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We study the kinematics of timelike geodesic congruences in two and four dimensions in spacetime

geometries representing stringy black holes. The Raychaudhuri equations for the kinematical quantities

(namely, expansion, shear, and rotation) characterizing such geodesic flows are written down and

subsequently solved analytically (in two dimensions) and numerically (in four dimensions) for specific

geodesic flows. We compare between geodesic flows in dual (electric and magnetic) stringy black hole

backgrounds in four dimensions, by showing the differences that arise in the corresponding evolutions of

the kinematic variables. The crucial role of initial conditions and the spacetime curvature on the evolution

of the kinematical variables is illustrated. Some novel general conclusions on caustic formation and

geodesic focusing are obtained from the analytical and numerical findings. We also propose a new

quantifier in terms of the time (affine parameter) of approach to a singularity, which may be used to

distinguish between flows in different geometries. In summary, our quantitative findings bring out hitherto

unknown features of the kinematics of geodesic flows, which, otherwise, would have remained over-

looked, if we confined ourselves to only a qualitative analysis.
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I. INTRODUCTION

The kinematics of geodesic congruences is character-
ized by three kinematical quantities: isotropic expansion,
shear, and rotation (henceforth referred as ESR) [1–6]. The
evolution of these quantities along the geodesic flow, are
obtained from the Raychaudhuri equations [1–6]. These
equations are derived by relating the evolution of the
deformation (or deviation) vector between two neighbor-
ing geodesics (expressed in terms of the ESR variables) to
the curvature of the space/spacetime. This is already a
well-studied subject (see [6] and the references therein).

In its original incarnation, the Raychaudhuri equation
provided the basis for the description and analysis of
spacetime singularities in gravitation and cosmology [7].
For example, the equation for the expansion and the result-
ing theorem on geodesic focusing is a crucial ingredient in
the proofs of Penrose-Hawking singularity theorems [8,9].
However, these equations have a much wider scope in
studying geodesic as well as nongeodesic flows in nature
which may possibly arise in diverse contexts (see [6] for
some open issues). We have recently used these equations
to investigate the kinematics of flows on flat and curved
deformable media (including elastic and viscoelastic me-
dia) in detail [10,11].

In this article, we attempt to understand the kinematics
of geodesic flows in the presence of spacetime geometries
representing black holes. Though, it is true that the Ray-
chaudhuri equations have been around now for more than
half a century, we are not aware of any attempt at a com-
plete study of its solutions and the dependence of the ESR
variables on the initial conditions imposed on them (how-
ever, see [12] for a recent work). A slight subtlety may be
noted here. The Raychaudhuri equations are for the ESR
variables, but they also involve the tangent vector field
(denoted as ui, later). Thus, unless one knows the solutions
for the ui (i.e., the first integrals of the geodesic equations)
one cannot proceed towards solving for the ESR. Alter-
natively, one can try to find solutions for the full set of
variables, i.e., ui as well as the ESR, by imposing initial
conditions on all of them and evolving the full system of
equations along the flow. This approach enables us to
obtain the tangent vector field as well as the ESR simulta-
neously. In our work, we adopt this method primarily for
the four-dimensional cases where we are unable to solve
for the geodesics or the ui analytically.
As an aside, it may be noted, that the study of accretion

of matter, or evolution of spacetime deformations near a
black hole has been a fascinating topic of study in classical
general relativity. Such processes can perhaps be investi-
gated using the Raychaudhuri equations. The study of
kinematics of non-spacelike congruences may further pro-
vide useful insights on the observable features in a given
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spacetime. We take this as a background motivation for our
study.

The nontrivial geometry of different types of black holes
is of crucial interest in general relativity and for our
purpose, we will consider some typical two- and four-
dimensional stringy black hole spacetimes. The two-
dimensional black hole geometry we work with was first
obtained in the context of string theory [13–16] in the
nineties by Mandal et al. [17]. Exact solutions for geo-
desics and geodesic deviation in this two-dimensional
stringy black hole background have already been studied
earlier [18]. In four dimensions, the simplest eternal black
hole geometry is, of course, the Schwarzschild. Rather than
working with just the Schwarzschild alone, we consider the
variations of the Schwarzschild which have arisen in the
context of string theory [19–21]. All the four-dimensional
geometries we choose to work with have a Schwarzschild
limit (obtainable by setting a parameter in the line element
to zero). Further, the validity of the various (weak, strong,
null averaged) energy conditions for the matter that threads
such stringy black hole spacetimes have also been inves-
tigated in detail in order to understand the nature of geo-
desic focusing [22].

Our article is organized as follows. We first review the
background spacetimes (Sec. II) and then (Sec. III) derive
the evolution (geodesic and Raychaudhuri) equations for
the two-dimensional stringy black hole metric. In this 2D
case, the Raychaudhuri equation is just the equation for the
expansion scalar. We obtain analytical solutions for the
expansion scalar, based on which the role of initial con-
ditions on caustic formation and geodesic focusing/defo-
cusing is investigated and analyzed. Subsequently
(Sec. IV), we turn to actual four-dimensional solutions in
dilaton-Maxwell gravity. We analyze the nature of defor-
mations for the geodesic flows in the Garfinkle-Horowitz-
Strominger (GHS) electric and magnetic (dual) solutions
[19] and compare our results with those for Schwarzschild
geometry (obtainable from the GHS metrics by setting a
stringy parameter to zero). Here, the kinematics of defor-
mations is studied on the two-dimensional equatorial
plane. In the absence of analytical solutions, we solve the
geodesic and Raychaudhuri equations numerically under
differing initial conditions on the associated variables. The
generic features of the evolution of deformations are
brought out. The influence of the gravitational field on
the evolution of the ESR is discussed and the effect of
curvature is understood. Finally (Sec. V), we conclude our
results and suggest some relevant future work.

II. THE STRINGY BLACK HOLE SPACETIMES

In this section, we quickly recall a well-known solution
obtained in the context of two-dimensional low energy
effective string theory [21]. The line element which we
mention below solves the so-called �-function equations
for the string � model [21]. It is known that with appro-

priate methods of compactification one can obtain effective
equations in two as well as other higher dimensions. These
equations, in the simplest scenario, are for the metric field
and the dilaton field. We quote below the line element in
two dimensions [13,17],

ds2 ¼ �
�
1�m

r

�
dt2 þ �dr2

4r2ð1� m
r Þ
; ðr � mÞ; (2.1)

where m and � (with dimensions of length square) are the
mass and central charge parameters, respectively, and are
linked with the concepts in two-dimensional string theory
[22] which we do not bother about here.
In 3þ 1 dimensions, we also have asymptotically flat

solutions representing black holes in dilaton-Maxwell
gravity. Such solutions, due to Garfinkle, Horowitz, and
Strominger [19], represent electric and dual magnetic
black holes [20]. The spacetime geometry of these line
elements are causally similar to Schwarzschild geometry.
The metric for the black hole with electric charge is given
as

ds2 ¼ � ð1� m
r Þ

ð1þ msinh2�
r Þ2 dt

2 þ dr2

ð1� m
r Þ
þ r2d�2

2; (2.2)

where d�2
2 ¼ ðdc 2 þ sin2c d�2Þ is the metric on a two-

dimensional unit sphere and � is a parameter related to the
electric charge. Further, the dual (magnetic) metric of (2.2)
is given as follows [20]:

ds2 ¼ � ð1� m
r Þ

ð1� Q2

mrÞ
dt2 þ dr2

ð1� m
r Þð1� Q2

mrÞ
þ r2d�2

2;

(2.3)

where Q is the magnetic charge of the black hole. In the
respective limit of � ¼ 0 or Q ¼ 0, we have
Schwarzschild geometry in both the cases. We shall inves-
tigate the ESR variables for geodesic flows in each of the
above two four-dimensional metrics and compare our re-
sults for the electric and magnetic solutions with those for
the Schwarzschild.
For a general and compact representation of the above

spacetimes, one can use a generic line element in 3þ 1
dimensions as follows:

ds2 ¼ �XðrÞdt2 þ YðrÞdr2 þ r2d�2
2; (2.4)

for specific choices of XðrÞ and YðrÞ. The general structure
of the geodesic equations for the line element (2.4) are
given by

€tþ X0ðrÞ
XðrÞ _r _t ¼ 0; (2.5)

€rþ
�
X0ðrÞ _t2 þ Y0ðrÞ _r2 � 2r _c 2 � 2rsin2c _�2

2YðrÞ
�
¼ 0;

(2.6)

ANIRVAN DASGUPTA, HEMWATI NANDAN, AND SAYAN KAR PHYSICAL REVIEW D 79, 124004 (2009)

124004-2



€c þ 2

r
_r _c � cosc sinc _�2 ¼ 0; (2.7)

€�þ 2

r
_r _�þ2 cotc _c _� ¼ 0; (2.8)

where the prime denotes the differentiation with respect to
r. Using the functional forms of XðrÞ and YðrÞ [correspond-
ing to the line elements (2.2) and (2.3)], in Eqs. (2.5) and
(2.6), one can easily obtain the set of geodesic equations
for the particular cases of the electric and magnetic stringy
black holes. For the line element (2.1) in 1þ 1 dimensions,
the term r2d�2

2 is absent in (2.4) and the geodesic equa-
tions are given by (2.5) and (2.6) (without the terms c and
�).

III. KINEMATICS OF DEFORMATIONS IN 1þ 1
DIMENSIONS

A. Kinematic variables

The evolution of spacelike deformations in a two-
dimensional geodesic congruence is captured through the
evolution of the geodesic deviation vector �i (where i ¼ 1,
2) on a spacelike hypersurface. These deformations can be
described in terms of a second rank tensor Bi

j ¼ rju
i

[1,10], which governs the dynamics of the congruence.
The second order derivative of the vector �i with respect
to an affine parameter is given as follows [10,11]:

€� i ¼ ð _Bi
j þ Bi

kB
k
jÞ�j: (3.1)

The evolution tensor Bi
j in Eq. (3.1) is usually decomposed

into irreducible parts signifying the expansion (scalar �),
shear (trace-free tensor �i

j), and rotation (antisymmetric

tensor !i
j). Since ui�

i
j ¼ 0 (spacelike deformations), and

using the zero trace property, i.e., �i
i ¼ 0, leads to �0

0 ¼
�1

1 ¼ �1
0 ¼ 0. Similarly, the rotation tensor !i

j also satis-

fies ui!
i
j ¼ 0 which leads to !1

0 ¼ !0
1 ¼ 0. Therefore, the

evolution tensor can be expressed only in terms of the
expansion scalar, in the following form:

Bi
j ¼ �hij; (3.2)

where the projection metric is defined as hij ¼ �i
j þ uiuj.

Here, ui is a timelike vector field.

B. The evolution equations

The evolution equations for a congruence of timelike
geodesics for the present case consist of the Raychaudhuri
equation for the expansion scalar and the geodesic equa-
tions derived for a particular metric. In order to derive the
Raychaudhuri equation for the expansion scalar, we first
write down the second derivative of the deformation vector
in the following form:

€� i ¼ �Ri
ljmu

lum�j: (3.3)

1. Raychaudhuri equation for expansion scalar

Using the Eqs. (3.2) and (3.3) in the Eq. (3.1), one can
now obtain the Raychaudhuri equation for the expansion
scalar as given below:

_�þ �2 ¼ �Ri
limu

lum ¼ �Rlmu
lum: (3.4)

The general form of Eq. (3.4) for the metric (2.1) can also
be written as follows:

_�þ �2 � R

2
¼ 0; (3.5)

where the Ricci scalar R ¼ 4m=�r. It may be noted that for
r ! 1, the Eq. (3.5) reduces to that in flat space without
shear and vorticity. This evolution Eq. (3.5) along with the
geodesic equations corresponding to the metric (2.1), form
a complete set of equations required for studying the
kinematics of deformations of geodesic congruences.

2. First integrals of geodesic equations

The first integrals of the geodesic equations in 1þ 1
dimensions can be obtained as

_t ¼ E

2ð1� m
r Þ
; (3.6)

_r 2 ¼ 1

�
½ðE2 � 4Þr2 þ 4mr� ¼ �V2ðrÞ; (3.7)

where V2ðrÞ is an effective potential. It may be noted that
the constraint g��u

�u� ¼ �1 (timelike geodesics) is used

to obtain (3.7). The different choices for the constant of
motion E result in the different behavior of the effective
potential. One can have a harmonic, or an inverted har-
monic oscillator corresponding to E2 < 4, or E2 > 4, re-
spectively, while E2 ¼ 4 results in a linear potential with
negative slope [18]. We will now solve the Raychaudhuri
equation for the expansion scalar for all the choices of E
mentioned above.

C. Exact solution for expansion scalar

The Eq. (3.5) can be solved for the above-mentioned
three different cases by integrating Eq. (3.7) once (see
[18]), and then using r in Eq. (3.5).
Case (A) E2 < 4.
The Eq. (3.5) for the expansion scalar with E2 < 4 reads

_��ð �	Þ þ ��2ð �	Þ � 2sec2 �	 ¼ 0; (3.8)

where we have used the scaling f �	; ��g ¼ ½ð4�
E2Þ=4��1=2f	; �g. The solution of Eq. (3.8) is then given by

��ð �	Þ ¼ tan �	þ ðD1 þ �	Þsec2 �	
1þ ðD1 þ �	Þ tan �	 ; (3.9)

where D1 is an integration constant which can be given in
terms of the initial conditions as follows,
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D1 ¼ ð1� �	0
��0Þ tan �	0 þ �	0sec

2 �	0 � ��0
��0 tan �	0 � sec2 �	0

: (3.10)

Case (B) E2 ¼ 4.
The equation for expansion scalar with E2 ¼ 4 reads

_�ð	Þ þ �2ð	Þ � 2

	2
¼ 0; (3.11)

and the solution of Eq. (3.11) can be given as follows:

�ð	Þ ¼ 2D2	
3 � 1

	ðD2	
3 þ 1Þ ; (3.12)

where the integration constant D2 is given as

D2 ¼ � ð1þ 	0�0Þ
	3
0ð	0�0 � 2Þ : (3.13)

Case (C) E2 > 4.
The equation for the expansion scalar for this case reads

_��ð �	Þ þ ��2ð �	Þ � 2cosech2 �	 ¼ 0; (3.14)

where f �	; ��g ¼ ½ðE2 � 4Þ=4��1=2f	; �g. The solution of
Eq. (3.14) is

��ð �	Þ ¼ coth �	� ðD3 þ �	Þcosech2 �	
ðD3 þ �	Þ coth �	� 1

; (3.15)

where the integration constant D3 is given as

D3 ¼ ð1� �	0
��0Þ coth �	0 � �	0cosech

2 �	0 þ ��0
��0 coth �	0 þ cosech2 �	0

: (3.16)

It is in order to mention here that, following an alto-
gether different approach, one can calculate the expansion
scalar � as a function of r from the expressions of the first
integrals ui ¼ ð _t; _rÞ (the velocity field) given by (3.6) and
(3.7) (i.e., without integrating the Raychaudhuri equation).
Using � ¼ riu

i, we have

� ¼ � 2m

� _r
¼ � 2mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�½ðE2 � 4Þr2 þ 4mr�p : (3.17)

In view of the solutions of � obtained earlier in this section
by integrating the Raychaudhuri equation, the expression
in (3.17) deserves attention. This expression for � shows
that a caustic forms at a turning point of the geodesic
motion (i.e., where _r ¼ 0). For _r ! 0þ ( _r ! 0�), we
have focusing (defocusing). In order to obtain the explicit
	 dependence of �, one has to substitute rð	Þ in (3.17) from
the solution of the geodesic equation for r. It may be easily
checked that the solutions thus obtained from (3.17) are
special cases of the previous solutions. It is important to
note that, unlike the solutions of � obtained by integrating
the Raychaudhuri equation, in the expression (3.17), there
is no way of specifying any initial condition on �. Thus,
using (3.17), one cannot study the effect of initial condi-
tions on the evolution of a geodesic congruence. This is a

subtle issue which will be discussed further in the follow-
ing section.

D. Analysis of geodesic focusing

From the exact solutions of the expansion scalar ob-
tained above by integrating the Raychaudhuri equations,
one can determine the occurrence of finite time singularity
(i.e., caustic formation). For Case (A), it may be deduced
from (3.9) that the expansion scalar �� ! �1 as �	 ! 
=2.
Thus, we may have focusing or defocusing of geodesic
congruences depending on the initial conditions. One may
therefore calculate a critical initial value of the expansion
scalar by exploiting the indefiniteness condition on �
which leads to D1 ¼ �
=2 (for �	0 <
=2). Now from
(3.10), one can calculate the critical initial value of the
expansion scalar as

�� c
0 ¼

ð
2 � �	0Þsec2 �	0 � tan �	0

ð
2 � �	0Þ tan �	0 � 1
;

�
�	0 <




2

�
: (3.18)

From this analysis and using �	0 ¼ 1, we have ��c0 ��1:95.
Thus, for ��0 < ��c0, we have the congruence focusing, i.e., a
finite time singularity occurs.
In Case (B), it may easily be concluded that caustic in

the geodesic congruence forms for any initial condition
�0 <�1=	0. In this case, we have geodesic focusing
whenever the initial condition satisfies this condition.
For Case (C), it may be observed from the solution

(3.14) that defocusing is not possible. However, focusing
can occur for an appropriate choice of initial conditions
which can be obtained by choosing ��0 < ��c0 where ��c0 ¼
�2= sinh2 �	0 is the critical value of the initial expansion
scalar. For ��0 > ��c0, finite time singularity cannot occur.

It is well known from the work of Tipler [23] that if
Rlmu

lum � 0 (timelike convergence condition) then focus-
ing (and conjugate points) arise in the congruence within a
finite value of the affine parameter. From our above analy-
sis, it may thus seem counterintuitive that Rlmu

lum ¼
�R=2 � 0 leads to focusing of timelike geodesic con-
gruences in two-dimensional spacetimes. This, however,
is not in conflict with the results of Tipler. In situations,
such as those presented above, the timelike convergence
condition is clearly violated. But, with appropriate initial
conditions on the expansion (as shown above), one may
still have a focusing of geodesic congruences. Therefore,
we may say that initial conditions have a crucial role to
play in focusing.
The Case (C) (i.e., with E2 > 4) brings out a subtle and

interesting difference between the solutions of � in (3.14)
and (3.17). As is clear from the expression of the effective
potential in (3.7), all outward trajectories (outside the
horizon) escape out to infinity without any turning point.
Hence, one may conclude from (3.17) that there are no
caustics in such a scenario. However, from the solution
(3.14) discussed above, we do have focusing depending on
the initial condition �0. This difference can be reconciled
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with if we realize that the expression (3.17) actually yields
the expansion scalar field corresponding to the (static)
velocity vector field ui ¼ ð _t; _rÞ. On the other hand, the
expression (3.14) tells us about the expansion history of a
congruence, which may have been started with an arbitrary
initial expansion, as observed in the local frame of a freely
falling observer. This is also the approach adopted while
proving the well-known focusing theorem [1–3].

IV. KINEMATICS OF DEFORMATIONS IN 3þ 1
DIMENSIONS

A. The evolution equations

In four dimensions, for a congruence of timelike geo-
desics, the transverse metric on a spacelike hypersurface
can be expressed as

h�� ¼ g�� þ u�u�; ð�;� ¼ 0; 1; 2; 3Þ; (4.1)

where u� is the timelike vector field tangent to the geodesic
at each point satisfying u�u

� ¼ �1, and the four-
dimensional metric g�� is defined through the line ele-

ments (2.2) and (2.3). The transverse metric satisfies
u�h�� ¼ 0, i.e., h�� is orthogonal to u�. This transverse

spacelike hypersurface represents the local rest frame of a
freely falling observer in the given spacetime. The point of
interest in this investigation is to determine the deforma-
tions in this local rest frame as perceived by the observer.
The evolution of spacelike deformations on this transverse
hypersurface can be quantified using the tensor B��, which

can now be decomposed as follows:

B�� ¼ 1

3
�h�� þ ��� þ!��; (4.2)

where � ¼ B�
� is the expansion scalar, while ��� ¼

Bð��Þ � �h��=3 and !�� ¼ B½��� are the shear and rota-

tion tensors. The brackets () and [] denote symmetrization
and antisymmetrization, respectively. The shear and rota-
tion tensors also satisfy h����� ¼ 0 and h��!�� ¼ 0, as

can be easily checked. The evolution equation for B��

takes the form

_B�� þ B��B
�
� ¼ �R����u

�u�: (4.3)

Using this equation, one can now obtain the evolution
equations for the ESR variables which are discussed below.

1. Raychaudhuri equations

Following well-known methods, the Raychaudhuri
equations for the expansion scalar, and the shear and
rotation tensors can be obtained as

_�þ 1

3
�2 þ ð�2 �!2Þ þ R��u

�u� ¼ 0; (4.4)

_��� þ 2

3
���� þ ����

�
� þ!��!

�
�

� 1

3
ð�2 �!2Þh�� þ C����u

�u� � 1

2
~R�� ¼ 0; (4.5)

_!�� þ 2

3
�!�� þ ��

�!�� þ!�
���� ¼ 0; (4.6)

where �2 ¼ ����
��, !2 ¼ !��!

��, ~R�� ¼
h��h��R

�� � h��h��R
��=3, and C���� is the Weyl ten-

sor. These equations are first-order, coupled, nonlinear and
inhomogeneous differential equations. The Eq. (4.4) for the
expansion is the well-known Riccati equation, and, as
mentioned before, is of prime importance in the context
of the proof of the singularity theorems in general relativity
[8,9] and in establishing the notion of geodesic focusing
[6]. With the projection metric defined in (4.1), the
Raychaudhuri equations essentially turn out to be structur-
ally similar as in the case of three spatial dimensions. It
may also be noted that there can be some congruences
having a vanishing vorticity for which the velocity vector
field is hypersurface orthogonal, and (4.6) becomes iden-
tically zero.

2. First integrals of geodesic equations on the equatorial
section

One may note that the Eqs. (2.7) and (2.8) are indepen-
dent of XðrÞ, YðrÞ, and their derivatives. Without the loss of
generality, one can choose c ¼ 
=2 which satisfies (2.7)
identically. With this choice, we can capture the kinematics
of deformations in the r-� plane. One can now integrate

(2.8) once to obtain _� ¼ C=r2, where C is a constant of
motion. We will hereafter use these considerations. It is
also noteworthy that with c ¼ 
=2, this four-dimensional
description reduces to a three-dimensional one and the
Raychaudhuri equations for the components of shear and
rotation can be calculated in a way similar to our recent
work (see Ref. [10]). In addition, we must keep in mind
that the timelike vector field ui satisfies the normalization
condition uiui ¼ �1, which leads to

r2½�XðrÞ _t2 þ YðrÞ _r2 þ 1� þ C2 ¼ 0: (4.7)

The above constraint (4.7) also represents a first integral of
the set of geodesic equations (2.5), (2.6), (2.7), and (2.8) for
a specific choice of the constant of integration. We will
now discuss the geodesic equations and effective potentials
for the cases corresponding to the line elements (2.2) and
(2.3), respectively.
Case I [corresponding to line element (2.2)]. The first

integral of Eq. (2.5) for this case is calculated as follows:

_t ¼ Eðrþmsinh2�Þ2
2rðr�mÞ : (4.8)

Now, using (4.8) in the constraint (4.7) leads to
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_r2 ¼ 1

4r2

�
E2ðrþmsinh2�Þ2 þ 4mr� 4r2

þ 4C2

r
ðm� rÞ

�
¼ �VE

4 ðrÞ; (4.9)

where VE
4 ðrÞ is the effective potential for the case of an

electric black hole. The effect of the parameter � on the
radial motion for different values of E and C can be
visualized directly from (4.9). The orbits (circular, scatter-
ing, and plunge) appear to be qualitatively similar to those
in Schwarzschild geometry (see [24]).

Case II [corresponding to line element (2.3)]. The first
integral of Eq. (2.5) for the magnetic case is as follows:

_t ¼ Eðmr�Q2Þ
2mðr�mÞ : (4.10)

The constraint (4.7) along with Eq. (4.10) then leads to

_r2 ¼ 1

4r2

�
E2r2 þ mr

ðmr�Q2Þ
�

�
4mr� 4r2 þ 4C2

r
ðm� rÞ

��

¼ �VM
4 ðrÞ; (4.11)

where VM
4 ðrÞ is the effective potential for the magnetic

black hole. The structure of orbits are qualitatively same
as in Case I.

The causal structure of the electric and magnetic stringy
black hole spacetimes is similar to the Schwarzschild
geometry [20]. This provides a motivation for comparing
these three cases. The Schwarzschild metric can be con-
structed from (2.4) with XðrÞ ¼ ð1�m=rÞ and YðrÞ ¼
ð1�m=rÞ�1, where usually m ¼ 2M with M as the mass
of the Schwarzschild black hole. Later, we will consider
m ¼ 1 for numerical computations. The Raychaudhuri
equations in the Schwarzschild case follow from (4.4),
(4.5), and (4.6) with R��u

�u� ¼ 0 and ~R�� ¼ 0. The

geodesic equations are well known and the first integrals
of the t and � equations are same as those for the stringy
black holes in 3þ 1 dimensions (see Sec. IVA 2) with
c ¼ 
=2. The first integral of the r equation which sat-
isfies the timelike constraint (4.7) on the velocity field leads
to the following effective potential:

VS
4 ðrÞ ¼ � 1

4r2

�
ðE2 � 4Þr2 þ 4mrþ 4C2

r
ðm� rÞ

�
:

(4.12)

Since the Schwarzschild metric reduces to that of the flat
spacetime for r ! 1, the kinematics of deformations far
from the singularity is same as for a static flat spacetime, a
case which has already been well studied (see [11]). It may
be noticed that the potential (4.9) [or (4.11)] reduces to
(4.12) for � ¼ 0 (or Q ¼ 0). The effective potentials are
graphically presented in Fig. 1 (for E ¼ 1:95) and in Fig. 2
(for E ¼ 2:01).

For the potential in Fig. 1, one can have bound or
infalling trajectories (depending on the value of r0), while
the potential in Fig. 2 allows infalling and unbounded
trajectories. Such trajectories are observationally impor-
tant and therefore, in the following, we study the kinemat-
ics of deformations, numerically, in the above-mentioned
backgrounds.

B. Analysis of deformations in the equatorial section

In this section, we study the kinematics of deformations
restricted to the equatorial section of the black hole back-
ground. Consider the c ¼ 
=2 section of the spacetime
which is a 2þ 1 dimensional slice with an induced metric,
say, ���. The timelike geodesic motion is now confined to
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the r�� plane. The geodesics of the induced metric are
also geodesics of the full metric, and the effective poten-

tials remain unaltered. We choose the deformations �̂� to

be 2þ 1 dimensional and accordingly we define B̂�� ¼
r̂�û�, where û� 	 ð _t; _r; _�Þ. One can now define the pro-

jection tensor ĥ�� ¼ ��� þ û�û�.

We then consider a freely falling (Fermi) normal frame
E�
 (with E�

t ¼ û�) which is parallelly transported accord-

ing to û�r̂�E
�
 ¼ 0. The kinematics of deformations,

restricted to the two-dimensional spacelike hypersurface
(the local frame of a freely falling observer) in this basis,
can now be represented by four kinematical quantities,

namely, �, �þ, ��, and !. The tensor B̂�� in this basis,

can be constructed as

B̂�� ¼
�
1

2
�þ �þ

�
er�e

r
� þ

�
1

2
�� �þ

�
e��e

�
�

þ ð�� þ!Þer�e�� þ ð�� �!Þe��er�; (4.13)

where e

� are coframe basis satisfying e


�E�

� ¼ �

� . The

ESR can be extracted from the evolution tensor (4.13)
using the basis vectors as follows:

� ¼ B̂��ĥ
�� 	 B̂���

��; (4.14)

�þ ¼ 1

2
ðB̂��E

�
r E

�
r � B̂��E

�
�E

�
�Þ; (4.15)

�� ¼ 1

2
ðB̂��E

�
r E

�
� þ B̂��E

�
�E

�
r Þ; (4.16)

! ¼ 1

2
ðB̂��E

�
r E

�
� � B̂��E

�
�E

�
r Þ: (4.17)

As in the 1þ 1 dimensional example discussed earlier,
the first integrals of the geodesic equations of the 2þ 1
dimensional line element enable us to find the expansion,
shear, and rotation for a geodesic congruence. Making use

of the vector field û� and the definition of B̂��, we can

obtain �, for example, as follows:

� ¼ � 1

_rXY

�
E2

4r
� X

r
� ðr2 þ C2Þ X

0

2r2

�

¼ � 1

XY

E2

4r � X
r � ðr2 þ C2Þ X0

2r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

4XY � ðr2 þ C2Þ 1
r2Y

q ; (4.18)

where XðrÞ and YðrÞ are the metric functions defined ear-
lier. Similar general expressions for �þ, ��, and ! can
also be obtained. It may be noted that the expressions thus
obtained are all functions of r. Obtaining rð	Þ by solving
the geodesic equations, one can then find �ð	Þ, �ijð	Þ, and
!ijð	Þ. From all these expressions, it is easy to state that

divergences in the ESR appear at the turning points (i.e.,
where _r ¼ 0). Similarly as in 1þ 1 dimensions, these
solutions represent only special solutions with special
initial conditions. They do not reveal the effect of initial
conditions on the evolution of the ESR variables. A more
general class of solutions corresponding to arbitrary initial
conditions on the ESR variables are obtained by integrating
the full set of Raychaudhuri equations together with the
geodesic equations.
In order to understand the caustic formation/focusing

behavior in more detail, let us redefine the expansion scalar
as � ¼ 2 _F=F, where the dot indicates the derivative with
respect to 	. One may then use the Fermi normal basis to
rewrite (4.4) as the following Hill-type equation:

€FþHF ¼ 0; (4.19)

where H ¼ �2þ þ �2� �!2 þG and G ¼ R��u
�u�=2.

The notion of caustic formation due to focusing is related
to F ¼ 0, _F < 0 at a finite 	. This can be achieved under
specific conditions on (a) the sign of H, and (b) the initial
values of the ESR. For a complete analysis, we would be
required to consider all possible initial values (positive,
negative, or zero) for the ESR and H. Here, we restrict
ourselves to some special cases and briefly comment on the
rest.
(A) If H > 0 for all 	, then conjugate points exist and

focusing takes place, as is well known.
(B) When H < 0 for all 	, we have focusing only when

�0 < �c0 < 0. When �0 > �c0, there is defocusing.
(C) IfH is sign indefinite over the range of 	, then there

may be various possibilities depending on the initial
conditions of the ESR.

The conclusion (B) has already been illustrated above
for the 1þ 1 dimensional case in Sec. III.
We now illustrate the above conclusions with our nu-

merical evaluations and corresponding plots for the ESR
variables. In what follows, we analyze and compare the
kinematics of deformations in the charged (electric and
magnetic) stringy black hole with the Schwarzschild black
hole. For this, we consider the two potentials shown in
Figs. 1 and 2 for the bound and escaping trajectories for the
reason mentioned before. Corresponding to these two po-
tentials, the ESR variables for the two black holes are
compared below. In both the cases, the initial radius is
taken as r0 ¼ 8. The initial _r is considered as positive for
the evaluations for Fig. 3, while _r is taken as negative for
the evaluations depicted in Fig. 6. In these figures, the
variation of the invariants �, �2 ¼ �2þ þ �2�, and ! are
presented and compared for the corresponding black hole
backgrounds.
In Fig. 3 (corresponding to the potential shown in

Fig. 1), we observe geodesic focusing in all the three
backgrounds. In order to understand this behavior in light
of the general conclusions mentioned earlier, we have
plotted H and G in Fig. 4, for geodesic congruences in
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the electric and magnetic stringy black holes. It is evident
that G is negative definite along the geodesic flow.
However, H is initially negative over a certain range of 	
but soon turns positive and increases monotonically due to
dominating contributions from the shear components.
Thus, one may say that the focusing effect seen here is
largely shear induced. Even though the rotation term ap-
pears with an opposite sign in Hð	Þ, its net value beyond a
certain 	 becomes positive and may be responsible for the
focusing effect. We may note, in passing, that the focusing
effect in Schwarzschild spacetime is entirely due the even-
tual dominance of shear over rotation.

The time of approach to a singularity in the congruence,
which we denote by 	s, can also be an interesting quantifier
which we can use to characterize geodesic flows in the
three backgrounds. We have numerically studied the effect
of the initial expansion �0 on 	s for the different black hole

metrics without and with initial rotation !0 of the con-
gruence. The results of this study are shown in Fig. 5. It is
interesting to note that for an initially contracting congru-
ence the singularity occurs more rapidly as compared to an
initially expanding congruence. Furthermore, the time to
singularity does not change appreciably for large values of
initial expansion/contraction. On the other hand, even with
a small initial rotation (!0 ¼ 0:1), 	s remains almost
unchanged over the whole range of variation of the �0
considered. It was also found (though the results are not
presented) that, with initial shear, 	s reduces drastically
over the complete range of �0 which is also expected
qualitatively (see [6]). One difference that emerges from
this study on the three black hole metrics considered is that
	E
s > 	S

s > 	M
s as observed in Fig. 5.
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In Fig. 6 (corresponding to the potential shown in
Fig. 2), there is no focusing. We observe from Fig. 7 that
H is sign indefinite and bounded over the range of 	. As
mentioned in (C) above, in such situations, definite con-
clusions are difficult to arrive at because of the sensitive
dependence of the results on the initial values of the ESR.
The following curious features may be associated with the
no-focusing behavior observed above. First, it is easy to
note from the Fig. 7 that

R
Hd	 has a negative value, unlike

that observed in Fig. 4. Further, the nature of H (and _H) in
Figs. 4 and 7, for large 	, are distinctly different and may
also be a cause of the no-focusing effect.

Additionally, the location (in 	) of the extrema (max-
ima/minima) in the ESR shifts to larger 	 as we move from
the electric to Schwarzschild to the magnetic solutions.
This is evident in Fig. 6. If 	e denotes the location of an
extremum, from the figure, we can easily say that 	E

e >
	S
e > 	M

e .
Finally, it may be noted from the plots in Fig. 6 corre-

sponding to! that the rotation of the congruence is largely
similar irrespective of the metric. This is expected since
! ¼ !0 expð�

R
�dtÞ, and the variation of � is almost

similar in the three backgrounds. In contrast, from this
expression of !, we note that the divergence (to �1) of
� is reflected in the divergence (to þ1) of !, as shown in
Fig. 3.

V. SUMMARYAND CONCLUSIONS

In this article, we have investigated the kinematics of
timelike geodesic flows in two- and four-dimensional
spacetimes representing stringy black holes. We now
briefly summarize the work done, the conclusions drawn
from it, and also mention possibilities on future work.

(i) The exact solutions of the expansion scalar for the
different cases in 2D have been calculated by solving
the corresponding Raychaudhuri equation for the
expansion. The occurrence of a finite time singular-
ity (i.e., caustic formation/geodesic focusing) in each
case is then discussed with particular reference to the
relation between initial conditions and the behavior
of the expansion.

(ii) The geodesic equations and the Raychaudhuri equa-
tions for the ESR are written out and solved numeri-
cally for timelike geodesic congruences in two
different stringy black hole spacetimes in four
dimensions.

(iii) We have drawn some general conclusions and made
some observations on geodesic focusing which we
believe are new. In particular, we have demonstrated
how different initial conditions on the ESR can affect
the occurrence of geodesic focusing. We also show
how focusing can be affected by the variation of
Hð	Þ. Even in situations where the timelike conver-
gence condition is violated, domination of shear can
still lead to focusing. Further, we have introduced a
new quantity—the time of approach to singularity,
which may be used to distinguish between geodesic
flows in different backgrounds. Though not pre-
sented in this article, we have observed that, in the
presence of initial shear (i.e.,�þ0 � 0 and/or��0 �
0), the time of approach to singularity (	s) is sig-
nificantly reduced.

(iv) In the scenario depicted in Fig. 6, where there is no
focusing, we make an attempt towards understand-
ing why this happens by analyzing the behavior. We
observe here that the locations of the extrema show a
systematic shift as we move from geodesic flows in
the electric to the Schwarzschild and then to the
magnetic black holes.

(v) On the whole, in some sense, the stringy nature of the
black hole geometry does seem to manifest itself in
the nature of evolution of the ESR.

An interesting issue that is still left unanswered in this
work in the role of duality of the electric and magnetic
black hole metrics on the kinematics. The question that
might be asked is whether the kinematics in these two
spacetimes are also dual of one another in some sense. It
may be tempting to approach this issue by searching rela-
tions between the parameters �, Q, m, E, and C which
leaves the kinematics invariant.
The metrics of the stringy black holes have coordinate

singularities at specific values of r and hence cannot be
extended beyond. Thus, for a more complete description of
the kinematics of flows, it will be interesting to study
geodesic flows using a different, extendable coordinate
system (viz. the maximally extended Kruskal coordinate
system). Besides this, our work has so far focused entirely
on timelike geodesics in static spacetimes. It would be
worth studying the nature of null congruences in a similar
fashion. A logical next step would be to consider geodesic
flows in stationary metrics (such as the Kerr black hole and
its generalizations).
Finally, the essential goal behind this work has been to

demonstrate that the Raychaudhuri equations and the geo-
desic equations can be solved simultaneously to give us a
complete picture of geodesics and geodesic flows in any
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given spacetime. Thus, we have a viable approach for
studying the kinematics of geodesic congruences for any
given metric which can help us distinguish between space-
times through the behavior of trajectories and families of
trajectories. In the long run, it may be possible to make use
of these results in arriving at distinct observable effects in
specific gravitational fields.
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