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A gravitational-wave traversing the line of sight to a distant source produces a frequency shift which

contributes to redshift space distortion. As a consequence, gravitational waves are imprinted as density

fluctuations in redshift space. The gravitational-wave contribution to the redshift space power spectrum

has a different � dependence as compared to the dominant contribution from peculiar velocities. This, in

principle, allows the two signals to be separated. The prospect of a detection is most favorable at the

highest observable redshift z. Observations of redshifted 21-cm radiation from neutral hydrogen hold the

possibility of probing very high redshifts. We consider the possibility of detecting primordial gravitational

waves using the redshift space neutral hydrogen power spectrum. However, we find that the gravitational-

wave signal, though present, will not be detectable on superhorizon scales because of cosmic variance and

on subhorizon scales where the signal is highly suppressed.
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I. INTRODUCTION

Primordial gravitational waves are a robust prediction of
inflation [1,2]. These stochastic tensor perturbations are
generated by the same mechanism as the matter density
fluctuations, the ratio of the tensor perturbations to scalar
perturbations being quantified through the tensor-to-scalar
ratio r. Detecting the stochastic gravitational-wave back-
ground is of considerable interest in cosmology since it
carries valuable information about the very early Universe.
The cosmological background of the gravitational wave
has its signature imprinted on the cosmic microwave back-
ground radiation (CMBR) temperature [3] and polarization
[4] anisotropy maps. Current CMBR observations
(WMAP5 data) impose an upper bound (r < 0:43) which
is further tightened (r < 0:22) if combined CMBR, baryon
acoustic oscillation, and SN data is used [5]. Detecting the
gravitational-wave background is one of the important
aims of the upcoming PLANCK [6] mission and future
polarization based experiments like CMBPOL [7].

A gravitational-wave traversing the line of sight to a
distant source will contribute to its redshift in addition to
that caused by the Hubble expansion and its peculiar
velocity. This will produce a redshift space distortion in a
manner similar to that caused by peculiar velocities [8].
The effect arises due to the fact that distances are inferred
from the spectroscopically measured redshifts. As a con-
sequence, a gravitational wave will manifest itself as a
density fluctuation in redshift space. In this paper we
propose this as a possible technique to detect the primor-
dial gravitational-wave background.

While one could consider the possibility of detecting
this at low redshifts (z� 1) using galaxy and quasar red-

shift surveys, we shall show that the prospects are much
more favorable if the redshift is pushed to a value as high as
possible.
Observations of redshifted 21-cm radiation from neutral

hydrogen (HI) can be used to measure the power spectrum
of density fluctuations at very high redshifts extending all
the way to the dark ages (30< z < 200) [9]. Redshift space
distortions make an important contribution to this signal
[10]. We investigate the possibility of using this to detect
primordial gravitational waves. We note that the imprint of
gravitational waves on the 21-cm signal from the dark ages
has also been considered in an earlier work [11].

II. FORMULATION

The radial component of peculiar velocity introduces a
redshift zv ¼ v=c in excess of the cosmological redshift
which arises due to the expansion of the Universe. This
distorts our view of the matter distribution in the three
dimensional redshift space, where the radial distance is
inferred from the measured redshift. As a consequence the
density contrast � ¼ ��=� measured in redshift space �s

is different from the actual density contrast �r, and [12]

�s ¼ �r � c

aHðaÞ
@zv
@x

; (1)

where HðaÞ is the Hubble parameter and x the comoving
distance to the source. We see that any coherent velocity
pattern (infall or outflow) manifests itself as a density
fluctuation in redshift space. This takes a particularly
convenient form in Fourier space if we assume that the
peculiar velocities are produced by the density fluctuations
�r. We then have

�sðkÞ ¼ ð1þ f�2Þ�rðkÞ; (2)

where �s and �r are the Fourier transforms of �s and �r,
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respectively, f ¼ d lnD=d lna � �0:6
m , D being the grow-

ing mode of density perturbations and � ¼ n̂ � k=k is the
cosine of the angle between the line of sight n̂ and the wave
vector k. It follows that the power spectrum of density
fluctuations in redshift space PsðkÞ, is related to its real
space counterpart PrðkÞ as [8]

PsðkÞ ¼ ð1þ f�2Þ2PrðkÞ: (3)

A gravitational wave habð ~x; �Þ which is a tensor metric
perturbation

ds2 ¼ a2½c2d�2 � ð�ab þ habÞdxadxb� (4)

makes an additional contribution [13]

zh ¼ 1

2
nanb

Z �0

�e

h0abð ~x; �Þd� (5)

to the redshift along the line of sight of the unit vector n̂.
Here prime denotes a partial derivative with respect to
�.�e and �0 refer to the photon being emitted and the
present epoch when the photon is observed, respectively,
and ~x ¼ n̂ð�0 � �Þ is the photon’s spatial trajectory.
Considering zh, the gravitational-wave contribution to the
redshift, we have an additional contribution

�s
h ¼ � c

aH

@zh
@x

; (6)

to �s the density contrast in redshift space [Eq. (1)].
Simplifying this using x ¼ cð�0 � �eÞ we have

�s
h ¼ 1

2aH
nanbh0ab: (7)

We consider the primordial gravitational waves which
we expand in Fourier modes as

habð ~x; �Þ ¼
Z

~habðk; �Þeik� ~x d3k

ð2�Þ3 ; (8)

and decompose ~habðk; �Þ in terms of the two polarization
tensors eþab and e�ab as [14]

~h abðk; �Þ ¼ hðk; �Þ½eþabaþðkÞ þ e�aba
�ðkÞ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2�Þ3PhðkÞ

p
2

: (9)

Here hðk; �Þ quantifies the temporal evolution, and
hðk; �Þ ¼ 3j1ðkc�Þ=ðkc�Þ in a matter dominated
Universe, j1 being the spherical Bessel function of order
unity. The polarization tensors are normalized to
eþabe

þab ¼ e�abe
�ab ¼ 2 and eþabe

�ab ¼ 0, PhðkÞ is the

primordial gravitational-wave power spectrum [5] and
a�ðkÞ, aþðkÞ are Gaussian random variables such that

h~h�abðk; �Þ~habðk0; �Þi ¼ ð2�Þ3�3ðk� k0Þh2ðk; �ÞPhðkÞ:
(10)

Let us first consider a single Fourier mode of the gravi-
tational wave with k along the z direction, and represent

the line of sight as

n̂ ¼ sin�ðcos�îþ sin�ĵÞ þ cos�k̂: (11)

We can than express Eq. (7) as

�sðk; �Þ ¼ h0

4aH
sin2�½cos2�aþðkÞ þ sin2�a�ðkÞ�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ3PhðkÞ

q
: (12)

This can be equivalently interpreted with n̂ fixed and the
direction of k varying. We use this to calculate Ps

hðkÞ the
gravitational-wave contribution to the power spectrum of
density fluctuations in redshift space

Ps
hðkÞ ¼ sin4�

��
h0

4aH

�
2
PhðkÞ

�
: (13)

Thus the total power spectrum of density fluctuations in
redshift space is

PsðkÞ ¼ ð1þ f�2Þ2PrðkÞ þ ð1��2Þ2Pr
hðkÞ; (14)

where Pr
hðkÞ refers to the terms in fg in Eq. (13). Here PrðkÞ

and Pr
hðkÞ are, respectively, the matter and gravitational-

wave contributions to the power spectrum of density fluc-
tuations in redshift space. Both PrðkÞ and Pr

hðkÞ are to be

evaluated at the epoch corresponding to the redshift under
observation.
The contributions from PrðkÞ and Pr

hðkÞ have different�
dependence. This, in principle, can be used to separately
estimate the gravitational wave and the matter contribu-
tions from the observed redshift space power spectrum.
While the matter contribution is maximum when k and n̂
are parallel, the gravitational-wave contribution peaks
when the two are mutually perpendicular.

III. RESULTS

We use ~r ¼ Pr
hðkÞ=PrðkÞ to quantify the ratio of tensor

perturbations to scalar perturbations in the redshift space
power spectrum. Assuming ns ¼ 1, nT � 1, the value of ~r
is constant on superhorizon scales (kc� � 1). This value
is ~r ¼ r=4 if �m ¼ 1, and somewhat smaller (Fig. 1) with
~r ¼ 0:16r for �m ¼ 0:3 in the lambda cold dark matter
model. Gravitational waves decay inside the horizon
whereas matter perturbations grow on these scales. The
ratio ~rðkÞ is oscillatory and is severely suppressed on
subhorizon scales (kc� � 1).
The prospect of detecting the gravitational-wave signal

is most favorable on superhorizon scales (k 	 kH ¼
ðc�Þ�1). The k range amenable for such observations
(Fig. 1) increases with redshift z (smaller horizon c�).
Observations of redshifted 21-cm radiation hold the poten-
tial of measuring the redshift space power spectrum in the z
range (30–200) [9,10], where the prereionization HI signal
will be seen in absorption against the CMBR. Gravitational
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waves will make a�r� 16% contribution to the HI signal
on scales k 	 kH.

IV. FEASIBILITY OF DETECTION

The cosmological HI signal will be buried in fore-
grounds [15–19] which are expected to be orders of mag-
nitude larger than the signal. The foregrounds are
continuum sources whose spectra are expected to be corre-
lated over large frequency separations, whereas the HI
signal, a line emission, is expected to be uncorrelated
beyond a frequency separation. While this, in principle,
can be used to separate the HI signal from the foregrounds,
it should be noted that the frequency separation beyond
which the HI signal becomes uncorrelated increases with
the z and angular scale. This is a potential problem for the
detection of the gravitational-wave signal. In the subse-
quent discussion we have assumed that the foregrounds
have been removed from the HI signal.

The distinctly different � dependence of the scalar and
gravitational-wave components of the redshift space power
spectrum can in principle be used to separate the two
signals. Expressing the � dependence [20] as Psðk;�Þ ¼
P0ðkÞ þ P2ðkÞ�2 þ P4ðkÞ�4, the gravitational-wave com-
ponent can be estimated using Pr

hðkÞ ¼ ½P0ðkÞ � P2ðkÞ�=2.
For a cosmic variance limited experiment, the error in

P2ðkÞ and P0ðkÞ would be �PðkÞ=PðkÞ � 1=
ffiffiffiffiffiffiffiffiffiffi
NðkÞp

[17,21–24], where NðkÞ denotes the number of k modes
within the comoving volume of the survey. Thus NðkÞ>
~r�2 � 104 modes would be needed for a detection of the
gravitational-wave signal.
The number of modes with a comoving wave number

between k and kþ dk is dNðkÞ ¼ k2dkV =ð2�Þ2, where
V is the comoving survey volume. Assuming a survey
between z ¼ 20 to z ¼ 200, and using a k bin dk ¼ k=10,
we have NðkÞ ¼ 10 for k ¼ kH � 0:002 Mpc�1.
It is, in principle, possible to carry out HI observations in

the entire z range z ¼ 0 to z ¼ 200 [15] and thereby
increase the volume. Of the entire survey volume V 0,
for a mode k only a volumeV ðkÞ ¼ V 0 � ð4�=3Þðc�0 �
k�1Þ3 where the mode is a superhorizon contributes to the
signal. Further, the largest mode kmax is the one that entered
the horizon at z ¼ 200, and the smallest mode kmin has a
wavelength comparable to the radius of the survey volume.
We then have, assuming a full sky survey,

N ¼ ð2�2Þ�1
Z kmax

kmin

V ðkÞk2dk; (15)

which gives N � 100. The number of independent modes
is too small for a measurement at a level of precision that
will allow the gravitational-wave component to be de-
tected. In conclusion, we note that the gravitational-wave
signal, though present, will not be detectable on super-
horizon scales because of cosmic variance and on subhor-
izon scales where the signal is highly suppressed.
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FIG. 1 (color online). This shows the ratio ~r=r at different z.
This is predicted to have a constant value�0:16 on superhorizon
scales in the �m ¼ 0:3 lambda cold dark matter model consid-
ered here.
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