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General relativity is a phenomenologically successful theory that rests on firm foundations, but has not

been tested on cosmological scales. The deep mystery of dark energy (and possibly even the requirement

of cold dark matter), has increased the need for testing modifications to general relativity, as the inference

of such otherwise undetected fluids, depends crucially on the theory of gravity. In this work I outline a

general scheme for constructing consistent and covariant modifications to the Einstein equations. This

framework is such that there is a clear connection between the modification and the underlying field

content that produces it. I argue that this is mandatory for distinguishing modifications of gravity from

conventional fluids. I give two nontrivial examples, the first of which is a simple metric-based

modification of the fluctuation equations for which the background is exact �CDM and the second has

a Dvali-Gabadadze-Porrati background but differs from it in the perturbations. I present their impact on

observations of the cosmic microwave background radiation.

DOI: 10.1103/PhysRevD.79.123527 PACS numbers: 98.80.Jk

I. INTRODUCTION

The theory of gravity plays a fundamental role in our
modelling and understanding of the Universe. If we are to
know the matter constituents of the Universe, we have to be
sure we understand what is the underlying gravitational
theory. Einstein’s general relativity (GR) has played a key
role in formulating modern cosmology, first as a smooth
Friedmann-Lemaı̂tre-Roberson-Walker (FLRW) space-
time, then at the level of linearized fluctuations about this
spacetime.

General relativity is a very solid principle theory from
the theoretical point of view, (and quite understandably the
aesthetical point of view). The Lovelock-Grigore theorem
[1,2] asserts that GR with a cosmological constant is
unique under the following assumptions: geometry is
Riemannian and the gravitational action depends only on
the metric; it is local and diffeomorphism invariant and
leads to second order field equations. Relaxing any of these
assumptions can lead to more general gravitational theo-
ries, e.g. adding extra fields [3–12], having higher deriva-
tives [13], having a pregeometry [14–16], or making the
theory nonlocal [17–19]. See [20,21] for discussions. This
is not an exhaustive list but possible theories fall into one or
more categories above.

However as nice as we may think that GR is, the ultimate
judge is experiment. Indeed, different aspects of GR have
been vigorously tested in the lab, in the solar system, and
with binary pulsars, all of which lie in the strong curvature
regime (compared to cosmology).

The discovery that the expansion of the Universe is
accelerating opens the possibility that general relativity
breaks down on large scales or low curvatures. It may

also be that the apparent missing mass in the universe is
not in the form of cold dark matter but once again due to
departures from general relativity. This opens the need for
cosmological tests of gravity, and much work has been
carried out in this direction [22–34] at various levels. More
recently Hu and Sawicki [35], and Hu [36], have laid down
a fully covariant formulation of modifications to gravity
under well-motivated assumptions.
In this work I outline a general scheme for constructing

consistent modifications to the Einstein equations. The
scheme is such that, one can clearly classify the modifica-
tions according to whether they obey or violate diffeo-
morphism invariance, need extra fields, or stem from
higher derivative theories. Indeed the advantage of this
method is the direct connection between the field content
and the modifications. As I argue further below, the speci-
fication of the field content is essential if we are to dis-
criminate between a modified gravitational law or the
effects of conventional matter fluids. Additional assump-
tions as in [24,35,36] can always be used at the very end
but we shall not consider this possibility here.
I consider two examples of this method. First, I construct

the most general modification for which the FLRW back-
ground is exactly �CDM, does not contain additional
fields and leads to at most second order differential equa-
tions. I then illustrate the effects on observables in a simple
subcase. As I show further below, this leads to suppression
of power in the spectrum of the cosmic microwave back-
ground (CMB) on large scales up to and including the first
peak. I then consider a less trivial example where the
background cosmology evolves like a Dvali-Gabadadze-
Porrati (DGP) model [17] and construct simple perturbed
equations (different from the proper DGP model) under the
assumption that the theory does not contain additional
fields and leads to at most second order differential equa-*cskordis@perimeterinstitute.ca
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tions. I calculate the spectrum of the CMB in the DGP-like
model and show that unlike the proper DGP theory it leads
to a suppression of power on large scales.

II. THE FRAMEWORK

A. Setup

Following Hu [36] we start by putting the gravitational
field equations in the form

Gab ¼ 8�GTðknownÞ
ab þUab: (1)

Here, Gab is the Einstein tensor for the universal matter

metric gab, T
ðknownÞ
ab is the stress-energy tensor of all known

forms of matter (like baryons, photons and neutrinos), Uab

is a general tensor that encapsulates all the unknown fields/
modifications and can depend on Tab for each field and
various combinations of metric functions (such as curva-
ture tensors). If desirable one may also include cold dark

matter in TðknownÞ
ab , as I also do in the examples given in this

work.
The assumption of up to second order field equations,

translates to having only up to first derivatives of the extra
field in U0� and up to second derivatives in Uij. Relaxing

this assumption is possible and will simply give higher
order field equations, but one has to be cautious that quite
generally higher derivative theories lead to instabilities.

At this point we have to decide on the field content, i.e.
whether Uab depends on additional fields or the metric
alone. In the former case, we must add one field at a time
and ensure its energy conservation by applying the Bianchi
identity, which directly translates to

raU
a
b ¼ 0 (2)

and gives a field equation for the extra field. Violating the
Bianchi identity leads to entirely arbitrary parameteriza-
tions and will not be considered. The caveat of this ap-
proach is that in the case that more than two independent
degrees of freedom are present in Uab, one would have to
supply extra equations for these, not given by the Bianchi
identity (see [12,37,38] for examples). Finally, there could
be interactions between fields in Tknown

ab and Uab. For

simplicity I do not consider this possibility further, but it
is straightforward to add.

B. FLRW background dynamics

We now split the dynamics of the problem in the back-
ground FLRW dynamics and their fluctuations about that
background. The FLRW metric is ds2¼a2ð�d�2þ
qijdx

idxjÞ, where � is the conformal time, a is the scale

factor, and qij is a spatial metric of constant (dimension-

less) curvature K. The FLRW assumption means that ef-
fectively we are considering a collection of scalar fields on
the spatial hypersurface of homogeneity and isotropy. This
boils down to requiring that the Lie derivative of the extra

field vanishes for all six Killing vectors of the FLRW
spacetime. Examples are a scalar field �ð�Þ, a vector field
with components A� ¼ ðAð�Þ; 0; 0; 0Þ, and a tensor field
Xa

b whose only nonvanishing components must be X0
0 ¼

�Xð�Þ and Xi
j ¼ Yð�Þ�i

j. In the special case of a unit-

timelike vector field, the function Að�Þ is pure gauge and
the contribution of such a field to the FLRW equations is
generally given in terms of functions of a, _a, and €a [10,11].
Lets define EF ¼ �a2G0

0 and ER such that a2Gi
j ¼

ER�
i
j, which are explicitly given by

EF ¼ 3
_a2

a2
þ 3K (3)

and

ER ¼ �2
€a

a
þ _a2

a2
� K; (4)

respectively. The FLRWequations corresponding to (1) are
then simply written as

EF ¼ 8�Ga2
X
i

�i þ a2X (5)

and

ER ¼ 8�Ga2
X
i

Pi þ a2Y; (6)

where �i and Pi are the density and pressure for each
known fluid, and the index i runs over all known fluids.
Applying the Bianchi identity then gives

_E F þ _a

a
ðEF þ 3ERÞ ¼ 0; (7)

while the fluid equation is as usual _�þ 3 _a
a ð�þ PÞ ¼ 0.

Applying the Bianchi identity on Uab imposes

_X þ 3
_a

a
ðX þ YÞ ¼ 0: (8)

The above equation will give the background equation for
the extra field, or additional constraints on X and Y in the
absence thereof. We see that any FLRW background can be
modeled via one arbitrary function Yð�Þ and a second
function Xð�Þ found by solving (8). This construction tells
us that it is impossible to distinguish models of modified
gravity from models where the dark energy or dark matter
are due to conventional fluids, by using the FLRW back-
ground equations alone.

1. Example 1: Scalar field

Adding a scalar field amounts to letting X ¼
Xð�; _�; a; _aÞ and Y ¼ Yð�; _�; €�; a; _a; €aÞ, if we are to ex-
pect at most second order field equations for the scalar. For

example, a canonical scalar field corresponds to X ¼
1
2a2

_�2 þ Vð�Þ and Y ¼ 1
2a2

_�2 � Vð�Þ.
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2. Example 2: Jordan-Fierz-Brans-Dicke theory

A less trivial example is the Jordan-Fierz-Brans-Dicke
theory [3–6] where in addition to gab the gravitational
sector contains a scalar field � and depends on a single
parameter, namely, the coupling constant !. In this case
the functions Xð�Þ and Yð�Þ correspond to

X ¼ 8�Ga2ðe� � 1Þ�þ !

2a2
_�2 þ 3

a2
_a

a
_� (9)

and

Y ¼ 8�Ga2ðe� � 1ÞP� 1

a2

�
€�þ _a

a
_�� 2þ!

2
_�2

�
;

(10)

respectively. Notice that these functions now depend ex-
plicitly on the total energy density and pressure of ordinary
matter contained in Tknown

ab . It is easy to show that the

background Bianchi identity (8) then gives the field equa-
tions for �.

C. Linear perturbations

1. Gauge-form invariance

Consider now the (scalar) fluctuations about the FLRW
metric as

ds2 ¼ �a2ð1� 2�Þdt2 � 2a2ð ~ri�Þdtdxi
þ a2½ð1þ 1

3	Þqij þDij��dxidxj; (11)

where Dij � ~ri
~rj � 1=3qij

~r2
is a spatial traceless de-

rivative operator. A perfect fluid is described at the fluc-
tuation level by a density contrast �, momentum 
 such

that its total momentum is ui ¼ a ~ri
, dimensionless pres-
sure perturbation � such that �Ti

j ¼ ���i
j and shear �,

such that the shear tensor is �ij ¼ Dij�.

We now decide whether the parameterization should
obey diffeomorphism invariance. At the linearized level
this is the requirement that all field equations must be
gauge-form invariant. Let us demonstrate what gauge-
form invariance is for the case of standard GR coupled to
a fluid. Gauge transformations are infinitesimal diffeomor-
phisms generated by a vector field �a, which can be

parameterized as �� ¼ að��; ~ric Þ. All perturbations

apart from � above are not gauge invariant but transform
with � and c as in Table I. Consider the �G0

0 Einstein

equation, which is

� 1

3
ð ~r2 þ 3KÞ½	� ~r2

�� þ _a

a
½ _	þ 2 ~r2

�� þ 6
_a2

a2
�

¼ 8�Ga2��: (12)

If we perform a gauge transformation X ! X0 to all per-
turbations above, the �G0

0 Einstein equation becomes

� 1

3
ð ~r2 þ 3KÞ½	0 � ~r2

�0� þ _a

a
½ _	0 þ 2 ~r2

� 0� þ 6
_a2

a2
�0

¼ 8�Ga2��0 þ 3

a

_a

a
½EF þ ER � �� P��: (13)

The dependence on the gauge variable � can only be
eliminated if and only if the background FLRW equations
are satisfied. Any consistent diffeomorphism invariant the-
ory must have this property.
After eliminating the gauge variable from (13) via the

background FLRW equations, the only remaining differ-
ence between (12) and (13) is a simple relabeling of the
perturbation variables X ! X0. In other words, the equa-
tion retains its exact form: it is form invariant. This should
not be confused with general covariance where the field
equation can be consistently transformed in a desired
coordinate system where it may look different but still
contain the same physics. At the perturbative level, general
covariance is the fact that the equations written in different
gauges are physically equivalent, even though they look
substantially different. The reader is referred to [39–42] for
the difference between general covariance and general
invariance in GR. Gauge-form invariance always holds
for all field equations, which stem from a diffeomorphism
invariant action, no matter how complicated the theory is.
We can shortcut testing for gauge-form invariance as

follows: First, define the three gauge noninvariant poten-

tials V � _�þ 2� , J � 	� ~r2
�, and W � _	þ 2 ~r2

� ¼
_J þ ~r2

V, which are the only three combinations of metric
variables appearing in the perturbed Einstein tensor. They
transform only with the gauge variable �. Then define the
two gauge-invariant potentials

�̂ � � 1

6
J þ 1

2

_a

a
V (14)

and

�̂ � ��� 1

2
_V � 1

2

_a

a
V: (15)

We can now split the perturbed Einstein tensor into a gauge
invariant and a gauge noninvariant part that involves the
variable V. For simplicity let us define E� ¼ �a2�G0

0,

E� such that �a2�G0
i ¼ ~riE�, EP by EP ¼ a2�Gi

i and
E� as a2½�Gi

j � 1
3�G

k
k�

i
j� ¼ Di

jE�. Explicitly we get

TABLE I. Gauge transformations for the metric, fluid, and
Einstein tensor variables.

� ! �� _�
a � ! � þ 1

a ½�þ _a
a c � _c �

	 ! 	þ 1
a ½6 _a

a �þ 2 ~r2
c � � ! �þ 2

a c
V ! V þ 2

a � J ! J þ 6
a

_a
a �


 ! 
þ 1
a � W ! W þ 6

a ½ _aa _�þ ð €aa � 2 _a2

a2
Þ�

� ! �� 3
a ð1þ wÞ _a

a � þ 1
3
~r2
��

E� ! E� þ 1
a ðEF þ ERÞ� � ! �þ 1

a ½ _w� 3wð1þ wÞ _a
a��

EP ! EP þ 3
a ½ _ER � 2 _a

a ER�� E� ! E� � 3
a

_a
a ðEF þ ERÞ�
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E� ¼ 2ð ~r2 þ 3KÞ�̂� 6
_a

a

�
_̂
�þ _a

a
�̂

�

� 3

2

_a

a
ðEF þ ERÞV; (16)

E� ¼ 2

�
_̂
�þ _a

a
�̂

�
þ 1

2
ðEF þ ERÞV; (17)

EP ¼ 6
d

dt

�
_̂
�þ _a

a
�̂

�
þ 12

_a

a

�
_̂
�þ _a

a
�̂

�
� 2ð ~r2 þ 3KÞ

� ð�̂� �̂Þ � 3ðEF þ ERÞ�̂þ 3

2

�
_ER � 2

_a

a
ER

�
V;

(18)

and

E� ¼ �̂� �̂: (19)

The perturbed (generalized) Einstein Eqs. (1) are then
given as

E� ¼ 8�Ga2��þU�; (20)

E� ¼ 8�Ga2ð�þ PÞ
þU�; (21)

EP ¼ 24�Ga2��þUP; (22)

E� ¼ 8�Ga2ð�þ PÞ�þU�; (23)

where the Ui variables are defined in the same way as for
the Ei variables with �Ga

b replaced by �Ua
b.

2. Importance of gauge-form invariance and the field
content

Let us now illustrate why the procedure for establishing
that the equations are gauge-form invariant is important,
not at all redundant.

The majority of the parameterized schemes start by
assuming the conformal Newtonian gauge. While these
schemes may be consistent, it is far from obvious that
they are so. In fact, from the way that they are set up it is
impossible to actually test for consistency under gauge-
form invariance. Writing the equations in the conformal
Newtonian gauge, and then performing a gauge transfor-
mation will introduce additional terms, which will depend
on the gauge variables � and c . It is not at all clear that the
coefficients of the gauge variables will vanish, which is one
of the requirements of gauge-form invariance.

The question that arises in the light of the above, is
whether it might be possible to interpret the potentials
appearing in the equations in conformal Newtonian gauge
as the gauge-invariant potentials. It might seem that this
solves the problem of gauge-form invariance, as all the
terms would now be explicitly gauge invariant.
Unfortunately, this interpretation is also incorrect. The
reason is that it is impossible in general to write down

the perturbed field equations (whether Einstein equations
or any other set of field equations), such that all terms that
appear are by construction gauge invariant. The only case
that this is actually possible is when the background ten-
sors are constant, which is forbidden in the case of an
FLRW universe. This is a consequence of the well-known
Stewart-Walker lemma [43]. In other words, although it is
possible to write any perturbed field equation as a sum of
gauge-invariant terms, each term cannot in general arise as
a perturbation of a tensor constructed out of the fields of the
theory. Such a construction is nothing more than a conve-
nient mathematical construct but otherwise physically
empty.
The true power of gauge-form invariance manifests in

conjunction with the specification of the field content of the
parameterization. Different fields transform differently
under gauge transformations and this is then directly linked
to the individual gauge noninvariant terms, which can be a
part ofUa

b. However, it might not be directly obvious why

specifying the field content of Ua
b is by itself important.

After all why not simply consider the gauge transformation
of the whole of Ua

b and ignore its composition?

Let us exemplify. The tensor Ua
b transforms as a whole

like a stress-energy tensor and this is enough for construct-
ing consistent parameterizations of Ua

b. Such is the ap-

proach followed in [36]. However, this prohibits a direct
physical interpretation of our findings in the case that a
nonzero contribution from Ua

b is detected. More specifi-

cally, it is impossible to attribute this contribution to a
modification of gravity as opposed to the presence of
some ordinary unknown fluid without further assumptions.
For example, that the difference ���, commonly (and
incorrectly) thought of as indicating a modification of
gravity could be also be sourced by a standard fluid with
shear, has been mooted by Kunz and Sapone [44] and by
Bertschinger and Zukin [34]. Specifying the field content
of Ua

b is the extra assumption that we need to distinguish

between a modification of gravity and the gravitational
effect of standard fluids. Once the fields comprising Ua

b

are specified we can proceed to answer the question, ‘‘what
is the force between two well separated masses in vac-
uum?’’ We can then distinguish gravity from fluids de-
pending on whether the field equations lead to a
modification of the standard gravitational law or not. I
shall not consider the details of how this last step is
performed (the reader is referred to [45] for the case of
GR in an expanding background) in this work but only
consider the way of how such field equations can be con-
sistently written.

3. Number of time derivatives

Once we have added the gauge noninvariant terms and
correctly fixed the functions multiplying them by requiring
gauge-form invariance to hold, we can proceed to add more
gauge-invariant terms involving the extra fields, the known
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matter fields and the gauge-invariant potentials �̂ and �̂. If
we want to consider only parameterizations that lead to
second order field equations in all variables, then we have
to be careful what terms we add and where. For example,
when we add metric terms, we can add up to first deriva-
tives in the two Einstein constraint Eqs. (20) and (21), and
up to second derivatives in the two Einstein propagation

Eqs. (22) and (23). Since �̂ is of first order in the metric

variables, while �̂ is of second order, we can add �̂ in all

four Einstein equations but
_̂
� and �̂ only in the two

propagation Eqs. (22) and (23). Note that although
_̂
�þ

_a
a �̂ is of first order in the metric perturbations, it contains

second derivatives of the scale factor, and so it cannot be
added to (20) and (21), unless we relax the second order
field equations constraint. The reason it is allowed in the
definition of E� above is because there are also second
derivatives of the scale factor appearing in the gauge non-
invariant part of E� proportional to V. Thus, when E� is
written in terms of the actual metric potentials, the €a terms
cancel and the final expression contains only first deriva-
tives in all the variables. On the contrary, when we add
solely gauge-invariant terms we no longer have this luxury.

Let us also note that the gauge variable c is not involved
in the transformation of the Einstein tensor. Thus, if any
extra field does transform with c it will always appear in
combination with �, � , or 	 in the field equations, in a way
that the whole combination does not transform with c . An
explicit example can be found in [38].

4. Bianchi identity

We finally utilize the Bianchi identity which at the
linearized level simply translates in terms of the added
variables U�, U�, UP, and U� as

_U � þ _a

a
U� � ~r2

U� þ 1

2
a2ðX þ YÞW þ _a

a
UP ¼ 0

(24)

and

_U �þ2
_a

a
U��1

3
UP�2

3
ð ~r2þ3KÞU�þa2ðXþYÞ�¼0:

(25)

This provides us with the field equations for the extra fields
[46], or with additional constraints on the added functions
in the absence thereof.

III. EXAMPLES

A. Conventional fluid

As I have already discussed above, the requirement of
gauge-form invariance severely constrains the terms in-
volved in the perturbed field equations. Suppose that we
had decided to change the right-hand side of the Einstein
equations to 8�Ga2f1ð�Þ�, 8�Ga2f2ð�Þ
, and

24�Ga2f3ð�Þ�, while maintaining the standard
Friedmann equation 3H2 ¼ 8�G�. We would then have
found that by virtue of the background equations, the
Einstein equations are gauge-form invariant if and only if
f1 ¼ f3 ¼ �, and f2 ¼ �þ P.

B. The extended �CDM model

I further illustrate the above scheme with a less trivial
example than the conventional fluid. In what follows I find
the most general diffeomorphism invariant modification to
the Einstein equations for which the background cosmol-
ogy is the plain �CDM model, no extra fields are present,
and no higher derivative than two is present in the field
equations. Since there are no extra fields and the back-
ground is unchanged from �CDM we can only add gauge-

invariant terms to Einstein equations by setting U� ¼
1
aA�̂, U� ¼ 1

a2
B�̂, UP ¼ C1�̂þ C2

_̂
�þ C3�̂, and

U� ¼ D1�̂þD2
_̂
�þD3�̂ for spatial pseudodifferen-

tial operators A, B, Ci, and Di. Applying the Bianchi

identity we get two equations involving
_̂
�, �̂, and �̂, and

consistency requires that these equations must be satisfied

whatever the values of
_̂
�, �̂, and �̂. A sufficient condition

is found by setting the coefficients of these terms to zero,
which gives C3 ¼ D3 ¼ 0, the two constraints

A ¼ � _aC2; (26)

1

a2
B� 1

3
C2 ¼ 2

3
ð ~r2 þ 3KÞD2; (27)

and the two differential equations

_Aþ _aC1 � 1

a
~r2B ¼ 0; (28)

1

a2
_B� 1

3
C1 � 2

3
ð ~r2 þ 3KÞD1 ¼ 0: (29)

A quick examination reveals that ifA andB are both zero
then we get exact GR. The same holds if D1 and D2 are
also both zero, hence a generic prediction of this kind of

modification to GR is that �̂� �̂ should deviate from the
GR value. Another special case is when D2 ¼ B ¼ 0 but
D1 is not assumed at first to vanish. Using the above
conditions, however, we find that all operators must vanish
and once again we recover GR.
To illustrate the effect on observables lets make further

assumptions and consider a simple subcase for which the
spacetime is spatially flat and for which B ¼ C1 ¼ D1 ¼
0. The only nonzero operators are A ¼ �H2

0 , C2 ¼
� �H2

0

_a , and D2 ¼ �H2
0

2 _a
1
~r2 . Thus, we parameterize devia-

tions from GR with a single dimensionless parameter �,
which appears only in the perturbed equations and not in
the background.
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The action of 1
~r2 is defined by its spectral representation,

i.e.

1

~r2
Fðt; ~xÞ ¼ � 1

ð2�Þ3
Z

d3 ~kei
~k� ~x 1

k2
fðt; ~kÞ; (30)

where F and f is a Fourier transform pair. In particular it is
easy to show using the above definition that 1

~r2 �
3ð ~xÞ ¼

� 1
4�j ~xj as we would expect from the usual solution to

Laplace’s equation ~r2 1
j ~xj ¼ �4��3ðxÞ (see Appendix C).

Thus, we can simply replace 1
~r2 by� 1

k2
in the Fourier space

field equations given in Appendix A and solve them. After
we have the solution to all perturbations we can Fourier
transform them back to real space without any
inconsistency.

How does this modification fit in accordance with the
Lovelock-Grigore theorem? It is clear that the operators
above contain inverse powers of _a as well as the pseudo-
differential operator 1

~r2 . This means that if a full nonlinear

theory exists that leads to an exact�CDM background and
which deviates at the perturbative level as above, then such
a theory must be nonlocal. This is in full accordance with
the Lovelock-Grigore theorem.

The perturbation equations were solved numerically in
both the synchronous and in the conformal Newtonian
gauge for numerical consistency. These equations are dis-
played in the appendix. To solve the perturbed equations,
we must also specify the initial conditions, and I further
assume that the initial conditions are adiabatic. This in-
troduces a � dependence in the adiabatic growing mode to
order k� in the synchronous gauge (which vanishes for
� ¼ 0), while in the conformal Newtonian gauge there is
no such dependence to leading order in k� but it arises at
higher orders. The upper panel of Fig. 1 shows the CMB
angular power spectrum lðlþ 1ÞCl for a �CDM universe
(� ¼ 0) contrasted with nonzero �. We see that for this
particular model, the effect of nonzero � is to decrease
power on large scales, including even the first peak.

Figure 2 shows the time variation of �̂� �̂ for the same
set of models at k ¼ 10�3 Mpc�1. We see that like other

modifications to gravity, the effect is to make �̂� �̂ grow.
In contrast to conventional parameterizations of modified

gravity [24,47], however, the difference of �̂� �̂ is

sourced by
_̂
� rather than �. Figure 3 shows the phase

portrait in the f�;�g plane for the same set of models at
scales of k ¼ 10�3 Mpc�1 (upper left panel), k ¼
5� 10�3 Mpc�1 (upper right panel), k ¼ 0:01 Mpc�1

(lower left panel) and k ¼ 0:05 Mpc�1 (lower right panel).
Finally, I compare this model with the Q-
A parameteri-
zation of Amendola, Kunz, and Sapone [28] (which is
directly related to the Jain-Zhang parameterization [29]
withQ ¼ Geff and 1þ 
A ¼ 1=
JZ). To remind the reader
these two parameters are defined as��� ¼ �
Aðk; �Þ�
and �2k2� ¼ 8�Ga2�Qðk; �Þ�. As shown in Fig. 4, this

model can cover a wide range of the fQ;
Ag plane rather
being effectively one dimensional, as, for example, in the
case of DGP [17] or clustering dark energy [44] models
[48]. This can be exploited to provide for flat priors in the
fQ;
Ag plane [49] used to consistently probe such mod-
ifications with weak lensing.

C. DGP-like background

I now consider an even less trivial example than the
extended �CDM model above. In particular, I assume that
the background cosmology is driven by a DGP-like model
for which

FIG. 1. The CMB spectrum for the simple modified gravity
model in the text. The solid curve is the plain �CMD model
(� ¼ 0), while the dotted, dashed, and dotted-dashed curves are
with � ¼ f0:1; 0:5; 1g, respectively.

FIG. 2. The time evolution of �̂� �̂ at k ¼ 10�3 Mpc�1 for
� ¼ 0 (solid), � ¼ 0:1 (dotted), � ¼ 0:5 (dashed), and � ¼ 1
(dotted-dashed).
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X ¼ 3

arc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2

a2
þ K

s
¼

ffiffiffiffiffiffiffiffiffi
3EF

p
arc

(31)

for some scale rc. The function Y is then determined as

Y ¼ � 1

rca

�
€a

_a
þ _a

a

�
¼

ffiffiffi
3

p ðER � EFÞ
2arc

ffiffiffiffiffiffi
EF

p (32)

by using the background Bianchi identity.

1. Metric-based modification

At the perturbative level we now depart from the proper
DGP theory. As a first case let us assume that no additional
fields are present, in which case the tensor Ua

b is supposed

to be constructed out of metric functions alone. A further
assumption is that the theory does not contain higher time
derivatives. Using the prescription that all field equations
are gauge-form invariant one immediately finds that

U� ¼ 3
ffiffiffi
3

p
_a

rc
ffiffiffiffiffiffi
EF

p
�
1

6
_J þ _a

a
�� K

2
V

�
þA�̂; (33)

¼ � 3
ffiffiffi
3

p
_a

rc
ffiffiffiffiffiffi
EF

p
�
_̂
�þ _a

a
�̂þ E

4
V

�
þA�̂; (34)

and

U� ¼ � a
ffiffiffi
3

p
rc

ffiffiffiffiffiffi
EF

p
�
1

6
_J þ _a

a
�� K

2
V

�
þB�̂; (35)

¼ a
ffiffiffi
3

p
rc

ffiffiffiffiffiffi
EF

p
�
_̂
�þ _a

a
�̂þ E

4
V

�
þB�̂; (36)

where A and B are once again spatial pseudodifferential
operators. The appearance of _a in the denominator of U�

signifies that this theory can only come from a nonlocal
modification to gravity. Of course it is also possible to use
either the variable J or V to construct U� but in that case,
however, things become worse as we also pick up higher
time derivatives in addition to nonlocalities. Notice how
the gauge noninvariant part is completely fixed in terms of
the background evolution, while only the gauge-invariant

parts A�̂ and B�̂ are at this point free.
The variables UP and U� can be read off the Bianchi

identities (24) and (25). Clearly both UP and U� will have
at most second time derivatives, which is consistent with
the our assumption. We can proceed even further by as-
suming the minimal model that A ¼ B ¼ 0, i.e. U� and
U� do not contain absolutely gauge-invariant terms. In that
case, one finds that UP and U� are given by

FIG. 4. The phase portrait of parameters Qðt; kÞ and 
Aðt; kÞ at
k ¼ f0:001; 0:005; 0:01; 0:05g Mpc�1 for � ¼ 0 (solid), � ¼ 0:1
(dotted), � ¼ 0:25 (dashed), � ¼ 0:5 (long-dashed), and � ¼ 1
(dotted-dashed). Notice that this model can cover a wide range of
the fQ;
Ag plane rather being effectively one dimensional, as,
for example, in the case of DGP [17] or clustering dark energy
[44] models [48].

FIG. 3. The phase portrait of �ðt; kÞ and �ðt; kÞ at k ¼
f0:001; 0:005; 0:01; 0:05g Mpc�1 for � ¼ 0 (solid), � ¼ 0:1
(dotted), � ¼ 0:25(dashed), � ¼ 0:5 (long-dashed), and � ¼ 1
(dotted-dashed). On small scales the phase portrait is squeezed
close to a line as it would be for the case of plain �CDM.
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UP ¼ a
ffiffiffi
3

p
2rc

ffiffiffiffiffiffi
EF

p
�
EP þ 3

_a

a

�
1� 3ER

EF

��
_̂
�þ _a

a
�̂þ E

4
V

�

þ 2ð ~r2 þ 3KÞ
�
�̂� �̂þ a

_a

�
_̂
�þ _a

a
�̂

���
(37)

and

U� ¼ � a2
ffiffiffi
3

p
2 _arc

ffiffiffiffiffiffi
EF

p
�
_̂
�þ _a

a
�̂

�
: (38)

Note that corrections vanish as rc ! 1 for both the back-
ground and the perturbations, hence the name minimal
model. In other words, there is no additional parameter,
apart from the background parameter rc, appearing in the
perturbations.

In Fig. 5 I show the CMB angular power spectrum for
this model (dashed curve) contrasted with a�CDMmodel,
which has the same angular diameter distance to recombi-
nation. The data points are the Wilkinson Microwave
Anisotropy (WMAP) 5 yr data [50]. Both models overlap
for ‘ > 20 but on larger scales the DGP-like model reduces
the effect of the integrated Sachs-Wolfe effect resulting to
lower power than the �CDM model. This is in direct
contrast with the proper DGP model, which increases the
power on large scales, which brings it in conflict with the
CMB data [51]. Finally, the growth rate for the DGP-like
model is modified from both the proper DGP and standard
�CDM model, which can be used to constrain such mod-
ifications with weak lensing measurements [52].

2. Unit-timelike vector field modification

A further option is that the modification that leads to the
DGP-like background is due to a unit-timelike vector field
Aa, such that gabAaAb ¼ �1. Such a field is fixed at the
background level and does not dynamically contribute to
the background equations. A specific example is the gen-
eralized Einstein-Æther theory where the Friedmann equa-
tion is given as F ðH2Þ ¼ 8�G�. By choosing F
appropriately we can recover a DGP-like background.
Since we have now postulated that the modification is

due to a unit-timelike vector field, the terms coming from
Ua

b at the perturbative level would be different than the

metric-based example above. The perturbed vector field

contains one scalar mode � defined as Ai ¼ a ~ri� (the A0

component is perturbatively fixed with respect to the met-
ric due to the unit-timelike condition). Using gauge-form

invariance we find that U� ¼ a
rc
ð €aa � 2 _a2

a2
Þ�þA�̂, which

would seem that in this case we pick higher time deriva-
tives. In order to remove the higher time derivatives we

must add the termBð _̂�þ _a
a �̂Þ for an operatorB, which is

determined such that the second derivatives are removed. I
leave the exploration of unit-timelike vector field modifi-
cations for a future work.

IV. CONCLUSIONS

I have presented a scheme that prescribes how consistent
modifications of the Einstein equations can be constructed.
At the heart of the scheme lies the physical requirement
that the linearized field equations of any theory should be
gauge-form invariant. This requires the specification of the
field content of the theory and thus provides the means for
distinguishing modifications of gravity from effects com-
ing from conventional matter fluids. The resulting fluctua-
tion equations can then be solved to obtain observable
spectra on the scales of interest for any set of initial
conditions. Future work would include more refinements
with focus on current and future observational constraints.
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APPENDIX A: PERTURBED FIELD EQUATIONS
FOR THE SIMPLIFIED EXTENDED �CDM

MODEL IN TWO STANDARD GAUGES

1. Synchronous gauge

Letting � ¼ �H2
0

2k2aþ�H2
0

we find the Einstein equations in

the synchronous gauge as

FIG. 5. The CMB spectrum for the minimal DGP-like model.
The solid curve is the plain �CDM model with 	� ¼ 0:721,
while the dashed curve is the DGP-like model with 	� ¼ 0 and
rc ¼ 8681 Mpc. Both models have the same distance to recom-
bination, however, the DGP-like model lowers the power on
large scales. This is in contrast to the proper DGP model [51].
The data points are from the 5 yr data release of WMAP [50].

CONSTANTINOS SKORDIS PHYSICAL REVIEW D 79, 123527 (2009)

123527-8



_a

a
_h ¼ ð1� �Þ8�Ga2��þ 2k2
� 6�

_a

a
_
; (A1)

2 _
 ¼ 8�Ga2ð�þ PÞ
; (A2)

� €h� 2
_a

a
_hþ 2k2
 ¼ 24�Ga2��þ �H2

0

2ak2
ð €hþ 6 €
Þ

� �H2
0

_a
_
þ �H2

0

_ak2

�
€a

a
� _a2

a2

�
� ð _hþ 6 _
Þ; (A3)

and

€hþ 6 €
 ¼ að1� �Þ
�
�2

_a

a
ð _hþ 6 _
Þ þ 2k2
þ �H2

0

_a
_


� �H2
0

2 _ak2

�
€a

a
� _a2

a2

�
ð _hþ 6 _
Þ � 16�Ga2�k2�

�
:

(A4)

2. Conformal Newtonian gauge

In the conformal Newtonian gauge we have � ¼ � ¼ 0,
� ¼ ��, and 	 ¼ �6�. The field equations become

� ¼ � 8�Ga2 
�

2k2 þ �H2
0

a

�
�þ 3ð1þ wÞ _a

a



�
; (A5)

_�þ _a

a
� ¼ 4�Ga2ð�þ PÞ
; (A6)

€�þ _a

a
ð2 _�þ _�Þ þ

�
2
€a

a
� _a2

a2

�
�þ 1

3
k2ð���Þ

¼ 4�Ga2��� �H2
0

6 _a
_�; (A7)

and

��� ¼ �H2
0

2k2aþ �H2
0

�þ 8�Ga2ð 
�þ 
PÞ
1þ �H2

0

2ak2

�
�
�� �H2

0

4 _ak2



�
: (A8)

APPENDIX B: FIELD EQUATIONS FOR THE
DGP-LIKE MODEL

1. Conformal synchronous gauge

In the synchronous gauge we set� ¼ � ¼ 0, 	 ¼ h and
�k2� ¼ hþ 6
. The perturbed equations become

_a

a
_h� 2k2
 ¼ 8�Ga2��� 3a

rc
_
; (B1)

2

�
1� 1

2rcH

�
_
 ¼ 8�Ga2ð�þ PÞ
; (B2)

� €h� 2
_a

a
_hþ 2k2
 ¼ 24�Ga2��þ 1

arcH
2

�
3
_a

a
€


þ ðEF � 3ER � k2Þ _
� 1

4
E _h

�
;

(B3)

and

€hþ 6 €
þ 2
_a

a
ð _hþ 6 _
Þ � 2k2
 ¼

� 16�Ga2ð�þ PÞk2�
þ 1

arcH
2

��
k2 þ 3

2
E

�
_
þ 1

4
E _h

�
; (B4)

where I have set E ¼ EF þ ER for simplicity.

2. Conformal Newtonian gauge

In the conformal Newtonian gauge we have � ¼ � ¼ 0,
� ¼ ��, and 	 ¼ �6�. The field equations become

� 2k2� ¼ 8�Ga2�

�
�þ 3

_a

a
ð1þ wÞ


�
; (B5)

_�þ _a

a
� ¼ 4�Ga2ð�þ PÞ

1� 1
2rcH


; (B6)

€�þ _a

a
ð2 _�þ _�Þ þ

�
2
€a

a
� _a2

a2

�
�̂

¼ 1

1� 1
2rcH

�
4�Ga2��� 1

3
k2ð�̂� �̂Þ

�

þ 1

2aHð2rcH � 1Þ
�
€a

a
� 1

3
k2
��

_�þ _a

a
�

�
; (B7)

and

��� ¼ 8�Ga2ð�þ PÞ
�
�� 1

2aH

1

2rcH � 1



�
:

(B8)
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APPENDIX C: THE KERNEL OF THE
PSEUDO-DIFFERENTIAL OPERATOR 1

~r2

As discussed in the text the pseudodifferential operator
1
~r2 can be defined by its spectral representation, which

amounts to using as a symbol the function� 1
k2
. The kernel

of this operator is simply the function� 1
4�j ~xj . This is what

we would expect by solving the conventional Laplace
equation with the Dirac delta function as a source, i.e.
~r2
fð ~xÞ ¼ �3ð ~xÞ has solution fð ~xÞ ¼ � 1

4�j ~xj . Let us see

how this is consistent with the spectral representation.
The Fourier transform of �3ð ~xÞ is unity. Thus, we have

1

~r2
�3ð ~xÞ ¼ � 1

ð2�Þ3
Z

d3 ~kei
~k� ~x 1

k2

¼ � 1

ð2�Þ3
Z

dkk2
Z

dk̂eikrk̂�x̂
1

k2
;

where r ¼ j ~xj. We expand the exponential using the
Rayleigh formula in terms of spherical Bessel functions
j‘ðxÞ and Legendre polynomials P‘ðxÞ. The Legendre pol-

ynomials are further expanded in spherical harmonics
Y‘mðx̂Þ. Setting Kð ~xÞ ¼ 1

~r2 �
3ð ~xÞ we get

Kð ~xÞ¼� 1

ð2�Þ3
Z 1

0
dk

Z
dk̂

X
‘

ð2‘þ1Þð�iÞ‘j‘ðkrÞP‘ðk̂ � x̂Þ

¼� 1

2�2

Z 1

0
dk

Z
dk̂

X
‘

X
m

ð�iÞ‘j‘ðkrÞY�
‘mðk̂ÞY‘mðx̂Þ

¼�2
ffiffiffiffi
�

p
2�2

Z 1

0
dk

X
‘

X
m

ð�iÞ‘j‘ðkrÞ�‘0�m0Y‘mðx̂Þ

¼� 1

2�2

Z 1

0
dkj0ðkrÞ

¼� 1

4�j ~xj
Z 1

�1
du

sinð�uÞ
�u

¼� 1

4�j ~xj :

Thus, 1
~r2 �

3ð ~xÞ ¼ � 1
4�j ~xj , which is consistent with ~r2 1

j ~xj ¼
�4��3ð ~xÞ.

[1] D. Lovelock, Arch. Ration. Mech. Anal. 33, 54 (1969).
[2] D. R. Grigore, Classical Quantum Gravity 9, 1555 (1992).
[3] P. Jordan, Nature (London) 164, 637 (1949).
[4] P. Jordan, Z. Phys. 157, 112 (1959).
[5] M. Fierz, Helv. Phys. Acta 29, 128 (1956).
[6] C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).
[7] J. D. Bekenstein, Phys. Rev. D 70, 083509 (2004).
[8] J.W. Moffat, J. Cosmol. Astropart. Phys. 03 (2006) 004.
[9] C. Skordis, Phys. Rev. D 77, 123502 (2008).
[10] E. A. Lim, Phys. Rev. D 71, 063504 (2005).
[11] T.G. Zlosnik, P. G. Ferreira, and G.D. Starkman, Phys.

Rev. D 75, 044017 (2007).
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