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A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a worm-

hole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping

horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat

of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature

or ‘‘flaring-out’’. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and

second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are

reviewed, including enlargement or reduction, and interconversion with black holes. A new area of

wormhole thermodynamics is suggested.
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I. INTRODUCTION

Space-time wormholes, short cuts between otherwise
distant or unconnected regions of the universe, have be-
come a popular research topic since the influential paper of
Morris and Thorne [1]. Early work was reviewed in the
book of Visser [2] and there is an extensive recent review
by Lobo [3]. The Morris-Thorne study was restricted to
static, spherically symmetric space-times, and initially
there were various ad hoc attempts to generalize the defi-
nition of wormhole by inserting time-dependent factors
into the metric, despite the problem that such metrics
become singular precisely at the throat, so do not neces-
sarily describe a traversable wormhole in any sense.

A more geometrically founded generalization was pro-
posed by the author [4] in terms of trapping horizons, also
associated with black holes. This allows a substantial body
of theory developed for black holes to be applied to worm-
holes. That reference deferred details to a longer article, of
which this is a version, ten years late. It seems timely if
only due to a recent resurgence of ad hoc approaches.

AMorris-Thorne wormhole throat, at a given static time,
is a minimal surface in the static hypersurface, i.e. locally
minimizing area among surfaces in the hypersurface. Their
‘‘flaring-out’’ condition expresses strict minimality [2]. A
natural generalization is a spatial surface which is minimal
in some spatial hypersurface. It is easy to show that, except
in the doubly marginal case, this is a (future or past)
trapped surface, more usually associated with black or
white holes. Since this is a generic condition, a generic
wormhole must consist of a space-time region. Then it is
natural to look for the boundaries of this region, which one
would expect to be trapping horizons, i.e. composed of
marginal surfaces, which are extremal in null hypersurfa-
ces. For a two-way traversable wormhole, there should be
two temporal boundaries in mutual causal contact.
Prosaically, the wormhole consists of a tunnel between
two mouths. In static cases, the tunnel shrinks away and
the two mouths coincide as the throat. In nonstatic cases,

‘‘throat’’ evidently means different things to different
people, so the terminology will be avoided here.
This viewpoint has various consequences. First, a

Morris-Thorne wormhole throat is a double trapping hori-
zon, which will generally bifurcate under a dynamic per-
turbation, such as someone crossing it. This raises the
issues of stability and, if stable, maintenance, i.e. returning
a perturbed wormhole to a static state. Also, since black
holes may also be defined locally in terms of trapping
horizons, it is possible for a wormhole to collapse to a
black hole, or for a black hole to be converted to a travers-
able wormhole. Concrete examples of such processes, both
analytical and numerical, in toy models and full Einstein
gravity, were given in a series of papers [5–13].
For pedagogical reasons, this article will be restricted to

spherical symmetry, though everything can be generalized
as outlined in the original reference [4]. Einstein gravity
will be assumed, though the key ideas can be generalized to
other metric-based theories and other dimensions.
Section II reviews the necessary geometrical ideas,
Sec. III defines wormhole mouths, Sec. IV checks the static
limit, and Sec. V derives some basic laws of wormhole
dynamics and cites examples.

II. GEOMETRY

In spherical symmetry, the area A of the spheres of
symmetry is a geometrical invariant. It is convenient to

use the area radius r ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
A=4�

p
, so that

A ¼ 4�r2: (1)

A sphere is said to be untrapped, marginal, or trapped,
respectively, if g�1ðdrÞ is spatial, null, or temporal, where
g is the metric and g�1 its inverse. If the space-time is time
orientable and g�1ðdrÞ is future (respectively, past) causal,
then the sphere is said to be future (respectively, past)
trapped or marginal. A hypersurface foliated by marginal
spheres is called a trapping horizon [14,15].
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The Kodama vector [16] is

k ¼ g�1ð�drÞ; (2)

where � is the Hodge operator in the space normal to the
spheres of symmetry, i.e.

k � dr ¼ 0; gðk; kÞ ¼ �g�1ðdr; drÞ: (3)

This vector gives a preferred flow of time, coinciding with
the static Killing vector of standard black holes such as
Schwarzschild and Reissner-Nordström. Note that k is
temporal, null or spatial, respectively, on untrapped, mar-
ginal, or trapped spheres.

Both k and the corresponding energy-momentum den-
sity

j ¼ �g�1ðT � kÞ; (4)

where T denotes the energy-momentum-stress tensor, are
covariantly conserved [17,18]:

r � k ¼ 0; (5)

r � j ¼ 0; (6)

where r denotes the covariant derivative operator and the
second property uses the Einstein equation. These Noether
currents therefore admit Noether charges

V ¼ �
Z
�
�̂ � k; (7)

m ¼ �
Z
�
�̂ � j; (8)

where �̂ denotes the volume form times unit normal of a
spatial hypersurface with regular center. The charges are
found to be area volume

V ¼ 4
3�r

3 (9)

and the active gravitational mass m [19]:

1� 2m=r ¼ g�1ðdr; drÞ; (10)

where spatial metrics are positive definite and the
Newtonian gravitational constant is unity. Evidently r >
2m, r ¼ 2m, or r < 2m, respectively, on untrapped, mar-
ginal, or trapped spheres. Various other properties illumi-
nating the physical meaning of m have been derived
[17,18,20].

Surface gravity was defined as [18]

� ¼ 1
2 � d � dr; (11)

where d is the exterior derivative in the normal space, i.e.
�d � d is a two-dimensional wave operator. It can be shown
[18] to satisfy

k � ðr ^ gðkÞÞ ¼ �dr (12)

and therefore

k � ðr ^ gðkÞÞ ffi ��gðkÞ; (13)

where ffi henceforth denotes evaluation on a trapping
horizon r ffi 2m, similarly to the usual Killing identity.
Then a trapping horizon is said to be outer, degenerate,
or inner, respectively, if � > 0, � ¼ 0, or � < 0. Examples
of all types are provided by Reissner-Nordström solutions.
The Einstein equation implies

� ¼ m

r2
� 4�rw; (14)

where the work density is

w ¼ �1
2 trT (15)

and the trace is in the normal space. In vacuo, � ism=r2 and
therefore reduces to the Newtonian surface gravity in the
Newtonian limit, since m reduces to the Newtonian mass
[17,18].
Another invariant of T is the energy flux

c ¼ T � g�1ðdrÞ þ wdr: (16)

The Einstein equation implies

dm ¼ Ac þ wdV (17)

which was dubbed the unified first law [18], as it encodes
first laws of both thermodynamics and black-hole dynam-
ics. Essentially, it expresses energy conservation, with the
terms on the right-hand side being interpreted, respec-
tively, as energy supply and work.
The fields ðA; r; k; j; V;m; �; w; c Þ have been introduced

above in a manifestly invariant way. For calculations, it is
often useful to use dual-null coordinates x�, in terms of
which any spherically symmetric metric can locally be
written as

ds2 ¼ r2d�2 � 2e2’dxþdx�; (18)

where d�2 ¼ d�2 þ sin2�d�2 for spherical polar coordi-
nates ð�;�Þ, and ðr; ’Þ are functions of ðxþ; x�Þ. There is
still the freedom to rescale functionally x� ! ~x�ðx�Þ,
under which ’ transforms by additive functions of xþ
and x�. Then the following explicit expressions can be
obtained:

k ¼ e�2’ð@þr@� � @�r@þÞ; (19)

2m=r� 1 ¼ 2e�2’@þr@�r; (20)

� ¼ �e�2’@þ@�r; (21)

w ¼ e�2’Tþ�; (22)

c ¼ �e�2’ðTþþ@�rdxþ þ T��@þrdxþÞ: (23)

This also shows how c encodes radiative components of T,
while w encodes the Coulomb-like component, e.g. w ¼
E2=8� for the electric field E ¼ q=r2 of a Reissner-
Nordström black hole with charge q.
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The Einstein equations in these coordinates are

@�@�r� 2@�’@�r ¼ �4�rT��; (24)

r@þ@�rþ @þr@�rþ 1
2e

2’ ¼ 4�r2Tþ�; (25)

r2@þ@�’�@þr@�r� 1
2e

2’¼�4�r2ðTþ�þe2’pÞ; (26)

where p ¼ T�
� ¼ T�

� is the transverse pressure. It follows

that

@�m ¼ 4�r2e�2’ðTþ�@�r� T��@�rÞ; (27)

which is a coordinate version of the unified first law (17).

III. WORMHOLE MOUTHS

A wormhole mouth, previously called horizon [4], is
defined as a temporal outer trapping horizon. It is temporal
in order to be two-way traversable, while the outer condi-
tion

� > 0 (28)

is proposed as the generalization of the minimality condi-
tion. Since g�1ðdr; drÞ ¼ �2e�2’@þr@�r, either @þr or
@�r must vanish on the mouth, and @þr ffi 0 will be
assumed henceforth.

Introducing a generating vector � of the marginal sur-
faces composing the mouth, its defining property is

� � dð@þrÞ ffi 0: (29)

Writing � ¼ �þ@þ þ ��@�, one has

�þ > 0; �� > 0 (30)

for future-pointing �. Then (29) expands as �þ@þ@þrþ
��@�@þr ffi 0, then (21) shows that

@þ@þr > 0 (31)

which expresses strict minimality of the sphere in the null
hypersurface generated in the @þ direction.

Hochberg and Visser [21,22] gave an alternative defini-
tion using a nonstrict version of (31) rather than � > 0.
However, they specifically allowed spatial �, which does
not give local two-way traversability and for which (31)
can select maximal rather than minimal surfaces. For in-
stance, consider any Robertson-Walker space-time with a
bounce and a maximal surface in that time-symmetric
hypersurface. There are two trapping horizons intersecting
at the maximal surface, which if spatial satisfy (31) there.

Strict minimality has been assumed for simplicity. For a
minimal surface in a null hypersurface, one has merely
� � 0, which suffices for many purposes but also includes
surfaces which are not minimal. The analysis to follow will
be of a single wormhole mouth, though it should be
stressed that two-way traversability requires two mouths
with opposite senses, i.e. marginal in opposite null direc-
tions, in mutual causal contact.

IV. STATIC WORMHOLES

Locally one can always introduce coordinates ðt; r�Þ
defined by

ffiffiffi
2

p
x� ¼ t� r�, where r� is a generalization

of the Regge-Wheeler ‘‘tortoise’’ coordinate [23]. Then the
metric takes the form

ds2 ¼ r2d�2 þ e2’ðdr2� � dt2Þ: (32)

The metric in either ðxþ; x�Þ or ðt; r�Þ coordinates is man-
ifestly regular if ðr; ’Þ are finite, assumed henceforth, and r
is nonzero.
In a static case with static Killing vector @t, so that ðr; ’Þ

are independent of t, transforming further from r� to r
yields

ds2 ¼ r2d�2 þ ð1� 2m=rÞ�1dr2 � e2’dt2 (33)

which is essentially the Morris-Thorne form of the metric.
They introduced new jargon which has been enthusiasti-
cally adopted by wormhole aficionados, namely, ‘‘shape
function’’ for 2m and ‘‘redshift function’’ for ’. Indeed ’
is related to redshift, but better understood as a gravita-
tional potential, reducing to the Newtonian potential in the
Newtonian limit, if t reduces to Newtonian time. This and
the fact that m is active gravitational mass are useful in
physically interpreting such metrics.
The Morris-Thorne metric is singular at the wormhole

throat r ffi 2m, so they used an embedding method to
express minimality, as verified in the book of Visser [2].
Actually, there is no need to use a fictitious embedding
space, as minimality is an intrinsic property. While the
Morris-Thorne paper is still in many ways an excellent
read, this is one unfortunate aspect which continues to
inspire confusion. In particular, it is not recommended to
generalize by naively inserting time-dependent or angular-
dependent factors into a metric which is singular precisely
at the object of interest.
In static cases, a wormhole mouth as defined above must

be a double trapping horizon, @þr ffi @�r ffi 0, since @� ¼ffiffiffi
2

p ð@t � @�Þ and @tr ¼ 0. Then

@�r ffi 0 (34)

so the surface is extremal in the static hypersurface. Since
@t@tr ¼ 0, one finds @�@�r ¼ 2@þ@þr ¼ 2@�@�r ¼
�2@þ@�r, so the minimality condition (31) implies that
the surface is strictly minimal in the static hypersurface,

@�@�r > 0: (35)

Thus the proposed definition of wormhole mouth recovers
the Morris-Thorne definition appropriately. One may
equivalently use proper radius

R
e’dr� instead of r� [2].

A calculation shows that

2� ¼ m

r2
� @rm

r
þ

�
1� 2m

r

�
@r’: (36)

In particular,
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2� ffi ðm� r@rmÞ=r2 (37)

so that � > 0 reduces to the flaring-out condition of Morris
and Thorne, their Eq. (54). Thus their embedding method
correctly expresses strict minimality in static cases.

Another calculation shows that

� ffi 2�rð�� �Þ; (38)

where � ¼ �Tt
t is the energy density and � ¼ �Tr

r the
radial tension. This confirms that the weak energy condi-
tion must be violated [1],

� > �: (39)

Moreover, it provides a simple measure of the violation,
�� � equalling surface gravity over circumference [4].

One might object to referring to � as surface gravity in
the case of a static wormhole; it is rather an invariant
measure of the radial curvature or flaring-out. Quoting
tetrad Riemann curvature components in Eqs. (8) of
Morris and Thorne:

Rr̂
�̂ r̂ �̂

¼ Rr̂
�̂ r̂ �̂

ffi �2�=r: (40)

While Riemann curvature, like Gaussian curvature, has
units of inverse length squared, �, like principal curvature,
has units of inverse length, as appropriate for measuring
radial curvature. Actually, anywhere in a static space-time,
the same expressions show that

Rr̂
�̂ r̂ �̂

þ Rt̂
�̂ t̂ �̂

¼ Rr̂
�̂ r̂ �̂

þ Rt̂
�̂ t̂ �̂

¼ �2�=r (41)

which indicates how � generally also includes temporal
curvature.

V. LAWS OF WORMHOLE DYNAMICS

This section derives some basic laws of wormhole dy-
namics which were stated previously [4]. Applications to
dynamical processes involving wormholes have been made
concrete in various examples, so will be only briefly men-
tioned and cited.

Negative-energy density: the null energy condition is
necessarily violated on a wormhole mouth. Proof: use the
focussing equations (24) and the minimality property (31):
Tþþ < 0.

This confirms that ‘‘exotic’’ matter is required even in
dynamic cases, which might also be called phantom or
ghost matter, generalizing terminology from cosmology or
quantum field theory, respectively. Claims that this need
not be so in Einstein gravity either do not involve travers-
able wormholes as defined here, or evaluate energy density
somewhere other than a mouth, e.g. at a center of symme-
try described as a throat, or involve calculational errors. In
dynamic cases, there are actually two independent con-
straints on energy density [24].

Since a black hole may be locally defined by a future
outer trapping horizon [14,18], this allows interconversion
of black holes and traversable wormholes. A future outer
trapping horizon characterizes a black hole if achronal,
equivalently Tþþ � 0, and a wormhole if temporal, equiv-
alently Tþþ < 0. Thus a traversable wormhole can col-
lapse to a black hole if its negative-energy source fails, or if
enough positive-energy matter or radiation is pumped in
[4–9,11]. Conversely, a black hole can be converted into a
traversable wormhole by beaming in enough negative-
energy radiation [4,5,8–13]. Wormhole construction from
disjoint regions of flat space-time has recently been dem-
onstrated by Maeda [25], albeit with a singularity at the
topology change.
Zeroth law: � is constant on a static wormhole throat.

Proof: obvious.
Second law: future, past, or static wormhole mouths,

respectively, have decreasing, increasing, or constant area.
Proof: the expansion of the mouth is

A0=A ¼ 2r0=r; (42)

where the prime henceforth denotes � � d. One can expand
� � dr ¼ �þ@þrþ ��@�r ffi ��@�r, while @�r is nega-
tive, positive, or zero, respectively, for future, past, or static
wormhole mouths.
This is like the second law of black-hole dynamics [14],

but with reversed sign, reflecting the causal character of the
mouth, or equivalently, the reversed null energy condition.
It follows that a static wormhole is enlarged or reduced,
respectively, by opening then closing a region of past or
future trapped surfaces. To enlarge, this can be done by
beaming in negative energy, balanced by subsequent posi-
tive energy, while the opposite order would reduce the area
[4,6,7,9–13]. For some matter models, this can be done in
an apparently stable way [5,6,8–13], while others are un-
stable, leading either to collapse to a black hole as above,
or to inflationary expansion [7,11,26–28].
First law:

m0 ffi �A0

8�
þ wV 0: (43)

Proof: one can calculate this by a few steps as the projec-
tion of the unified first law (17) along �, but the easiest way
is to multiply the expression (14) for � by A0, then use the
fact that r ffi 2m and r0 ffi 2m0.
This has the same form as the first law of black-hole

dynamics [18]. These three laws therefore suggest a genu-
ine connection with thermodynamics. Indeed, it has re-
cently been shown that any future outer trapping horizon
has a local Hawking temperature �=2� [29], which there-
fore applies to future wormhole mouths. Thus there is a
new field of wormhole thermodynamics waiting to be
explored.
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