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The concept of ‘‘dyadotorus’’ was recently introduced to identify in the Kerr-Newman geometry the

region where vacuum polarization processes may occur, leading to the creation of e� � eþ pairs. This

concept generalizes the original concept of ‘‘dyadosphere’’ initially introduced for Reissner-Nordström

geometries. The topology of the axially symmetric dyadotorus is studied for selected values of the electric

field and its electromagnetic energy is estimated by using three different methods all giving the same

result. It is shown by a specific example the difference between a dyadotorus and a dyadosphere. The

comparison is made for a Kerr-Newman black hole with the same total mass energy and the same charge

to mass ratio of a Reissner-Nordström black hole. It turns out that the Kerr-Newman black hole leads to

larger values of the electromagnetic field and energy when compared to the electric field and energy of the

Reissner-Nordström one. The significance of these theoretical results for the realistic description of the

process of gravitational collapse leading to black hole formation as well as the energy source of gamma

ray bursts are also discussed.

DOI: 10.1103/PhysRevD.79.124002 PACS numbers: 04.20.Cv

I. INTRODUCTION

Relativistic astrophysics differs from the other branches
of physics and astronomy by exploring new fundamental
processes unprecedented for the spectacularly large scales
of the involved observables and for their extremely short
time variability. Following the well-known case of super-
nova with energies & 1053 ergs on time scales of months,
gamma-ray bursts (GRBs) have offered an extreme ex-
ample of the most energetic (E & 1055 ergs) and the fastest
transient (�t & 10�3–104 s) phenomena ever observed in
the universe [1]. The dynamics of GRBs is dominated by
an electron-positron plasma [2]. The theoretical model
based on the vacuum polarization processes [3] occurring
in a Kerr-Newman geometry [4] can indeed explain such
enormous energetics and the sharp time variability. What is
most important is that such a model is based on explicit
analytic solutions of well-tested ultrarelativistic field theo-
ries. The formation of such black holes in a process of
gravitational collapse is expected from a large variety of
binary mergers composed of neutron stars, white dwarfs,
and massive stars at the end point of their thermonuclear
evolution [5] in all possible combinations.

In particular, in the merging of two neutron stars and in
the final process of gravitational collapse to a black hole is
expected the occurrence of electromagnetic fields with
strength larger than the critical value of vacuum polariza-
tion

Ec ¼ m2
ec

3

@e
; (1)

where me and e are the electron mass and charge, respec-
tively [1]. We are currently reexamining the electrodynam-
ical processes of a neutron star via an ultrarelativistic
Thomas-Fermi equation to identify the possible physical
origin of this overcritical electric field [6–8].
The time evolution of the gravitational collapse (occur-

ring on characteristic gravitational time scales � ¼
GM=c3 ’ 5� 10�5M=M� s) and the associated electro-
dynamical process are too complex for a direct description.
We address here a more confined problem: the polarization
process around an already formed Kerr-Newman black
hole. This is a well-defined theoretical problem which
deserves attention. It may represent a physical state asymp-
totically reached in the process of gravitational collapse.
We expect such an asymptotic configuration be reached
when all the multipoles departing from the Kerr-Newman
geometry have been radiated away either by process of
vacuum polarization or electromagnetic and gravitational
waves. What is most important is that by performing this
theoretical analysis we can gain a direct evaluation of the
energetics of the spectra and dynamics of the e� � eþ
plasma created on the extremely short time scales due to
the quantum phenomena of �t ¼ @=ðmec

2Þ ’ 10�21 s.
This entire transient phenomena, starting from an initial
neutral condition, undergoes the formation of the Kerr-
Newman black hole by the collective effects of gravitation,
strong, weak, electromagnetic interactions during a frac-
tion of the above-mentioned gravitational characteristic
time scale of collapse.
The aim of this article is to explore the initial condition

for such a process to occur using the recently introduced
concept of ‘‘dyadotorus’’ [4] which generalizes to the Kerr-
Newman geometry the concept of the ‘‘dyadosphere’’*ruffini@icra.it
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previously introduced in the case of the spherically sym-
metric Reissner-Nordström geometry [9,10].

Damour and Ruffini [3] showed that vacuum polariza-
tion processes à la Sauter-Heisenberg-Euler-Schwinger
[11–13] can occur in the field of a Kerr-Newman black
hole endowed with a mass ranging from the maximum
critical mass for neutron stars ð3:2M�Þ all the way up to
7:2� 106M�. It is an almost perfectly reversible process in
the sense defined by Christodoulou and Ruffini [14], lead-
ing to a very efficient mechanism of extracting energy from
the black hole.

In the case of absence of rotation in spacetime, we have a
Reissner-Nordström black hole as the background geome-
try. The region where vacuum polarization processes take
place is a sphere centered about the hole, and has been
called dyadosphere [9,10]. Its main properties are recalled
in Sec. II.

We investigate in Sec. III how the presence of rotation in
spacetime modifies the shape of the surface containing the
region where electron-positron pairs are created. Because
of the axial symmetry we call that region dyadotorus and
we give the conditions for its existence. We then provide
some pictorial representations of the boundary surface of
the dyadotorus by using the Boyer-Lindquist radial and
angular coordinates as polar coordinates in flat space as
well as by employing Kerr-Schild coordinates. We show in
Sec. IV the dyadotorus on the corresponding embedding
diagrams, which reveal the intrinsic structure of the space-
time geometry. In Sec. V we provide an estimate of the
electromagnetic energy contained in the dyadotorus by
using three different definitions commonly adopted in the
literature, i.e. the standard definition in terms of the time-
like Killing vector (see e.g. [15]), the one recently sug-
gested by Katz, Lynden-Bell and Bičák [16,17] for axially
symmetric asymptotically flat spacetimes, which is an
observer dependent definition of energy, and the last one
involving the theory of pseudotensors (see e.g. [18]). All
these approaches are shown to give the same results.
Finally, a comparison is made between the electromagnetic
energy of an extreme Kerr-Newman black hole and the
corresponding one of a Reissner-Nordström black hole
with the same total mass and charge to mass ratio. In
addition to the topological differences between the dyad-
otorus and the dyadosphere, it is shown how larger field
strengths are allowed in the case of a Kerr-Newman ge-
ometry close to the horizon, when compared with a
Reissner-Nordström black hole of the same mass energy
and charge to mass ratio.

We finally draw some general conclusions.

II. THE DYADOSPHERE

In this section we recall the definition of dyadosphere
and its main properties in the field of a Reissner-Nordström
black hole as derived in [9,10]. In standard Schwarzschild-

like coordinates the Reissner-Nordström black hole metric
is given by

ds2 ¼ �
�
1� 2M

r
þQ2

r2

�
dt2 þ

�
1� 2M

r
þQ2

r2

��1
dr2

þ r2ðd�2 þ sin2�d�2Þ; (2)

where geometric units G ¼ c ¼ 1 have been adopted. The
associated electromagnetic field is given by

F ¼ �Q

r2
dt ^ dr: (3)

The horizons are located at r� ¼ M� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

p
; we

consider the case jQj � M and the region r > rþ outside
the outer horizon. For an extremely charged hole we have
jQj ¼ M and the two horizons coalesce.
Let us introduce an orthonormal frame adapted to the

static observers

et̂ ¼
�
1� 2M

r
þQ2

r2

��1=2
@t;

er̂ ¼
�
1� 2M

r
þQ2

r2

�
1=2

@r;

e�̂ ¼ 1

r
@�; e�̂ ¼ 1

r sin�
@�:

(4)

The electric field as measured by static observers with
four-velocity U ¼ et̂ is purely radial:

EðUÞ ¼ Q

r2
er̂: (5)

The radius rds at which the electric field strength jEj ¼
jEr̂j reaches the critical value Ec has been defined in [9,10]
as the outer radius of the dyadosphere, which extends down
to the horizon and within which the electric field strength
exceeds the critical value,

rds ’ 1:12� 108
ffiffiffiffiffiffiffi
��

p
cm; (6)

where the dimensionless quantities � ¼ Q=M and � ¼
M=M� have been introduced. The critical electric field
(1) in geometric units is given by Ec � 1:268�
10�11 cm�1.
The electromagnetic energy contained inside the dyado-

sphere has been evaluated by Vitagliano and Ruffini [15],

Eð�Þðrþ;rdsÞ ¼
Q2

2rþ

�
1� rþ

rds

�
; (7)

by using a ‘‘truncated version’’ of the definition of energy
in terms of the conserved Killing integral,

Eð�Þ ¼
Z
�
TðemÞ
�� ��d��; (8)

where � ¼ @t is the timelike Killing vector. We refer to
Sec. V for a detailed discussion on this point. Figure 1
shows the behavior of the electromagnetic energy (7) as a

CHERUBINI, GERALICO, RUEDA H., AND RUFFINI PHYSICAL REVIEW D 79, 124002 (2009)

124002-2



function of the mass parameter � for fixed values of the
charge parameter �.

Ruffini and collaborators estimated also the total energy
of pairs converted from the ‘‘static electric energy’’ (7) and
deposited within the dyadosphere:

Epairs ¼ Q2

2rþ

�
1� rþ

rds

��
1�

�
rþ
rds

�
4
�
: (9)

Its behavior as a function of the charge and mass parame-
ters � and � is shown in Fig. 2.

The rate of pair creation per unit four-volume is given by
the Schwinger formula [13]:

2 ImL ¼ 1

4�

�jEje
�@

�
2 X1
n¼1

1

n2
e�n�Ec=jEj: (10)

The leading term n ¼ 1 agrees with the WKB results
obtained by Sauter [11] and Heisenberg-Euler [12]:

2 ImL ¼ 1

4�

�jEje
�@

�
2
e��Ec=jEj: (11)

The dyadosphere has been defined by Ruffini and col-
laborators [9,10] by the condition jEj ¼ Ec. One might
better define it by requiring the electric field strength to be

such that the rate of pair creation is suppressed exactly by a
factor 1=e, leading to the condition jEj ¼ �Ec. However,
from Eq. (10) it is clear that no sharp threshold exists for
electron-positron pair creation, so that the definition

jEj ¼ kEc (12)

appears to be more appropriate and should be explored for
different values of the constant parameter k, even for k <
1. Consequently, we shall define in the following both
dyadosphere and dyadotorus as the locus of points where
the electric field satisfies the condition (12).

III. THE DYADOTORUS

The Kerr-Newman metric in standard Boyer-Linquist–
type coordinates writes as [19]

ds2 ¼�
�
1� 2Mr�Q2

�

�
dt2 � 2asin2�

�
ð2Mr�Q2Þdtd�

þ�

�
dr2 þ�d�2

þ
�
r2 þa2 þa2sin2�

�
ð2Mr�Q2Þ

�
sin2�d�2; (13)

with associated electromagnetic field

F ¼ Q

�2
ðr2 � a2cos2�Þdr ^ ½dt� asin2�d��

þ 2
Q

�2
ar sin� cos�d� ^ ½ðr2 þ a2Þd�� adt�;

(14)

where � ¼ r2 þ a2cos2� and � ¼ r2 � 2Mrþ a2 þQ2.
Here M, Q, and a are the total mass, total charge, and
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FIG. 2. The total energy of pairs (9) is plotted as a function of
the two mass and charge parameters � and �. The different
curves correspond to selected values of the energy (in ergs).
Only the solutions below the solid line are physically relevant.
The configurations above the solid line correspond instead to
unphysical solutions with rds < rþ. The plot is reproduced from
[33] with the kind permission of the authors.
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FIG. 1. The behavior of the electromagnetic energy (7) in solar
mass units is shown as a function of the mass parameter � for
selected values of the charge parameter � ¼ ½0:1; 0:5; 1�, from
bottom to top. The straight lines (dashed) correspond to the
maximum energy extractable from a Reissner-Nordström black
hole given by Q2=ð2rþÞ.
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specific angular momentum, respectively, characterizing

the spacetime. The (outer) event horizon is located at rþ ¼
Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2 � a2 �Q2
p

.
Let us introduce the Carter’s observer family [20],

whose four-velocity is given by

Ucar ¼ r2 þ a2ffiffiffiffiffiffiffiffi
��

p
�
@t þ a

r2 þ a2
@�

�
: (15)

An observer adapted frame to Ucar is then easily con-
structed with the triad

er̂ ¼ 1ffiffiffiffiffiffiffi
grr

p @r; e�̂ ¼
1ffiffiffiffiffiffiffi
g��

p @�;

�Ucar ¼ a sin�ffiffiffiffi
�

p
�
@t þ 1

asin2�
@�

�
:

(16)

The Carter observers measure parallel electric and mag-
netic fields E and B [3], with components

EðUcarÞ	 ¼ F	

U



car; BðUcarÞ	 ¼ �F	


U


car; (17)

where �F is the dual of the electromagnetic field (14). Both
E andB are directed along er̂ and assuming as usualQ> 0,
the strength of electric and magnetic fields is given by

jEj ¼ jEr̂j ¼ Q

�2
ðr2 � a2cos2�Þ;

jBj ¼ jBr̂j ¼
��������2 Q

�2
ar cos�

��������:
(18)

It is worth noting that the Carter orthonormal frame is the
unique frame in which the flat spacetime Schwinger dis-
cussion can be locally applied. This is due both to the
meaning of the Carter orthonormal frame and its relation
to the geometry of the Weyl curvature tensor and the
spacetime itself, as well as to the fact that the invariantly
described Schwinger process demands this unique frame
for its application. An alternative but equivalent derivation
of this result is presented in Appendix A, where the electric
and magnetic field strengths are obtained in terms of the
electromagnetic invariants by using the Newman-Penrose
formalism, hence showing more clearly the invariant char-
acter of the dyadotorus.

The Schwinger formula generalized to include both
electric and magnetic fields, i.e.,

2 ImL ¼ 1

4�

�jEje
�@

�
2 X1
n¼1

1

n2

�
n�

jBj
jEj

�

� coth

�
n�

jBj
jEj

�
e�n�Ec=jEj; (19)

has been used by Damour and Ruffini [3] for the case of a
Kerr-Newman geometry.

We are interested in the region exterior to the outer
horizon r 	 rþ. Solving Eq. (12) for r and introducing
the dimensionless quantities � ¼ Q=M, 	 ¼ a=M, � ¼
M=M�, and � ¼ kEcM� � 1:873k� 10�6 (with M� �
1:477� 105 cm), we get

�
rd�
M

�
2 ¼ 1

2

�

��
�	2cos2��

�
1

4

�2

�2�2
� 2

�

��
	2cos2�

�
1=2

;

(20)

where the � signs correspond to the two different parts of
the surface. They join at the particular values �� and ��
�� of the polar angle given by the condition of vanishing
argument of the square root in Eq. (20):

�� ¼ arccos

�
1

2
ffiffiffi
2

p
	

ffiffiffiffiffiffiffi
�

��

s �
: (21)

The requirement that cos�� � 1 can be solved for instance
for the constant parameter k, giving the range of allowed
values for which the dyadotorus appears indeed as a torus-
like surface [see Figs. 4(b)–4(d)]:
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FIG. 3. The space of parameters ð�;�Þ is shown for different
values of the rotation parameter 	 ¼ a=M ¼ ½0; 0:4; 0:6; 0:8;
0:9; 0:99� and fixed value of the polar angle � ¼ �=3. The region
below each curve represents the allowed region for the existence
of the dyadoregion with fixed 	. The configurations above each
line correspond to unphysical solutions where rd� < rþ for the
selected set of parameters. The value of the parameter k has been
set equal to one.

CHERUBINI, GERALICO, RUEDA H., AND RUFFINI PHYSICAL REVIEW D 79, 124002 (2009)

124002-4



k 	 �

8EcM��	2
� 6:6� 104

�

�	2
; (22)

for lower values of k the dyadotorus consists instead of two
disjoint parts, one of them (corresponding to the branch
rdþ) always external to the other (corresponding to the
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FIG. 4 (color online). The projection of the dyadotorus on the X� Z plane (X ¼ r sin�, Z ¼ r cos� are Cartesian-like coordinates
built up simply using the Boyer-Lindquist radial and angular coordinates) is shown for an extreme Kerr-Newman black hole with
� ¼ 10, � ¼ 1:49� 10�4, and different values of the parameter k: (a) k ¼ 0:9 (orange), (b) k ¼ 1:0 (red), (c) k ¼ 1:1 (light blue),
(d) k ¼ 1:5 (blue). The boundary of the dyadoregion becomes a toruslike surface for k � 0:998, according to Eq. (22). The black disk
represents the black hole horizon.
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branch rd�), and has rather the shape of an ellipsoid [see
Fig. 4(a)]. Therefore, the use of the term dyadoregion
should be more appropriate in this case.

In terms of the dimensionless quantities � and 	 the
horizon radius is then given by

rþ
M

¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2 � 	2

p
: (23)

The condition for the existence of the dyadotorus is given

by rd� 	 rþ. The allowed region for the pairs ð�;�Þ (with
fixed values of the rotation parameter 	 and the polar angle
�) satisfying this condition is shown in Fig. 3.
Figure 4 shows the shape of the projection of the dyad-

otorus on a plane containing the rotation axis for an ex-
treme Kerr-Newman black hole with fixed � and � and
different values of the parameter k using Cartesian-like
coordinates X ¼ r sin�, Z ¼ r cos�, built up simply by
taking the Boyer-Lindquist coordinates r and � as polar
coordinates in flat space.
A ‘‘dynamical’’ view of topology change in the shape of

the dyadoregion is shown in Fig. 5, where the case of a
Reissner-Nordström black hole with the same total mass
and charge is also shown for comparison. We point out
some interesting qualitative differences between dyadoto-
rus and dyadosphere which can be seen clearly from these
plots. In particular, the dyadotorus appear to lead to larger
values of the electric field than the corresponding dyado-
sphere close to the horizon. A key point here is the size of
the horizon, which in the limit of small charge to mass ratio
� 
 1 for an extreme Kerr-Newman black hole goes to
rþ �M, while in the case of a Reissner-Nordström black
hole goes to rþ � 2M. This fact is crucial because it leads
to the presence of stronger electric fields for the Kerr-
Newman black hole in contrast with the Reissner-
Nordström one. We can compare for instance the maxi-
mum electric field Emax ¼ Q=r2þ of an extreme Kerr-
Newman black hole and of a Reissner-Nordström black
hole, which is obtained for r ¼ rþ, � ¼ �=2 in the former
case and r ¼ rþ in the latter case, in the limit of small
charge to mass ratio

EKN
max ¼ Q

M2
¼ 4ERN

max: (24)

We will turn to the energetics of the dyadoregion in Sec. V.
Three-dimensional images of the dyadotorus can be

generated also in terms of Kerr-Schild coordinates
ð~t; x; y; zÞ, which are related to the standard Boyer-
Lindquist ones ðt; r; �;�Þ by the equations (see e.g. [19])

d~t ¼ dt� 2Mr�Q2

�
dr;

dc ¼ d�� a

r2 þ a2
2Mr�Q2

�
dr;

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin� cosc ;

y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
sin� sinc ;

z ¼ r cos�:

(25)

Note that the spatial coordinates ðx; y; zÞ satisfy the relation
x2 þ y2

r2 þ a2
þ z2

r2
¼ 1; (26)

and the auxiliary angular coordinate c is a function of r, as
from the second relation of Eq. (25)

FIG. 5 (color online). The projections of the dyadotorus on the
X � Z plane corresponding to different values of the ratio
jEj=Ec � k are shown in (a) for � ¼ 10 and � ¼ 1:49�
10�4. The corresponding plot for the dyadosphere with the
same mass energy and charge to mass ratio is shown in (b) for
comparison.
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c ¼ ��
Z r a

r2 þ a2
2Mr�Q2

�
dr: (27)

The shape of the dyadotorus using Kerr-Schild coordinates
is shown in Fig. 6 for the same choice of parameters as in
Fig. 4.

IV. EMBEDDING DIAGRAM

The plots of Figs. 4 and 6 actually show a distorted view
of the shape of the dyadotorus; we should rather look at the
corresponding embedding diagram, which gives the cor-
rect geometry allowing to visualize the spacetime curva-
ture. Because of our familiar three-dimensional intuition,
the most useful and easily understood embedding diagrams
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FIG. 6 (color online). Three-dimensional images of the dyadotorus are shown using Kerr-Schild coordinates. The parameter choice
is the same as in Fig. 4. The surfaces have been cut in half for a better view of the interior. The horizon instead has been shown entirely
(black region).
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are those which take a Riemannian two-surface from the
original geometry, then reconstructing it as a distorted
surface in a three-dimensional Euclidean space.

The dyadotorus implicitly defined by Eq. (20) can be
visualized as a two-dimensional surface of revolution
around the rotation axis embedded in the usual Euclidean
3-space by suppressing the temporal and azimuthal depen-
dence. Using Boyer-Lindquist coordinates, from Eq. (13)
we get the following induced metric of the constant time
slice (dt ¼ 0) of the world sheet r ¼ rd� given by Eq. (20):

ð2Þds2 ¼ h��d�
2 þ g��d�

2;

h�� ¼ grr

�
drd�
d�

�
2 þ g��

1� �2
;

(28)

where � � cos� and all the metric coefficients are eval-
uated at r ¼ rd�, which is indeed a function of the polar
angle � (so that dr has been related to d�).

Following a standard procedure [21,22], consider the
flat-space line element written in spherical-like coordi-
nates,

ð3Þds2 ¼ dX2 þ dY2 � dZ2; (29)

where the plus sign refers to the Euclidean case and the
minus sign to the Minkowskian case. For the embedding
surface in the parametric form

X ¼ Fð�Þ cos�; Y ¼ Fð�Þ sin�; Z ¼ Gð�Þ;
(30)

the corresponding line element becomes

ð2Þds2 ¼
��

dF

d�

�
2 �

�
dG

d�

�
2
�
d�2 þ F2d�2: (31)

Comparison with (28) implies�
dF

d�

�
2 �

�
dG

d�

�
2 ¼ h��; F ¼ ffiffiffiffiffiffiffiffiffi

g��
p

: (32)

The relation F ¼ Fð�Þ is already given by the second
equation and one can then numerically integrate the first
equation to get the function Gð�Þ:

G�ð�Þ ¼
Z �

�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�
h�� �

�
d

d�
ð ffiffiffiffiffiffiffiffiffi

g��
p Þ

�
2
�s
d�; (33)

with the initial condition Gð�0Þ ¼ 0. Note that the dyad-
otorus is embeddable entirely in the Euclidean 3-space,
whereas the embedding of the outer horizon may become
Minkowskian depending on the values of the charge and
rotation parameters of the black hole [21]. In the latter case
the embedding cross section has a horizontal tangent line
when the signature switch of sign in Eq. (33) takes place at
a certain value of � given by � ¼ �ðssÞ, where dG=d� ¼
0. The integration must be performed with the plus sign
(into the Euclidean part of the embedding) or with the
minus sign (into the Minkowskian part of the embedding)
starting from such a signature-switch point with the initial
condition Gð�ðssÞÞ ¼ 0.

Figure 7 shows the embedding diagram of the dyadoto-
rus for the same choice of parameters as in Figs. 4 and 6 as
concerns Figs. 7(a), 7(c), and 7(d). Figure 7(b) corresponds
instead to a slightly different choice of the charge parame-
ter, satisfying Eq. (22) with the equality sign (implying
�� ¼ 0), i.e. to the limiting value of k such that the dyad-
otorus still appears as a toruslike surface, the two branches
rd� still joining (at � ¼ 0, �). Despite the appearance the
cusps on the axis do not correspond to conical singularities
at the axis (� ¼ 0, �), as it occurs in contrast in the case of
the ergosphere [22,23]. In fact, expanding the induced
metric (28) about � ¼ 0 (or equivalently � ¼ �) to the
second order, we get the approximate metric (up to an
ignorable constant factor)

ð2Þds2 ’ d�2 þ �2d�2 (34)

with � 2 ½0; 2��, which is the intrinsic metric of a right
cone with no deficit angle.
The projections on the X � Z plane of the embedding

diagrams of Fig. 7 are shown in Fig. 8.

V. ON THE ENERGY OF THE DYADOREGION

The total electromagnetic energy distributed in a sta-
tionary spacetime can be determined by evaluating the
conserved Killing integral (see e.g. [15])

Eð�Þ ¼
Z
�
TðemÞ
�� ��d��; (35)

where � ¼ @t is the timelike Killing vector, TðemÞ
�� is the

electromagnetic energy-momentum tensor of the source,
and d�� ¼ n�d� is the surface element vector with n the
unit timelike normal to the smooth compact spacelike
hypersurface �. The integration is meant to be performed
through the whole spacetime occupied by the electromag-
netic field, i.e. by allowing � to extend up to the spatial
infinity. Evaluating the electromagnetic energy stored in-
side a finite region with boundary r ¼ const of spacetime
would require instead the introduction of the concept of
‘‘quasilocal energy.’’ However, it is interesting to compare
the results of the quasilocal treatment with the expression
of the electromagnetic energy contained in the portion of
spacetime with boundary r ¼ const obtained simply by
truncating the integration over r at a given R in Eq. (35):

Eð�Þðrþ;RÞ ¼
Z R

rþ

Z �

0

Z 2�

0
Eð�Þ ffiffiffiffiffi

hn
p

drd�d�

¼ Q2

4rþ

�
1� rþ

R

�
þ Q2

4rþ

��
1þ a2

r2þ

�

� arctanða=rþÞ
a=rþ

� rþ
R

�
1þ a2

R2

�

� arctanða=RÞ
a=R

�
; (36)

where
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E ð�Þ ¼ TðemÞ
�� ��n�

¼ Q2

8��5=2

ffiffiffiffi
�

p r2 � a2cos2�þ 2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr2 þ a2Þ2 ��a2sin2�
p (37)

can be interpreted as the electromagnetic energy density, n

is the unit normal to the time coordinate hypersurfaces, and
hn ¼ ð�=�Þ½ðr2 þ a2Þ2 � �a2sin2��sin2� is the determi-
nant of the induced metric. It is interesting to note that the
same results can be obtained by using the theory of pseu-
dotensors [18] (see Appendix B). In the limit of vanishing
rotation parameter Eq. (36) becomes
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FIG. 7 (color online). The dyadotorus is shown on an embedding diagram. The choice of the parameters is the same as in Fig. 4 as
concerns (a), (c), and (d). In the case of (b) the value of the parameter k has been changed to the critical value k � 0:998 in order to
satisfy the condition (22) with the equality sign, so representing the limiting case in which the dyadotorus still appears as a toruslike
surface [as in (c) and (d)] for the chosen values of parameters � and 	. The surfaces have been cut in half for a better view of the
interior, where the embedding of the horizon is also shown (the black shaded region is Euclidean, whereas the white regions are
Minkowskian). Note that in this case the coordinates ðX; Y; ZÞ are given by Eq. (30).
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Eð�Þðrþ;RÞ ¼
Q2

2rþ

�
1� rþ

R

�
; (38)

which is just the expression for the electromagnetic energy
obtained by Vitagliano and Ruffini [15] for the Reissner-
Nordström geometry. Equation (35) can be actually con-

sidered as a possible quasilocal definition of energy [24],
although it strongly depends on the existence of certain
spacetime symmetries, i.e. the existence of a timelike
Killing vector, which characterizes stationary spacetimes.
In addition, we can see that since the current J�ð�Þ ¼
T
�
ðemÞ��

� is a conserved vector, the resulting energy does

FIG. 8. The projections on the X � Z plane of the embedding diagrams of Fig. 7 are shown. Dashed lines correspond to the
Minkowskian part of the embedding of the outer horizon.
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not depend on the chosen cut through spacetime. In con-
trast, in any given spacetime one can always introduce a
physically motivated congruence of observers U measur-
ing the energy irrespective of spacetime symmetries. But
the current J�ðUÞ ¼ T�

ðemÞ�U
� is not a conserved vector in

general. Therefore, in this case the energy has an observer
dependent meaning; in addition, the results of the mea-
surement could be different for different cuts through
spacetime.

Such an approach consists of using the definition [16,17]

E�ðUÞ ¼
Z
�
TðemÞ
�� U�d��; (39)

where � is now a bounded hypersurface containing only a
finite portion of spacetime, and U is the 4-velocity of the
observer measuring the energy. In general, the flux integral
of the current J�ðUÞ ¼ T

�
ðemÞ�U

� depends on the hypersur-

face, because this is not connected with the spacetime
symmetries. In particular, the vector field U can be chosen
to be the unit timelike normal n of �. Therefore, generally
we may always evaluate E�ðUÞ with respect to any pre-
ferred observer U, but should not expect to get an answer
independent of the chosen cut. In the case of axially
symmetric spacetimes in practice there is normally a
good time coordinate such as Boyer-Lindquist in Kerr
and cuts are chosen to be at constant time. The current
J�ðUÞ will be conserved both for static observers and zero
angular momentum observers (ZAMOs), since their 4-
velocities are aligned with Killing vectors.

Because of the spacetime symmetries it is indeed quite
natural to consider in the Kerr-Newman spacetime two
families of observers which are described by two geomet-
rically motivated congruences of curves: (1) static observ-
ers, at rest at a given point in the spacetime, whose 4-
velocitym ¼ 1=

ffiffiffiffiffiffi
gtt

p
@t is aligned with the Killing temporal

direction; (2) ZAMOs, a family of locally nonrotating
observers with 4-velocity n ¼ N�1ð@t � N�@�Þ, where

N ¼ ð�gttÞ�1=2 and N� ¼ gt�=g�� are the lapse and shift

functions respectively, characterized as that normalized
linear combination of the two given Killing vectors which
is orthogonal to @� and future pointing, and it is the unit

normal to the time coordinate hypersurfaces. Since the
static observers do not exist inside the ergosphere, the
ZAMOs seem to be the best candidates to construct the
energy (39). However, their 4-velocity diverges at the
horizon, since the lapse function goes to zero there.

In order to obtain a finite energy at the horizon, one can
then choose a family of infalling observers as the Painlevé-
Gullstrand observers, which move radially with respect to
ZAMOs and form a congruence of geodesic and irrota-

tional orbits, whose 4-velocity is given byUPG ¼ N�1ðn�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� N2

p
er̂Þ. Since they do not follow the spacetime sym-

metries the current J�ðUPGÞ ¼ T�
ðemÞ�U

�
PG is not conserved,

so the corresponding energy E�ðUPGÞ depends on the

hypersurface. The result is that the expression (36) of the
electromagnetic energy contained in the dyadoregion con-
structed by means of the (not normalized) timelike Killing
vector agrees with the electromagnetic energy assessed by
the Painlevé-Gullstrand geodesic family of infalling ob-
servers through the T ¼ const cut of the Kerr-Newman
spacetime, where T denotes the Painlevé-Gullstrand time
coordinate, i.e.

E�ð�Þ �
Z
�
TðemÞ
�� ��d��

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
BL coordinates; Killing vector; t¼const cut

¼
Z
�
TðemÞ
�� N �d��

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
PG coordinates; PG 4-velocity; T¼const cut

� E�ðN Þ;

(40)

withN the timelike normal to the chosen cut. Details can
be found in Appendix B.
From Eq. (36), a rough estimate of the electromagnetic

energy stored inside the ‘‘dyadoregion’’ turns out to be
given by Eð�Þðrþ;RÞ � 5:5� 10�3 cm � 6:7� 1046 ergs

by assuming R ¼ 2rþ with the same parameters as in
Fig. 4(d), and Eð�Þðrþ;RÞ � 1:9� 10�2 cm � 2:3�
1047 ergs if R ¼ 3rþ with the same choice of parameters
as in Fig. 4(a). We note that an exact analytic expression
for the electromagnetic energy can also be obtained by
taking the actual shape r ¼ rd� given by Eq. (20) instead of
the approximate expression r ¼ R ¼ const in the evalu-
ation of the integral (36). However, this only complicates
matters by introducing a nontrivial dependence on the
polar angle � which makes the integration procedure
more involved, even if it can be analytically performed
(not shown here for the sake of brevity). Furthermore, the
numerical values of the energy corresponding to the above
choice of parameters agree with previous estimates.
It is interesting to compare the electromagnetic energy

(36) of an extreme Kerr-Newman black hole contained in
the portion of spacetime with boundary R ¼ const and that
of a Reissner-Nordström black hole (38) with the same
total mass and charge in the limit of small charge to mass
ratio. In this limit we have

ERN ’ Q2

4M

�
1� 2M

R

�
;

EKN ’ Q2

4M

�
1� 2M

R

�

þ Q2

4M

�
�

2
þM

R
�

�
1þM2

R2

�
arctanðM=RÞ

�
:

(41)

A comparison between energies is meaningful only at
infinity, where the radial coordinates of a Kerr-Newman
and a Reissner-Nordström geometry can be identified (both
with an ordinary radial coordinate in flat space). For R !
1 we thus have
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EKN � ERN ! Q2

4M

�

2
> 0: (42)

VI. CONCLUSIONS

Vacuum polarization processes can occur in the field of a
Kerr-Newman black hole inside a region we have called
dyadotorus, whose properties have been investigated here.
Such a region has an invariant character, i.e. its existence
does not depend on the observer measuring the electro-
magnetic field: therefore, it is a true physical region.

Some pictorial representations of the boundary surface
similar to those commonly used in the literature have been
shown employing Cartesian-like coordinates (i.e. ordinary
spherical coordinates built up simply using the Boyer-
Lindquist radial and angular coordinates) as well as Kerr-
Schild coordinates. The dyadotorus has been also shown on
the corresponding embedding diagram, which gives the
correct geometry allowing to visualize the spacetime
curvature.

We have then estimated the electromagnetic energy
contained in the dyadotorus by using three different ap-
proaches, which give rise to the same final expression for
the energy. The first one follows the standard approach
consisting of using the (not normalized) timelike Killing
vector through the Boyer-Lindquist constant time cut of the
Kerr-Newman spacetime (see e.g. [15]), the second one
follows a recent observer dependent definition by Katz,
Lynden-Bell, and Bičák [16,17] for axially symmetric
asymptotically flat spacetimes, for which we have used
the Painlevé-Gullstrand geodesic family of infalling ob-
servers through the Painlevé-Gullstrand constant time cut,
and the last one adopts the pseudotensor theory (see e.g.
[18]). We have found by rough estimates that the extreme
Kerr-Newman black hole leads to larger values of the
electromagnetic energy as compared with a Reissner-
Nordström black hole with the same total mass and charge.

It is appropriate to recall that the release of energy via
the electron-positron pairs in the dyadotorus is the most
powerful way to extract energy from black holes and in all
senses corresponds to a new form of energy: the ‘‘black-
holic’’ energy [4]. This is a new form of energy different
from the traditional ones known in astrophysics. The ther-
monuclear energy has been recognized to be an energy
source of main sequence stars lasting for 109 years [25], the
gravitational energy released by accretion processes in
neutron stars and black holes has explained the energy
observed in binary x-ray sources on time scales 106–108

years [26]. The blackholic energy appears to be an energy
source for the most transient and most energetic events in
the universe, the GRBs [4].
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APPENDIX A: NEWMAN-PENROSE QUANTITIES
AND INVARIANT DEFINITION OF THE

DYADOTORUS

The existence of the dyadotorus has an invariant char-
acter. This fact appears more evident if the electric and
magnetic field strengths are expressed in terms of the
electromagnetic invariants. Let us adopt here the metric
signature ðþ;�;�;�Þ in order to use the Newman-
Penrose formalism in its original form and then easily
get the necessary physical quantities [27,28]. The Kerr-
Newman metric is thus given by

ds2 ¼
�
1� 2Mr�Q2

�

�
dt2 þ 2asin2�

�
ð2Mr�Q2Þdtd�

��

�
dr2 � �d�2

�
�
r2 þ a2 þ a2sin2�

�
ð2Mr�Q2Þ

�
sin2�d�2;

(A1)

with associated electromagnetic field

F ¼ Q

�2
ðr2 � a2cos2�Þdr ^ ½dt� asin2�d��

þ 2
Q

�2
ar sin� cos�d� ^ ½ðr2 þ a2Þd�� ad��:

(A2)

Introduce the standard Kinnersley principal tetrad [29]

l� ¼ 1

�
½r2 þ a2;�; 0; a�;

n� ¼ 1

2�
½r2 þ a2;��; 0; a�;

m� ¼ 1ffiffiffi
2

p ðrþ ia cos�Þ
�
ia sin�; 0; 1;

i

sin�

�
;

(A3)

which gives nonvanishing spin coefficients


 ¼ � 1

r� ia cos�
; � ¼ � iaffiffiffi

2
p 

� sin�;


 ¼ � 
�

2
ffiffiffi
2

p cot�; � ¼ iaffiffiffi
2

p 
2 sin�;

� ¼ 1

2

2
��; � ¼ �þ 1

2


�ðr�MÞ;

	 ¼ �� 
�;

(A4)

and the only nonvanishing Weyl scalar

c 2 ¼ M
3 þQ2
�
3; (A5)

showing clearly the Petrov type D nature of the Kerr-
Newman spacetime, whereas the Maxwell scalars are

�0 ¼ �2 ¼ 0; �1 ¼ Q

2

2: (A6)
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The electromagnetic invariants are given by

F � 1
4F��F

�� ¼ 1
2ðB2 �E2Þ ¼ 2Reð�0�2 ��2

1Þ;
G � 1

4F��
�F�� ¼ E 
B ¼ �2 Imð�0�2 ��2

1Þ; (A7)

where E and B are the electric and magnetic fields.
Requiring parallel electric and magnetic fields [3] as mea-
sured by the Carter observer [20], the previous relations
become

jBj2 � jEj2 ¼ �4Reð�2
1Þ; jEjjBj ¼ 2 Imð�2

1Þ;
(A8)

taking into account Eq. (A6). This system can then be
easily solved for the magnitudes of E and B in the Kerr-
Newman background, which turn out to be given by

jEj ¼ j Q
�2

ðr2 � a2cos2�Þj; jBj ¼ j2 Q

�2
ar cos�j;

(A9)

which coincide with those of Eq. (18). We have thus
recovered the results by Damour and Ruffini [3], but using
a different faster derivation using the Newman-Penrose
formalism.

Finally, the Schwinger formula for the rate of pair
creation per unit four-volume in terms of the electromag-
netic invariants (A7) is given by [13]

2 ImL ¼ e2jGj
4�2

@
2

X1
n¼1

1

n
coth

�
n�

�ðF 2 þ G2Þ1=2 þF

ðF 2 þ G2Þ1=2 �F

�	

� e�n�Ec=½ðF 2þG2Þ1=2�F �1=2 : (A10)

After introducing the Carter frame (15) and (16) with
respect to which electric and magnetic fields are parallel,
the previous formula reduces to Eq. (19), since

½ðF 2 þG2Þ1=2 þF �1=2 ¼ jBj;
½ðF 2 þ G2Þ1=2 �F �1=2 ¼ jEj; jGj ¼ jEjjBj:

(A11)

APPENDIX B: ELECTROMAGNETIC ENERGY
USING PAINLEVÉ-GULLSTRAND OBSERVERS

AND PSEUDOTENSOR THEORY

In order to evaluate the energy E�ðUPGÞ it is useful to
transform the Kerr-Newman metric (13) from Boyer-
Lindquist coordinates ðt; r; �;�Þ to Painlevé-Gullstrand
coordinates ðT; R;�;�Þ [30,31], which are related by the
transformation

T ¼ t�
Z r

fðrÞdr; R ¼ r; � ¼ �;

� ¼ ��
Z r a

r2 þ a2
fðrÞdr;

(B1)

where

fðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Mr�Q2Þðr2 þ a2Þp

�
: (B2)

Let us notice that r and R are identified. This is also true for
their differential dr ¼ dR but it is no more true for the
associated differentiations @r � @R. Hereafter we will al-
ways use r in place of R, except for the differentiation
operations. In differential form, this transformation writes
as

dT ¼ dt� fðrÞdr; dR ¼ dr; d� ¼ d�;

d� ¼ d�� a

r2 þ a2
fðrÞdr: (B3)

Finally, the Kerr-Newman metric in the Painlevé-
Gullstrand coordinates is given by

ds2 ¼�
�
1� 2Mr�Q2

�

�
dT2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr�Q2

r2 þ a2

s
dTdr

� 2að2Mr�Q2Þ
�

sin2�dTd�

þ sin2�

�
r2 þa2 þa2ð2Mr�Q2Þ

�
sin2�

�
d�2

� 2asin2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr�Q2

r2 þa2

s
drd�þ �

r2 þa2
dr2 þ�d�2;

(B4)

with associated electromagnetic field

F ¼ Q

�2
ðr2 � a2cos2�Þdr ^ ½dT � asin2�d��

þ 2
Q

�2
ar sin� cos�d� ^ ½ðr2 þ a2Þd�� adT�;

(B5)

which has the same form as (14) with dt ! dT and d� !
d�.
The limit of vanishing rotation parameter a ¼ 0 of the

previous equations (B4) and (B5) gives rise to the
Reissner-Nordström solution in Painlevé-Gullstrand coor-
dinates:

ds2 ¼ �
�
1� 2M

r
þQ2

r2

�
dT2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Mr�Q2

p
r

dTdr

þ dr2 þ r2ðd�2 þ sin2�d�2Þ;
F ¼ Q

r2
dr ^ dT: (B6)

In the Painlevé-Gullstrand coordinates the slicing ob-
servers (T-slicing hereafter) have 4-velocity

N ¼ @T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Mr�Q2Þðr2 þ a2Þp

�
@R (B7)

and associated 1-form N [ ¼ �dT. This family of T-
slicing-adapted observers does not coincide with the
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t-slicing-adapted observers in Boyer-Lindquist coordinates
once the coordinate transformation is performed. In fact,
when expressed in Boyer-Lindquist coordinates the T-slic-
ing-adapted observers move with respect to the t-slicing-
adapted observers in the radial direction, as already pointed
out in Sec. V.

We are now ready to evaluate the energy (39) through a
T ¼ const hypersurface as measured by Painlevé-
Gullstrand observers with 4-velocity (B7). The energy
density turns out to be

E ðN Þ ¼ TðemÞ
�� N �N � ¼ Q2

8��3
ðr2 � a2cos2�þ 2a2Þ;

(B8)

where TðemÞ
�� is the Kerr-Newman electromagnetic energy-

momentum tensor expressed in Painlevé-Gullstrand coor-
dinates. Let us assume that the boundary S of � be the 2-
surface r ¼ R ¼ const for simplicity. Therefore the energy
(39) turns out to be given by

EðN Þðrþ;RÞ ¼ 2�
Z R

rþ

Z �

0
EðN Þ ffiffiffiffiffiffiffiffi

hN
p

drd�

¼ �Q2

4a

�
a

r
þ r2 þ a2

r2
arctan

a

r
� �

2

�
R

rþ

¼ Q2

4rþ
�Q2

4R
þ 1

4

Q2

ar2þ
ðr2þ þ a2Þ arctan a

rþ

� 1

4

Q2

aR2
ðR2 þ a2Þ arctana

R
; (B9)

where hN ¼ �2sin2� is the determinant of the induced
metric. The total electromagnetic energy contained in the
whole spacetime is obtained by taking the limit R ! 1 in
the previous equation:

EðN Þðrþ;1Þ ¼ Q2

4rþ
þ 1

4

Q2

ar2þ
ðr2þ þ a2Þ arctan a

rþ
; (B10)

which in the limiting case a ¼ 0 reduces to

ERNðN Þðrþ;1Þ ¼ Q2

2rþ
: (B11)

It is interesting to note that the same result (B9) for the
energy assessed by Painlevé-Gullstrand observer is
achieved simply by using the Killing vector � ¼ @T , since
EðN Þ ¼ Eð�Þ. But it is quite surprising that the same
result is again obtained by taking a t ¼ const hypersurface
in Boyer-Linquist coordinates with unit normal the ZAMO
4-velocity n with respect to ‘‘Killing observers’’ � ¼ @t
[see Eq. (36)], since

E ðN Þ ffiffiffiffiffiffiffiffi
hN

p ¼ E
ffiffiffiffiffi
hn

p
¼ Q2

8��2
ðr2 � a2cos2�þ 2a2Þ sin�: (B12)

For completeness we list here similar results presented
in Ref. [18] by using the standard definition of symmetric
energy-momentum pseudotensor as given by Landau and
Lifshitz [32] (LL), although we stress that the physical
interpretation of these quantities is controversial in the
literature, due to their strict relation with specific coordi-
nate sets. This fact is clearly not in the spirit of general
relativity. The LL prescription for the pseudotensor is
given by 16�L	
 ¼ �	
��

;��, where the comma denotes

partial derivative and �	
�� ¼ �gðg	
g�� � g	�g
�Þ.
The conservation law L	


;
 ¼ 0 implies that the total

energy is given by E ¼ RRR
L00dx1dx2dx3. By computing

the pseudotensor in the quasi-Cartesian Kerr-Schild coor-
dinates previously introduced in Eq. (25) and requiring the
integration to be performed on a Boyer-Lindquist r ¼ R ¼
const surface, one obtains the result E ¼ M� K, where K
is just the rhs of Eq. (B9). Note that in Ref. [18] the same
result is obtained using plenty of other different energy-
momentum pseudotensors.
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