�
�M2

m2
p

ð1�m2
p=M

2Þ: (9)

As expected from the identification of a black hole entropy
[62] or holographic principle [63,64], this gives the number
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of bits required to specify the information content of the
black hole as the event horizon area in Planck units.

IV. SUMMARY

To summarize, based on a generalized uncertainty prin-
ciple, we obtain modified clock inequalities, which give
bounds on the size and the accuracy of the analog clock
that must be larger than 2 times the Planck distance lp and

time tp, respectively. As an application, we discussed the

case of black holes, and obtained a modified black hole

lifetime TMB � M3

m3
p
tpð1�m2

p=M
2Þ, which is different from

Hawking lifetime and give a limit on the mass of black
holes naturally. Viewing a black hole as an information-
processing system, we also find the number of bits required
to specify the information content of the black hole as the

event horizon area in Planck units N � M2

m2
p
ð1�m2

p=M
2Þ.

These results reinforce the central importance of black
holes as the simplest and most fundamental constructs of
space-time, linking together our concept of gravity, infor-
mation, and quantum uncertainty. Note, however, applying
clock inequalities to obtain the lifetimes of other type black
holes is still an open interesting problem, work is in
progress in this direction.
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APPENDIX

According to the generalized uncertainty principle

�x � @

�p
þ l2p

�p

@
; (A1)

where l2p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G@=c3

p
is the Planck distance, if a clock with

mass M has quantum position uncertainty �x, then its
momentum uncertainty will be

�p� �x@

2l2p

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4l2p=�x

2
q �

: (A2)

After a time t the uncertainty in position of the clock
becomes

�x0 ¼ �xþ �x@t

2Ml2p

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4l2p=�x

2
q �

: (A3)

To obtain the minimal value of �x0 in this case, using the
condition

0 ¼ d�x0

d�x

¼ 1þ
@t

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4l2p=�x

2
q �
2Ml2p

� 2t@

M�x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4l2p=�x

2
q ;

(A4)

we get �x ¼ ½2Ml2p þ t@�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MðMl2p þ t@Þ

q
. By inserting

this value into Eq. (A3), we obtain the minimal value of
�x0

�x0min ¼ 2lp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t@

Ml2p

s
: (A5)

By taking t as the total running time T during which the
clock can remain accurate, and considering the condition
that the linear spread of clock � must not be less than the
uncertainty in position �x0, that’s � � �x0 � �x0min, we

obtain Eq. (6).
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