
Spikes in the mixmaster regime of G2 cosmologies

Woei Chet Lim*

Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam, Germany
and Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Lars Andersson†

Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam, Germany
and Department of Mathematics, University of Miami, Coral Gables, Florida 33124, USA

David Garfinkle‡

Department of Physics, Oakland University, Rochester, Michigan 48309, USA

Frans Pretoriusx

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA
(Received 9 April 2009; published 26 June 2009)

We produce numerical evidence that spikes in the mixmaster regime of G2 cosmologies are transient

and recurring, supporting the conjecture that the generalized mixmaster behavior is asymptotically

nonlocal where spikes occur. Higher-order spike transitions are observed to split into separate first-order

spike transitions.

DOI: 10.1103/PhysRevD.79.123526 PACS numbers: 98.80.Jk, 04.20.�q, 04.20.Jb, 04.25.D�

I. INTRODUCTION

Belinskiı̌, Khalatnikov, and Lifshitz (BKL) [1–3] con-
jectured that, according to general relativity, the approach
to the generic spacelike singularity is vacuum dominated
(assuming p < �), local, and oscillatory (labeled ‘‘mix-
master’’). Here ‘‘local’’ means that the contribution of
terms in the evolution equations with spatial derivatives
becomes negligible. The mixmaster dynamics consists of
Kasner epochs bridged by transitions represented by the
vacuum Bianchi type II solution. Numerical studies of the
asymptotics of the Gowdy models, which represent the
simplest inhomogeneous vacuum spacetimes, reveal that
on approach to the singularity, spiky structures form [4–6].
These spikes become ever narrower as the singularity is
approached. At first, the presence of such spikes might
seem inconsistent with the local part of the BKL conjecture
since the spatial derivative of such a spike grows without
bound as the singularity is approached. Remarkably, such
spiky behavior in Gowdy spacetimes actually is consistent
with BKL locality. The reason for this is that in the
evolution equations for Gowdy spacetimes, the spatial
derivatives are multiplied by a quantity that goes to zero
even faster than the spatial derivatives go to infinity. This
has been verified in detailed numerical simulations, as well
as by the discovery of closed-form Gowdy solutions with
the spike property [7,8].

Nonetheless, the Gowdy models are a very special class
of spacetimes, so it remains to be seen whether this prop-
erty of BKL locality and persistent spikes holds in more
general spacetimes. To that end, we will examine the
properties of spikes in G2 models, which are a slightly
more general class that includes the Gowdy spacetimes.
Studies of G2 and more general models have produced

numerical evidence that the BKL conjecture generally
holds except possibly at isolated points where spiky struc-
tures form [9–12]. Here, BKL locality is violated due to
large spatial gradients. However, the ability to draw con-
clusions about spikes from such simulations is severely
limited due to the enormous numerical resources needed to
resolve the narrowing spikes. In this paper, we will use a
different numerical method that does have adequate reso-
lution to provide reliable conclusions about spike behavior
in G2 spacetimes. We present numerical evidence in sup-
port of the following conjectures: that recurring ‘‘spike
transitions’’ are a general type of oscillation as the singu-
larity is approached, and that higher-order spike transitions
split into separate first-order spike transitions. Section II
presents the equations for the evolution of G2 spacetimes.
We present our numerical method in Sec. III, results in
Sec. IV, and conclusions in Sec. V. Appendix A presents
the procedure to match a numerical solution with an ex-
plicit spike solution. Appendix B gives the formula for the
BKL parameter u in terms of the parameter w. Appendix C
gives the formulas for the Weyl scalar invariants.

II. G2 SPACETIMES

The metric of the general G2 class takes the form [[10],
Eq. (7)]
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ds2 ¼ �eð��3�Þ=2d�2 þ eð�þ�þ�Þ=2dx2

þ eP��½dyþQdzþ ðG1 þQG2Þdx
þ ðM1 þQM2Þð�e��d�Þ�2
þ e�P��½dzþG2dxþM2ð�e��d�Þ�2: (1)

Here all metric quantities depend only on the time coor-
dinate � and spatial coordinate x, thus there is symmetry in
two spatial directions. The singularity is approached as
� ! 1. The choice of gauge used here is the same as in
[10,12].

Our choice of variables are the �-normalized variables
[13,14] in the orthonormal frame formalism [15], related to
the metric components as follows:

� ¼ 2eð��3�Þ=4; N ¼ �1
2; (2)

E1
1 ¼ 2e�ð�=4Þ��; �2 ¼ Kffiffiffi

3
p eð�þ2Pþ3�Þ=4; (3)

�� ¼ � P�ffiffiffi
3

p ; N� ¼ � e�ð�=4Þ��Pxffiffiffi
3

p ; (4)

�� ¼ � ePQ�ffiffiffi
3

p ; N� ¼ eP�ð�=4Þ��Qxffiffiffi
3

p ; (5)

where K is a constant, and the � and x subscripts denote
partial differentiation.

The evolution equations for the �-normalized variables
are

@�E1
1 ¼ �1

2ð2� 3�2
2ÞE1

1; (6)

@��� ¼ �1
2½�3�2

2�� þ 2
ffiffiffi
3

p ð�2� � N2�Þ �
ffiffiffi
3

p
�2

2

� E1
1@xN��; (7)

@�N� ¼ �1
2½ð2� 3�2

2ÞN� � E1
1@x���; (8)

@��� ¼ �1
2½ð�3�2

2 � 2
ffiffiffi
3

p
��Þ�� � 2

ffiffiffi
3

p
N�N�

þ E1
1@xN��; (9)

@�N� ¼ �1
2½ð2� 3�2

2 þ 2
ffiffiffi
3

p
��ÞN� þ 2

ffiffiffi
3

p
��N�

þ E1
1@x���; (10)

@��2 ¼ �1
2½�3�2

2 � 3�þ þ ffiffiffi
3

p
����2; (11)

where

�þ ¼ 1
2ð1� �2� � �2� ��2

2 � N2� � N2�Þ: (12)

There is one constraint equation:

E1
1@x�2 ¼ ð3N��� � 3N��� � ffiffiffi

3
p

N�Þ�2: (13)

For state-space presentations, we will use the Hubble-

normalized variables [8]:

ð�þ;��;��;�2; N�; N�ÞH

¼ 1

1� �þð�þ;��;��;�2; N�; N�Þ: (14)

See [12] for the evolution equations for Hubble-normalized
variables, and the derivation of the evolution equations.
The Gowdy spacetimes are that class of G2 spacetimes

for which �2 ¼ 0. Note that it then follows from Eq. (6)
that E1

1 ¼ expð��Þ. An interesting class of solutions of
the Gowdy equations are the exact spike solutions of [8],

�� ¼ �1ffiffiffi
3

p
�
1þ f2 � 1

f2 þ 1
½w tanhðw�Þ � 1�

�
; (15)

N� ¼ 2f

f2 þ 1

wffiffiffi
3

p sechðw�Þ; (16)

�� ¼ f2 � 1

f2 þ 1

wffiffiffi
3

p sechðw�Þ; (17)

N� ¼ 2f

f2 þ 1

1ffiffiffi
3

p ð1� w tanhðw�ÞÞ; (18)

where w is a constant and the quantity f is given by

f ¼ we�sechðw�Þx: (19)

For jwj< 1 this solution describes a spike because f ¼ 0
at x ¼ 0, but f becomes large as � ! 1 for all x � 0.
Nonetheless, BKL locality is preserved because in the
equations of motion all spatial derivatives are multiplied
by E1

1 and E1
1@xf ¼ wsechðw�Þ, which goes to zero as

� ! 1.
Note, however, that this conclusion depends on the fact

that E1
1 ¼ expð��Þ, which in turn depends on the fact that

in Eq. (6) we could set �2 to zero, something that we can
only do in Gowdy spacetimes, not the more general G2

spacetimes. The dynamics in a G2 spacetime consists of
eras where �2 is very small (and which can thus be well
described by the dynamics of Gowdy spacetimes), punc-
tuated by short ‘‘frame bounces’’ where �2 rapidly grows
and then rapidly shrinks to become negligible again.
During a frame bounce E1

1 shrinks more slowly than
expð��Þ, and thus it is not clear whether spatial derivatives
continue to remain negligible. To resolve this issue, we will
need to perform numerical simulations of the dynamics of
G2 spacetimes. Furthermore, those simulations will need to
have enough resolution to accurately model the rapidly
shrinking spikes.

III. NUMERICAL METHODS

One numerical method for resolving small scale struc-
ture is adaptive mesh refinement (AMR). However, if one
knows beforehand the location of the structure, one need
not use AMR and can instead use a coordinate system
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adapted to the structure that one wants to study. In particu-
lar, here we are studying spikes that shrink exponentially
with time, so we choose a coordinate system that does the
same.

We introduce new coordinates ðT; XÞ to zoom in on the
worldline x ¼ xzoom.

T ¼ �; X ¼ eA�ðx� xzoomÞ; (20)

where the constant A controls the rate of focus. See Fig. 1
for the qualitative spacetime diagram. The differential
operators expressed in the new coordinates are

@� ¼ @T þ AX@X; @x ¼ eAT@X: (21)

The equations in the new coordinates are

@TE1
1 ¼ �AX@XE1

1 � ½1� 3
2�

2
2�E1

1; (22)

@T�� ¼ �AX@X�� þ 1

2
eATE1

1@XN� þ 3

2
�2

2��

� ffiffiffi
3

p ð�2� � N2�Þ þ
ffiffiffi
3

p
2

�2
2; (23)

@TN� ¼ �AX@XN� þ 1
2e

ATE1
1@X�� � ½1� 3

2�
2
2�N�;

(24)

@T�� ¼ �AX@X�� � 1
2e

ATE1
1@XN� þ 3

2�
2
2��

þ ffiffiffi
3

p
���� þ ffiffiffi

3
p

N�N�; (25)

@TN� ¼ �AX@XN� � 1
2e

ATE1
1@X�� � ½1� 3

2�
2
2�N�

� ffiffiffi
3

p
��N� � ffiffiffi

3
p

��N�; (26)

@T�2 ¼ �AX@X�2 þ
�
3

2
�2

2 þ
3

2
�þ �

ffiffiffi
3

p
2

��
�
�2;

(27)

and the constraint

e ATE1
1@X�2 ¼ ð3N��� � 3N��� � ffiffiffi

3
p

N�Þ�2: (28)

We will end the numerical grid at a fixed coordinate
value X ¼ X0. Ordinarily, that would call for a boundary
condition at X0, but we will use the method of excision.
Usually one thinks of excision as applying to simulations
of black holes; however, excision can be applied to any
hyperbolic equations where the outer boundary is chosen
so that all modes are outgoing. In that case one simply
implements the equations of motion at the outer boundary;
no boundary condition is needed (or even allowed).
The following combinations of the equations of motion,

@Tð�� þ N�Þ ¼ �ðAX � 1
2e

ATE1
1Þ@Xð�� þ N�Þ þ � � � ;

(29)

@Tð�� � N�Þ ¼ �ðAX þ 1
2e

ATE1
1Þ@Xð�� � N�Þ þ � � � ;

(30)

@Tð�� � N�Þ ¼ �ðAX � 1
2e

ATE1
1Þ@Xð�� � N�Þ þ � � � ;

(31)

@Tð�� þ N�Þ ¼ �ðAX þ 1
2e

ATE1
1Þ@Xð�� þ N�Þ þ � � � ;

(32)

clearly show that ð�� þ N�Þ and ð�� � N�Þ flow away
from X ¼ 1

2A e
ATE1

1 (for A > 0), while ð�� � N�Þ and

ð�� þ N�Þ flow away from X ¼ � 1
2A e

ATE1
1. This puts

X ¼ � 1
2A e

ATE1
1 as the points beyond which the flow is

entirely outward. Thus, as long as X0 is chosen large
enough and as long as eATE1

1 does not grow too large
during the simulation, the surface X ¼ X0 will be a good
excision boundary.
In addition to choosing X0, we should also choose A so

that X ¼ X0 remains a good excision boundary throughout
the simulation. A ¼ 1 is the natural choice, which fixes the
particle horizon of the exact spike solution as a vertical line
in the spacetime diagram with respect to ðX; TÞ coordi-
nates. In this paper we shall choose A ¼ 1. Choosing
another value for A is a trial and error process, but one is
able to estimate E1

1 after one or two numerical runs, with
the heuristics below.
We shall define phenomenologically that a Gowdy era as

the time period during which �2 is small. We take this
opportunity to correct that the Kasner eras mentioned in [8]
are in fact Gowdy eras. The two are not equivalent, as there
can be two or three Kasner eras within one Gowdy era.
During a Gowdy era, E1

1 approximately equals e��, but
between Gowdy eras (namely, during the �2 transition)
E1

1 shrinks more slowly. In order to offset this behavior
between Gowdy eras, one should choose a small enough
A < 1 so that eATE1

1 decays during the Gowdy era. But if
A is too small, spikes will be inadequately resolved. A
reasonable range is 0:8 � A � 1.

FIG. 1. The spacetime diagram showing the x ¼ const world-
lines (vertical), the spatial hypersurfaces � ¼ T ¼ const (hori-
zontal) with � ¼ T ! 1 at the singularity, the particle horizon
(45� lines) of the observer in the center, and the X ¼ const lines
which are timelike inside the particle horizon but spacelike
outside (dashed lines).
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Another way to make X ¼ X0 a good excision boundary
is to choose a larger X0 to leave more room for the growth
of eATE1

1. The Courant-Friedrichs-Lax condition, how-
ever, requires that the numerical time step �T satisfies

�T < ðAX0 þ 1
2e

ATE1
1Þ�1�X; (33)

where �X is the numerical grid size. For example, dou-
bling X0 would cut �T by half, so one is bound by
numerical resources to choose a large enough X0 for the
simulation without being too wasteful. A reasonable range
is 10 � X0 � 40.

Our numerical simulations use a uniform spatial grid.
The equations are evolved using the classical fourth-order
Runge-Kutta method, with fourth-order accurate spatial
derivatives. That is, for any quantity F we approximate
@XF on grid point i by

4

3

Fiþ1 � Fi�1

2�X
� 1

3

Fiþ2 � Fi�2

4�X
: (34)

On the last grid point, the excision boundary, we evaluate
the spatial derivative using one-sided differences. That is,
we approximate @XF at the final grid point N by

25FN � 48FN�1 þ 36FN�2 � 16FN�3 þ 3FN�4

12�X
(35)

and at the second to last grid point N � 1 by

3FN þ 10FN�1 � 18FN�2 þ 6FN�3 � FN�4

12�X
: (36)

For spikes, nonsymmetric data would be problematic for
implementing the local perspective, as the spike worldline
is not stationary in this case. Therefore, we shall choose
symmetric initial data (around X ¼ 0) and simulate only
X 2 ½0; X0�, with enforcement of the symmetry at the left
boundary X ¼ 0. For comparison, we also simulate along
nonspike worldlines, in which case the data are not sym-
metric and the left boundary at �X0 is an excision
boundary.

We choose the first grid point to be either an excision
boundary at X ¼ �X0 or a point of symmetry at X ¼ 0. If
it is an excision boundary, then @XF is approximated by the
one-sided differences

�F1 þ 48F2 � 36F3 þ 16F4 � 3F5

12�X
(37)

at the first grid point, and

�3F1 � 10F2 þ 18F3 � 6F4 þ F5

12�X
(38)

at the second. However, if the first grid point is a point of
symmetry, then we choose all quantities to be either even
or odd there. For even functions, @XF ¼ 0 at the first grid
point, and

4

3

F3 � F1

2�X
� 1

3

F4 � F2

4�X
(39)

at the second, while for odd functions we approximate @XF
by

8F2 � F3

6�X
(40)

at the first grid point, and

4

3

F3 � F1

2�X
� 1

3

F4 þ F2

4�X
(41)

at the second.
The standard double precision real variables (with 16

digits of significance) are normally used in the numerical
code. When necessary, quad precision real variables (with
32 digits of significance) are used to lower the numerical
round-off errors by 1016 folds, thereby preventing them
from prematurely swamping small values. The variables
N�, ��, and N� take small values during Kasner epochs,
and can be swamped by the round-off error in the spatial
derivative term of another variable with a larger value.
Usually this happens to N� first, when the term
1
2 e

ATE1
1@X�� in Eq. (24) becomes 1016 times smaller (if

double precision is used) than the value of ��. The usage
of quad precision real variables increases the runtime by 4
to 8 folds.
No numerical dissipation is used, as it is unnecessary.
To verify that numerical solutions converge with fourth-

order accuracy, we compare the constraint (27) in numeri-
cal runs with different resolutions (different number of grid
points). We observe that doubling the resolution reduces
the constraint by a factor of 16 when adequate numerical
resolution is used. We also compare the numerical solu-
tions with a matching exact spike solution. The procedure
for matching is described in Appendix A. The formulas for
the BKL parameter u for the Kasner epochs between
transitions are given in Appendix B. The Weyl scalar
invariants are used to measure the difference between
numerical and exact solutions. Appendix C gives their
formulas.
In this paper, we shall focus on obtaining numerically

accurate results, which require much higher numerical
resolution than qualitative numerical results do. This re-
quirement also places severe limits on how far into the
asymptotic regime one can simulate, because the numeri-
cal error must not be larger than the distance from the
solution to the nearest Kasner point in the state space, and
this in turn requires high numerical resolution. When a
numerical simulation takes up to months to run in order to
meet the accuracy, it becomes impractical. Despite this
difficulty, we want to provide more than just qualitative
numerical results, because numerically accurate results can
provide evidence supporting convergence to the exact
spike solution, while qualitative numerical results cannot.
In presentation, we shall round the numbers to 4 decimals,
even though the accuracy is higher.
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Qualitative numerical results are still valuable in provid-
ing evidence supporting the general behavior of the solu-
tion. Compared with other aspects of the solution, the
timing of a transition is most sensitive to numerical inac-
curacy. At lower resolutions, the timing of a transition
differs greatly while other aspects of the solution remain
robust.

IV. RESULTS

We clarify a few terms we use below. A (true) spike
point is where a (true) spike can occur (the spike may be
active or smoothed out). In our variables, a spike point is
where

N� ¼ 0: (42)

We shall hold the spike point fixed (at x ¼ 0), so that we
can easily locate it and zoom in on it. To do so, we require
N� and N� to be odd functions around the spike point, and
��, ��, and �2 to be even functions.

A false spike point is where�� ¼ 0. To hold it fixed, we
require �� and N� to be odd functions around the false
spike point, and ��, �2, and N� to be even functions.

We will present three sets of numerical results. The first
set chooses a perturbed spike solution as the initial condi-
tion, and shows two recurrences of the spike solution,
within the same Gowdy era. The purpose is to show that
the spike recurs within the same Gowdy era. The second
set chooses a generic initial condition, and shows two
occurrences of the spike solution, one in each Gowdy
era. The purpose is to show that the spike recurs over
different Gowdy eras. The third set consists of two simu-
lations, with perturbed second- and third-order spike solu-
tions as the initial conditions, respectively. The purpose is
to show that second- and third-order spikes break up into
separate first-order spikes. All three sets demonstrate the
attractor nature of the first-order spike.

The reader will notice that different numerical resolu-
tions are used for different sets. The length of simulation
also differs. Both numerical resolutions and length are not
arbitrarily chosen, but are dictated by the cost of compu-
tation to maintain accuracy. For example, in the first set, we
do not try to extend the simulation to show the third spike
recurrence over different Gowdy eras, as it would be too
costly.

A. Perturbed spike

The format of the initial data is a perturbed spike solu-
tion at � ¼ 0:

E1
1 ¼ 2; �2 ¼ 10�5; (43)

�� ¼ ðwxÞ2 � 1

ðwxÞ2 þ 1

1ffiffiffi
3

p � 1ffiffiffi
3

p þ �;

N� ¼ 2wx

ðwxÞ2 þ 1

wffiffiffi
3

p ;

(44)

�� ¼ ðwxÞ2 � 1

ðwxÞ2 þ 1

wffiffiffi
3

p ; N� ¼ 2wx

ðwxÞ2 þ 1

1ffiffiffi
3

p ; (45)

where x ¼ X þ xzoom, with � ¼ 0:001, w ¼ 9:5, A ¼ 1,
xzoom ¼ 0. Here, small perturbations are applied to the
variables �2 and ��. Compare with the exact spike solu-
tion at � ¼ 0 [[8], Eq. (36)]. The value w ¼ 9:5 allows for
two spike recurrences at roughly w ¼ 5:5 and w ¼ 1:5
before the next Gowdy era.
Because the data chosen are symmetric about X ¼ 0,

only X � 0 needs to be simulated. A resolution of 100 001
grid points on the X interval [0, 2] is sufficient for con-
vergence during the time interval T 2 ½0; 16�. Double
precision is used. Beyond T ¼ 16 a higher numerical
precision is needed to maintain accuracy. To compare the
orbit along a different worldline, we also use the same
initial data but with xzoom ¼ 1 and 200 001 grid points on
the X interval ½�2; 2�.
The simulation shows a perturbed spike solution recurs

twice over the same Gowdy era. For each of the two
recurrences, the numerical solution is matched with an
exact spike solution. The difference between the numerical
and exact spike solutions is computed in the four Weyl
scalar invariants, and is observed to be smaller in the
second recurrence than in the first (see Figs. 2 and 3).
This suggests that the closer to the singularity, the closer
the numerical solution gets to an exact spike solution. This
supports the conjecture that the exact spike solutions are
attractors.
Figure 4 shows the orbit along the spike point x ¼ 0

(from the first simulation) and the worldline x ¼ 1 (from
the second simulation) projected onto the ð�Hþ;�H�Þ plane
in the state space of Hubble-normalized variables. It shows
the orbits follow the expected paths as predicted from the
spike solution and the �� and N� transition sets (see
Figs. 5 and 6 in [8]). This subsection is similar to the
work in [16], which was done in the Gowdy class (�2 ¼
0), in the sense that the simulations here focus on what
happens within one Gowdy era. The approximate values
for the w parameter in [8] and corresponding u parameter
when near a Kasner point for the x ¼ 0 orbit in Fig. 4 are
given below (rounded to 4 decimal points). Linking the
Kasner epochs are alternating frame and spike transitions.

w 	 �7:8330 ���!frame
7:5401 ���!spike

� 3:7592 ���!frame
3:8264 ���!spike0:1674; (46)
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u 	 3:4165!u 3:2700!u�2
1:3796!u 1:4132 ���!½1=ðu�1Þ��1

1:4021:

(47)

Note that Kasner epochs linked by frame transitions are not
distinct physically. One also observes that the numbers
above do not follow the maps very closely, suggesting
that the solution is not yet very close to the generalized
mixmaster attractor. The difference is due to perturbation
present in the initial data. Over time, the difference gradu-
ally decreases. Also note that the map u ! u� 2 has an
adjustment algorithm when the new value is less than 1,
namely

u !

8>>>><
>>>>:

u� 2 if u � 3
1

u�2 if 2< u � 3
1

1
u�1�1

if 3
2 � u < 2

1
u�1 � 1 if 1< u � 3

2 :

(48)

B. Generic initial condition

Having seen that perturbed spike initial data lead to
recurring spikes within the same Gowdy era, we now go
further and ask whether generic initial data also lead to
recurring spikes, and whether the recurrence continues in
the next Gowdy era. To answer these questions, we shall
start with generic initial data and evolve the solution
through to the next Gowdy era.
We give an example of a generic initial condition for a

true spike below.

E1
1 ¼ 2; �2 ¼ ð�2Þ0e

Z x

0
CT=E1

1dx; (49)

�� ¼ a1 þ a2x
2; N� ¼ a5x; (50)

�� ¼ a3 þ a4x
2; N� ¼ a6x; (51)

with

FIG. 2 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
spike solution (with w ¼ 5:8644, �0 ¼ 2:2205), and their difference, during the first spike recurrence over the time interval [0.5, 3.5].
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Z x

0
CT=E1

1dx ¼ 1

4
ð�3a1a5 �

ffiffiffi
3

p
a5 þ 3a3a6Þx2

þ 1

8
ð�3a2a5 þ 3a4a6Þx4; (52)

where x ¼ X þ xzoom. For example, we choose

a1 ¼ 3:25; a2 ¼ 0:002; a3 ¼ 0:3; (53)

a4 ¼ �0:001; a5 ¼ 0:04; a6 ¼ �0:05; (54)

FIG. 4 (color online). The orbit along the spike point x ¼ 0 and a nearby nonspike point x ¼ 1 projected onto the ð�Hþ;�H�Þ plane for
the perturbed spike simulation. The initial (at T ¼ 0) and final (at T ¼ 16) points are marked by the letters i and f, respectively.

FIG. 3 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
spike solution (with w ¼ 1:8329, �0 ¼ 6:6029), and their difference, during the second spike recurrence over the time interval [3.5,
9.5].
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ð�2Þ0 ¼ 0:2; (55)

with A ¼ 1, xzoom ¼ 0, 6401 grid points over the X interval
[0, 10], and time interval [0, 40]. Quadruple precision is
used. For comparison, another simulation with xzoom ¼ 1,
12 801 grid points over the X interval ½�10; 10� is used.

Beyond T ¼ 40, the solution gets too close to a Kasner
point, and a higher numerical resolution is needed to
maintain accuracy.
Two recurrences of spikes are observed, one in the same

Gowdy era and the other in the next (after a �2 transition).
Figure 5 shows the orbits along x ¼ 0, 1 passing close to

FIG. 5 (color online). The orbit along the spike point x ¼ 0 and a nearby nonspike point x ¼ 1 projected onto the ð�Hþ;�H�Þ plane for
the generic initial data simulation. The initial (at T ¼ 0) and final (at T ¼ 40) points are marked by the letters i and f, respectively.

FIG. 6 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
spike solution (with w ¼ �3:7114, �0 ¼ 2:6461), and their difference, during the first spike recurrence over the time interval [0, 5].
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various identical points during two Gowdy eras. A differ-
ence in position of the final points is observed, and is
attributed to the lag between the two worldlines that be-
comes more pronounced over time. The approximate val-
ues for the w and u parameters when near a Kasner point
(except the initial point) for the x ¼ 0 orbit in Fig. 5 are
given below (rounded to 4 decimal points).

w 	 5:7070 ���!spike � 1:7114 ���!frame
1:7114�2 ���!frame

6:6228 ���!spike
� 2:6228; (56)

u 	 2:3535 ���!1=ðu�2Þ
2:8114!u 2:8114!u 2:8114 ���!1=ðu�2Þ

1:2324:

(57)

Observe that the numbers here follow the map much more
closely in the later stage.

The numerical solution is matched with an exact spike
solution, and the Weyl scalars are plotted in Figs. 6 and 7.
As in the previous subsection, matching improves with
time (towards the singularity). The remarkable improve-
ment from the first to the second recurrence also suggests
an exponential rate of convergence to the exact spike
solution. This provides a very strong evidence that the
spike solution is an attractor not only for perturbed spike
initial data, but also for generic ones. The exponential rate
of convergence is also a curse for accurate numerical
simulations, as the need for numerical resolution also
increases exponentially with time.

C. Perturbed higher-order spikes

Having seen that the spike solution is an attractor, we
now investigate whether higher-order spikes [[8], Sec. 5.5]
are also attractors. In this subsection we shall use perturbed
second- and third-order spike solutions as initial data, and

FIG. 7 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
spike solution (with w ¼ �4:6228, �0 ¼ 38:1923), and their difference, during the second spike recurrence over the time interval [35,
40].
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see whether they recur as first-, second-, or third-order
spikes.

The initial data for a perturbed second-order spike solu-
tion at � ¼ 0 are given recursively in terms of the first-
order spike solution:

E1
1 ¼ 2; (58)

�� ¼ �ðc��1 þ s��1Þ � 1ffiffiffi
3

p ;

N� ¼ sN�1 � cN�1;

(59)

�� ¼ cN�1 þ sN�1; N� ¼ �s��1 þ c��1; (60)

where ð��; N�;��; N�Þ1 are the perturbed first-order
spike solution in (44) and (45). c and s are given by

c ¼ f21 � 1

f21 þ 1
; s ¼ 2f1

f21 þ 1
; (61)

f1 ¼ 1

ðwxÞ2 þ 1

�
�2wð1� 2x2Þ þ Q2

2Q0

�
; (62)

where x ¼ X þ xzoom. �2 is specified by numerically eval-
uating the constraint

�2 ¼ ð�2Þ0e
R

x

0
CT=E1

1dx: (63)

We perform a simulation with the parameters

� ¼ 10�3; w ¼ 9:5; A ¼ 1; (64)

ð�2Þ0 ¼ 10�3; Q2 ¼ 0; (65)

and xzoom ¼ 0, X 2 ½0; 2�with 10 001 grid points, and T 2
½0; 12�.

FIG. 8 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
false spike solution (with w ¼ 5:5005, �0 ¼ 2:3329), and their difference, during the first false spike recurrence over the time interval
[1, 3].
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The initial data for a perturbed third-order spike solution
at � ¼ 0 are also given recursively:

E1
1 ¼ 2; (66)

�� ¼ �ðc��2 þ s��2Þ � 1ffiffiffi
3

p ;

N� ¼ sN�2 � cN�2;

(67)

�� ¼ cN�2 þ sN�2; N� ¼ �s��2 þ c��2; (68)

where ð��; N�;��; N�Þ2 are the perturbed second-order
spike solution in (59) and (60) above. c and s are given by

c ¼ f22 � 1

f22 þ 1
; s ¼ 2f2

f22 þ 1
; (69)

f2 ¼ 1

½ðwxÞ2 þ 1�½f21 þ 1�
�
� 1

3
xð3½ðwxÞ2 þ 1�

� ½ðf21 � 1Þw� 4f1� þ 4wðw2 þ 2Þx2Þ þ Q3

2Q0

�
;

(70)

where f1 is given in (62), and x ¼ Xþ xzoom. �2 is speci-
fied by numerically evaluating the constraint

�2 ¼ ð�2Þ0e
R

x

0
CT=E1

1dx: (71)

We perform a simulation with the parameters

� ¼ 10�3; w ¼ 9:5; A ¼ 1; (72)

ð�2Þ0 ¼ 10�3; Q2 ¼ 0; Q3 ¼ 0; (73)

and xzoom ¼ 0, X 2 ½0; 2�with 10 001 grid points, and T 2
½0; 12�.

FIG. 9 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
false spike solution (with w ¼ 1:5006, �0 ¼ 7:6904), and their difference, during the second false spike recurrence over the time
interval [6, 10].

SPIKES IN THE MIXMASTER REGIME OF G2 . . . PHYSICAL REVIEW D 79, 123526 (2009)

123526-11



The center or inner part of a perturbed second-order
spike evolves into a false first-order spike, as suggested
by Figs. 8 and 9. False spikes are merely a spiky represen-
tation of the vacuum Bianchi type II solution. The center or
inner part of a perturbed third-order spike evolves into a
true first-order spike, as suggested by Fig. 10. The outer
parts of the perturbed spikes move beyond the domain of
simulation and are suspected to evolve into first-order
spikes, with a moving spike point. A global numerical
scheme might be needed to follow their evolution, but
one with enough numerical resolution would take months
to run, which is impractical. Figure 11 shows that the orbit
for a perturbed second-order (third-order) spike later fol-
lows the predicted orbit for the false (true) first-order spike.
This suggests that higher-order spikes break into separate
first-order spikes, and therefore are not attractors
themselves.

The approximate values for the w and u parameters
when near a Kasner point (except the first point) for the
x ¼ 0 orbits in Fig. 11 are given below (rounded to 4

FIG. 10 (color online). The Weyl scalar invariants (normalized by the Hubble scalar) for the numerical solution, the matching exact
spike solution (with w ¼ �3:5002, �0 ¼ 4:4985), and their difference, during the first spike recurrence over the time interval [3, 6].

FIG. 11 (color online). The orbit along the spike point x ¼ 0
projected onto the ð�Hþ;�H�Þ plane for the perturbed second-
order (left figure) and third-order (right figure) spike simulation.
The orbits follow the false and the true spike orbits, respectively.
The initial (at T ¼ 0) and final (at T ¼ 12) points are marked by
the letters i and f, respectively.
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decimal points). For the left figure, two false spike tran-
sitions and a (��) curvature transition link the Kasner
epochs.

w 	 �6:5005 ���!false spike
4:4161 ���!curvature

2:4980 ���!false spike
0:5003;

(74)

u 	 2:7502!u�1
1:7081 ���!1=ðu�1Þ

1:3351 ���!1=ðu�1Þ
3:0024: (75)

Recall that false spike transitions and the curvature tran-
sition are physically the same.

For the right figure, two frame transitions and a spike
transition link the Kasner epochs.

w 	 �5:5004 ���!frame
5:4999 ���!spike � 1:4979 ���!frame

1:5002; (76)

u 	 2:2502!u 2:2500 ���!1=ðu�2Þ
4:0169!u 3:9984: (77)

V. CONCLUSION

We have found numerical evidence (from both perturbed
solutions and generic initial data) that the spike solution is
part of the generalized mixmaster attractor. We have found
that the second- and third-order spikes are not part of the
attractor, and conjecture that all higher-order spikes are not
part of the attractor.

We summarize the above conjectures as follows:
(1) Spike transitions are a new type of oscillation on

approach to the singularity, with each transition
approximated by a spike solution. A spike transition
has a map of u ! u� 2 and is different from the
previously known mixmaster oscillation, which has
a map of u ! u� 1. It occurs in a causal neighbor-
hood of special 2D surfaces of worldlines in generic
spacetimes.

(2) Higher-order spike transitions (with maps u ! u�
3, etc.) split into first-order spike transitions and so
are not general; i.e. the generic behavior towards the
singularity is either u ! u� 1 or u ! u� 2.

We have used symmetric data in order to hold the spike
point fixed, so that we can zoom in on it. We believe that
for nonsymmetric data, in which the spike point can move
(by a little when the spike is active, and sometimes by a lot
when the spike is smoothed out), the above conclusion
should also hold. This remains to be confirmed numeri-
cally. At present we do not know how to zoom in on a
moving spike point.

What remains unanswered is the following. Because we
simulate only the neighborhood of a spike, we do not know
what happens outside this domain. We also do not know
what happens to new spike points that are created and
move out of the domain, or how they interact with other
spike points or false spike points. Existing numerical
simulations from the global view suffer from expensive
resources needed to resolve spikes, which severely limit

the length of simulation. We envision a new way to simu-
late spikes, by combining the zoom-in view with the global
view. The biggest benefit of such a combination is much
longer simulations. The zoom-in view can also provide
boundary conditions, so that the assumption of spatial
periodicity can be dropped. Implementing the combination
will be challenging.
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APPENDIX A: MATCHING WITH EXPLICIT
SOLUTIONS

For the purpose of matching the numerical solutions
with explicit solutions, we will need the explicit spike
solutions with generic time and space constants. To restore
these constants, perform the transformation

� ! �� �0; x ! 2

ðE1
1Þ0

ðx� x0Þ: (A1)

The expression of the metric, the governing equations, and
the solutions will change accordingly. In particular, E1

1 is
now given by

E1
1 ¼ ðE1

1Þ0e���0 : (A2)

The spike solution is now given by

P ¼ 2ð�� �0Þ þ ln½sechðwð�� �0ÞÞ� � ln½f2 þ 1�
� lnð2Q0Þ; (A3)

Q ¼ �Q0w

�
2ðw tanhðwð�� �0ÞÞ � 1Þ

�
2

ðE1
1Þ0

ðx� x0Þ
�
2

þ e�2ð���0Þ
�
þQ2; (A4)

� ¼ �4 ln½sechðwð�� �0ÞÞ�
þ 2 ln½f2 þ 1� � ðw2 þ 4Þð�� �0Þ þ �2; (A5)

where

f ¼ we���0 sechðwð�� �0ÞÞ 2

ðE1
1Þ0

ðx� x0Þ (A6)

is the factor QeP for the vacuum Bianchi type II solution.
Correspondingly, the �-normalized variables become

�� ¼ �1ffiffiffi
3

p
�
1þ f2 � 1

f2 þ 1
½w tanhðwð�� �0ÞÞ � 1�

�
; (A7)
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N� ¼ 2f

f2 þ 1

wffiffiffi
3

p sechðwð�� �0ÞÞ; (A8)

�� ¼ f2 � 1

f2 þ 1

wffiffiffi
3

p sechðwð�� �0ÞÞ; (A9)

N� ¼ 2f

f2 þ 1

1ffiffiffi
3

p ½1� w tanhðwð�� �0ÞÞ�: (A10)

The other solutions are similarly restored.
We take this opportunity to correct errors in [8]: the third

minus sign in Eq. (28) should be a plus sign, and the factor
4 in Eq. (34) should not be there.

In order to match with an explicit spike solution, we will
need to guess the value of the parameter w. This can be
done in two ways. The first way is to choose a predeter-
mined value, the second is to obtain a guess from the
numerical solution. To do so we compute the expression

arcsinh

��� þ 2ffiffi
3

p

��

�
; (A11)

along X ¼ 0, which equals

wð�� �0Þ (A12)

for the spike solution. The value �0 is then obtained
through interpolation.

We then compute the expression�
�� þ 2ffiffiffi

3
p

�
2 þ�2� (A13)

along X ¼ 0. For the spike solution this expression equals
w2=3. In practice, the numerical solution will give a close-
to-constant time function of w, from which we choose one
value. For example, we can take the maximum value of this
time function.

APPENDIX B: OBTAINING THE BKL
PARAMETER u FOR THE KASNER EPOCHS

Matching the Kasner epochs with Kasner solutions is
straightforward. Recall from Eq. (18) of [8] that for a
Kasner solution

�� ¼ � wffiffiffi
3

p ; (B1)

wherew is a constant. One then obtains the local maximum
and minimum values for �� along a worldline and con-
verts them to w. Then one computes the BKL parameter u
from w using the following formula.

u ¼

8>>><
>>>:

jwj�1
2 jwj � 3
2

jwj�1
1< jwj � 3

1þjwj
1�jwj 0 � w< 1:

(B2)

APPENDIX C: THE WEYL SCALAR INVARIANTS

The orthonormal frame components Cabcd of the Weyl
tensor can be conveniently expressed in terms of the elec-
tric and magnetic components E�� and H�� [15]:

C�0�0 ¼ E��; C���	 ¼ ������


�	E�
; (C1)

C���0 ¼ ����H��; (C2)

which are then normalized by 3�2:

E �� ¼ 1

3�2
E��; H �� ¼ 1

3�2
H��; (C3)

and further decomposed as follows:

E �� ¼
�2Eþ

ffiffiffi
3

p
E3

ffiffiffi
3

p
E2ffiffiffi

3
p

E3 Eþ þ ffiffiffi
3

p
E�

ffiffiffi
3

p
E�ffiffiffi

3
p

E2

ffiffiffi
3

p
E� Eþ � ffiffiffi

3
p

E�

0
B@

1
CA (C4)

and similarly for H ��. The components are given by

E þ ¼ 1
3�þ � 1

3ð�2� þ �2�Þ þ 2
3ðN2� þ N2�Þ þ 1

6�
2
2; (C5)

E� ¼ 1

3
ð1� 3�þÞ�� þ 2

3
NþN� þ 1

3
ðeATE1

1@X � rÞN�

þ 1

2
ffiffiffi
3

p �2
2; (C6)

E � ¼ 1
3ð1� 3�þÞ�� þ 2

3NþN� � 1
3ðeATE1

1@X � rÞN�;
(C7)

E 3 ¼ � 1ffiffiffi
3

p ���2; (C8)

E 2 ¼ 1
3ð1þ

ffiffiffi
3

p Þ��Þ�2; (C9)

H þ ¼ �N��� � N���; (C10)

H � ¼ ��þN� � 2
3Nþ�� � 1

3ðeATE1
1@X � rÞ��;

(C11)

H � ¼ ��þN� � 2
3Nþ�� þ 1

3ðeATE1
1@X � rÞ��;

(C12)

H 3 ¼ � 1ffiffiffi
3

p N��2; (C13)

H 2 ¼ 1ffiffiffi
3

p N��2; (C14)

where Nþ ¼ ffiffiffi
3

p
N�, r ¼ �3ðN��� � N���Þ. The four

Weyl scalar invariants are computed as follows:

CabcdC
abcd ¼ 8ðE��E

�� �H��H
��Þ; (C15)
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Cabcd

Cabcd ¼ 16E��H

��; (C16)

Cab
cdCcd

efCef
ab ¼ �16ðE�

�E�
�E�

� � 3E�
�H�

�H�
�Þ;

(C17)

Cab
cdCcd

ef
Cef
ab ¼ 16ðH�

�H�
�H�

� � 3E�
�E�

�H�
�Þ;

(C18)

where 
Cabcd ¼ 1
2�ab

efCefcd, and �
abcd is the totally anti-

symmetric permutation tensor, with �0123 ¼ 1.
The drawback of plotting the Weyl scalars for spikes is

that the blowup of the Weyl scalars towards the singularity

makes the spiky structures invisible. For example, in Fig. 8
of [8], level curves have to be plotted to make the structure
visible. In this paper we plot Hubble-normalized Weyl
scalars so that spiky structures are clearly visible. The
Weyl scalars are normalized as follows:

CabcdC
abcd

ð3H2Þ2 ;
Cabcd


Cabcd

ð3H2Þ2 ; (C19)

Cab
cdCcd

efCef
ab

ð3H2Þ3 ;
Cab

cdCcd
ef
Cef

ab

ð3H2Þ3 : (C20)
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