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We derive exact solutions of the seven-dimensional Einstein-Maxwell equations for a spacetime

exhibiting Poincaré invariance along four dimensions and spherical symmetry in the extra dimensions.

Such topology generically arises in the context of braneworld models. Our solutions generalize previous

results on Ricci-flat spacetimes admitting the two-sphere and are shown to include wormhole configu-

rations. A regular coordinate system suitable to describe the whole spacetime is singled out, and we

discuss the physical relevance of the derived solutions.
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I. INTRODUCTION

Extra dimensions are considered to be a key ingredient
for explaining the quantum behavior of fundamental theo-
ries. Starting from the work of Kaluza and Klein [1–3]), the
embedding of our Universe into a higher-dimensional
space has been invoked to give an explanation of appar-
ently unrelated four-dimensional phenomena. The unifica-
tion of forces at first, but also more recently the hierarchy
problem, the acceleration of the Universe are different
issues which have been addressed by using the features
of the extra dimensions.

It is therefore of interest to look how gravity behaves in a
higher-dimensional world, that is, to find exact nonpertur-
bative solutions for the classical equations of motion.
Many works have been devoted to this task, especially in
the framework of superstring theories in which supersym-
metry and compactification play a major role [4]. Various
black brane configurations have been studied in the litera-
ture as exact solutions of superstring low energy effective
actions. For this reason, most of them still exhibit some
amount of supersymmetry, as well as nontrivial configura-
tion of higher-dimensional form fields [5–10]. In this pa-
per, motivated by cosmology in the presence of extra
dimensions, we adopt a (very) low energy effective ap-
proach and remain in the framework of standard general
relativity. In this context, it is clear that the simplest brane-
world model one can think of consists of a four-
dimensional Minkowski manifold embedded in a higher-
dimensional spacetime (bulk). For a five-dimensional anti–
de Sitter bulk, one would recover Randall-Sundrum con-
structions [11,12], whereas asymptotically flat extra di-
mensions would be reminiscent with the Dvali-
Gabadadze-Porrati (DGP) braneworld models [13,14].
From a classical field theory approach, it has recently
been shown in Ref. [15] that the DGP gravity confinement
mechanism along a four-dimensional world volume can be

realized in the core of a ’t Hooft-Polyakov seven-
dimensional hypermonopole. In fact, seven dimensions is
the minimal number of spacetime dimensions for which
the trapping of gravitons by curvature effects may occur,
and this is closely related to the existence of a foliation of
the extra dimensions by positively curved hypersurfaces
[16]. Although the full system of Einstein-Yang-Mills
equations have been numerically solved in Ref. [15], under
the above-mentioned symmetry, one may wonder if some
exact solutions could not be derived. In fact, far from the
core of a ’t Hooft-Polyakov hypermonopole, that is to say,
where the SOð3Þ Higgs and gauge fields reach their vac-
uum expectation values, the remaining unbroken gauge
symmetry is Uð1Þ. As a result, at large distances, the
stress-tensor content of the theory is similar to a higher-
dimensional Dirac monopole [17]. Motivated by this pic-
ture, we derive in this paper exact analytical solutions of
the Einstein-Maxwell equations and study the resulting
curved spacetime in the presence of an electrical/magnetic
field seeded by an Uð1Þ 2-form. In the braneworld frame-
work, we are looking for static Einstein-Maxwell solutions
for a compactification of a seven-dimensional spacetime
into M4 � R� S2. The solutions studied can therefore be
viewed as the spatially extended generalization of the
Dirac monopole in four dimensions, where a gauge field,
carrying a magnetic charge 1=q, introduces a nonvacuum
structure for the spacetime. Notice that, since Poincaré
invariance is not broken along the brane, such a topology
differs from higher-dimensional black hole solutions on the
brane [18–23]. However the electrically dual action would
involve a dual 5-form field which is reminiscent with
higher-dimensional generalization of Reissner-Nordström
solutions [24]. More specifically, such extra-dimensional
topology has been studied for the vacuum case in five
dimensions in Refs. [25,26] and recently revisited in
Refs. [27–29]. Apart from the different number of dimen-
sions, our approach generalizes these results for nonvac-
uum spacetimes. The electric dual counterpart of our
configuration has been discussed in Refs. [30,31] for
even spacetime dimensions only and spherically symmet-
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ric in all spatial dimensions. As discussed in the following,
we will encounter the same kind of problem of apparently
‘‘truncated’’ solutions described in Ref. [29], where the
coordinates were not able to explore the whole manifold.
This can be solved with a choice of a suitable coordinate
system that we describe in the following. Although not
using these coordinates is convenient for the study of
exterior spacetimes, as the one discussed in Ref. [15],
this could lead to misinterpreting the physical content of
the theory. In our regular coordinate system, we show, in
particular, that some solutions of the Einstein-Maxwell
system simply correspond to charged wormhole configu-
rations [32–34]. Such exact solutions, and especially the
treatment of the coordinates introduced here, may shed
some light into other similar cases.

In Sec. II, we introduce the model. In Sec. III, we
rederive the vacuum solutions within our coordinate sys-
tem and in seven dimensions. We moreover recap the
merging of different and apparently unrelated patches. In
Sec. IV, we move on to the general solution we are inter-
ested in, namely, in the presence of a magnetic field in the
extra dimensions. We then conclude in the last section.

II. THE MODEL

The model we consider is defined by the standard
Einstein-Maxwell action

S ¼
Z ffiffiffiffiffiffiffi�g

p
d7x

�
R

2�2
� 1

4
FABF

AB

�
; (1)

where the field strength 2-form F can be defined in terms
of a 1-form A, as F ¼ dA, so that the Lagrangian is
invariant under a Uð1Þ gauge transformation A !
Aþ d�. Capital Latin indices run from 0 to 6, whereas
Greek indices from 0 to 3. The dimensions of the gauge

field are ½CaM� ¼ M5=2, and those of the seven-
dimensional Newton constant are ½�2� ¼ M�5, for an elec-

tric charge ½q� ¼ M�3=2. The stress-energy tensor is there-
fore

TA
B ¼ FANFBN � 1

4F
2�A

B: (2)

Finally, the Einstein equations are

GA
B ¼ �2TA

B; (3)

while the Maxwell equations for the 2-form read as dF ¼
0, or

FAB;C þ FBC;A þ FCA;B ¼ 0; (4)

and rBF
AB ¼ 0.

A. Background metric

We are looking for background solutions with spherical
symmetry in the extra dimensions, i.e., a compactification
into M4 � R� S2. Therefore, we impose the following
ansatz for the metric:

d s2 ¼ AðrÞð�dt2 þ d ~x2Þ þ �ðrÞdr2 þ r2d�2; (5)

with

d�2 ¼ d�2 þ sin2�d�2: (6)

Furthermore, the 2-form field is assumed to be of the form

F ¼ fðr; �; �Þd� ^ d�: (7)

The Maxwell equations dF ¼ 0 immediately imply that
@f=@r ¼ 0, or f ¼ fð�;�Þ. Then we have

rAF�
A ¼ 1

r2sin2�

@f

@�
¼ 0; (8)

rAF
A
� ¼ � 1

r2 sin�

�
@f

@�
sin�� f cos�

�
¼ 0; (9)

which have the nontrivial solution

f ¼ � sin�

q
; (10)

where the integration constant q is the electric charge.
This ansatz automatically solves the Maxwell equations

for the given metric, independently of the profiles for the
fields AðrÞ and �ðrÞ. In the three extra dimensions, it is now
possible to define a three-vector, with components Bi,
which is the magnetic field associated to the 2-form. With

Bi ¼ �"ijkFjk=
ffiffiffiffiffiffiffiffi
ð3Þg

q
; (11)

where i; j; k 2 f4; 5; 6g, one gets

Br ¼ 1

qr2
: (12)

Therefore 1=q appears as a magnetic charge, the magnetic
field is purely radial, and we are in the presence of a
spatially extended Dirac magnetic monopole at the origin
of the coordinate system. The associated stress tensor is
nonvanishing and reads

T0
0 ¼ Tx

x ¼ Tr
r ¼ �T�

� ¼ �T�
� ¼ � 1

2q2r4
: (13)

In fact, this ansatz for the 2-form is the only one consistent
with the choice of the metric ansatz, as the other compo-
nents for FAB have no solutions for the Einstein equations.

B. Equations of motion

From the above ansatz, the Einstein-Maxwell equations
read

3

2

A02

A2�
þ 4A0

A�r
� 1

r2
þ 1

�r2
þ �2

2q2r4
¼ 0; (14)

ANTONIO DE FELICE AND CHRISTOPHE RINGEVAL PHYSICAL REVIEW D 79, 123525 (2009)

123525-2



2A0

A�r
� 1

2

�0

�2r
þ 1

2

A02

A2�
þ 2A00

A�
� A0�0

�2A
� �2

2q2r4
¼ 0;

(15)

3

2

A00

A�
� 3

4

A0�0

�2A
þ 3A0

A�r
� �0

�2r
� 1

r2
þ 1

�r2
þ �2

2q2r4
¼ 0;

(16)

where the prime denotes the derivative with respect to r.
From Eq. (15) it is possible to solve for A00. One can then
eliminate A00 from Eq. (16) and solve for A02 in terms of A0,
�0, A, and �. Then, using this, one can eliminate A02 from
Eq. (14). Finally, one gets

A0

A
¼ 1

4

�0

�
� 2

5

��2

r3q2
þ 1

2

�� 1

r
: (17)

One can use this equation for A, together with Eq. (14), to
obtain

�0 ¼ � 2�2

r
� 10

3

�

r
þ 16

5

�2r0
2

r3
� 4

3

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6�þ 10Þr2 � 6r0

2�
q

r2
; (18)

where r0 stands for

r0 � �ffiffiffi
2

p
q
: (19)

The vacuum case is obtained in the limit r0 ! 0. If r0 � 0,
we can define the dimensionless variable � ¼ r=r0, and the
previous equation becomes

�0 ¼ � 2�2

�
� 10

3

�

�
þ 16

5

�2

�3
� 4

3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið6�þ 10Þ�2 � 6�

p
�2

;

(20)

where now a prime denotes differentiation with respect to
�, and one can see that there are two branches. In order to
study the presence of singularities, it is convenient to study
both the Ricci curvature R and the Kretschmann scalar
defined as

K ¼ 1
4RABCDR

ABCD: (21)

This second scalar invariant will be especially useful for
the vacuum case, when R vanishes on the solutions of the
equations of motion. Their expression for the metric (5) are
given in the appendix.

One can use Eq. (17) in order to express R and K only in
terms of � and its derivatives. Moreover, for the solutions
of the Einstein equations one finds that R / T, where T is
the trace of the stress tensor. As a result, for the nonvacuum
case, one has on-shell

r20R ¼ 6

5�4
; (22)

which states that only for � ¼ 0 the Ricci scalar blows up.
Before facing the problem of solving Eq. (20), it is worth
illustrating the method and the choice of a suitable coor-
dinate system for the vacuum solutions. This will allow us
to make contact with previous works, albeit in a different
coordinate system [25–29].

III. VACUUM SOLUTIONS

The vacuum equations are obtained in the limit q ! 1
(or r0 ! 0). Defining in this section � � r, Eq. (17) sim-
plifies to

A0

A
¼ �0�þ 2�2 � 2�

4��
; (23)

which can be integrated into

Að�Þ ¼ exp

�Z � �0rþ 2�2 � 2�

4r�
dr

�
: (24)

This expression can be further simplified into

A
ffiffiffiffi
�

p
�1=4

¼ exp

�
1

2

Z � �ðrÞ
r

dr

�
: (25)

Finally, as for �, Eq. (18) reads

�
�0

�
¼ � 10

3
� 2�� 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 6�

p
: (26)

The plus and minus signs indicate that there are two
branches for the �ð�Þ solutions. This equation can be
integrated by a separation of variables. The above expres-
sion requires � � �5=3, and the limiting case � ¼ �5=3

is a particular solution of Eq. (26), for which A ¼ A0�
�4=3.

This solution corresponding to a timelike � coordinate will
not be considered as a physical one. Notice that switching
the sign of A0 does not cure the problem, as the three
coordinates x, y, and z would all become timelike.

A. First branch

After separating variables in Eq. (26) and choosing the
plus sign for the square root, one gets

Z � d~�

~�ð� 10
3 � 2~�þ 4

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10þ 6~�

q
Þ
¼ ln�; (27)

whose solution reads

j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 5

p � ffiffiffi
5

p j2
ffiffiffiffiffiffi
2=5

p

j�j
ffiffiffiffiffiffi
2=5

p
�1=2j ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�þ 5
p � 2

ffiffiffi
2

p j
¼ �

��
; (28)

where �� > 0 is an integration constant. The solution is
defined only on three intervals:�5=3< �< 0, 0< �< 1,
and � > 1. Among them, the first one again corresponds to
a timelike spatial coordinates and will not be considered as
a physical one.
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As can be seen in Eq. (28), �ð�Þ ! 1 for

� ¼ �h ¼ 3
ffiffiffiffiffiffi
2=5

p
�1=2��: (29)

Since the Kretschmann scalar given in Eq. (A2) remains
finite at that point, we are in the presence of a coordinate
singularity only. In fact, as can be checked from Eq. (5),
since �ð�Þ is divergent at that point, the hypersurface � ¼
�h is actually a null surface. Notice however that the
redshift counterpart Að�hÞ remains finite. As we discuss
in Sec. III D, this null surface is not a horizon. On the other
hand, there is a singularity, i.e., K ! 1, at the point where
� ! 0þ:

� ¼ �s ¼ �� lim
�!0þ

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 5

p � ffiffiffi
5

p Þ2
ffiffiffiffiffiffi
2=5

p

�
ffiffiffiffiffiffi
2=5

p
�1=2ð2 ffiffiffi

2
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�þ 5
p Þ

¼ 0;

(30)

which is the origin of the coordinate system. Finally, for
noncompact spacetime, the coordinate � should reach � !
þ1. This is possible if � ! 1þ or if � ! 1�. As a result,
the spacetime is necessarily asymptotically Minkowski. In
Fig. 1, we have plotted the metric coefficient �ð�Þ given by
Eq. (28). Notice that we find two disjoint solutions; even
so, we are here considering only the ‘‘þ’’ branch. As
discussed in Ref. [29], it is not clear what happens for � <
�h since the � coordinates are not able to describe the
whole spacetime, leaving an apparently empty spot in the
manifold (see Fig. 1).

B. Second branch

Similarly to the previous discussion, but choosing now
the minus sign for the square root in Eq. (20), one gets,
with � > 0,

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�þ 5

p þ ffiffiffi
5

p Þ2
ffiffiffiffiffiffi
2=5

p

�
ffiffiffiffiffiffi
2=5

p
�1=2ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�þ 5
p þ 2

ffiffiffi
2

p Þ
¼ �

��
: (31)

The position of the null surface is again given by the point
at which � ! þ1, i.e., for

�h ¼ 3
ffiffiffiffiffiffi
2=5

p
�1=2��: (32)

Asymptotically, we want � ! 1 which is obtained for the
vanishing denominator in Eq. (31), i.e., for � ! 0þ.
Contrary to the ‘‘þ’’ branch, there is therefore only one
solution for the ‘‘�’’ branch. Notice that the point for
which � ! 0þ is also a singularity since K ! 1. As a
result, this solution has a null surface at a finite value of �
and a singularity for � ! 1. The corresponding solution
has been plotted in Fig. 2. Once more, the situation for � <
�h is unclear. As we shall see in the next section, this issue
is only due to a bad choice of the coordinate system.

C. Filling the gaps

The variable � does not seem to clarify the situation for
the whole space of solutions. Some solutions look trun-
cated at a finite distance, and others seem to describe
different behaviors for the same �. It is possible that the
different patches may be joined through a different and
more suitable choice of coordinates. Mostly the behavior
of � is quite unclear for � < �h. Pursuing the idea that all
of this situation is due to a bad choice of coordinates, we
introduce a new coordinate system joining the two
branches in the next sections.
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ρ
h

FIG. 1 (color online). Metric coefficient �ð�Þ for the first
branch ‘‘þ’’ of the vacuum solution. There are two solutions:

one exhibiting a null surface at �h ¼ �=�� ¼ 3
ffiffiffiffiffiffi
2=5

p
�1=2 and the

other a naked singularity at �s ¼ 0. In this coordinate system,
the solution exhibiting the null surface is incomplete.
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ρ/ρ∗
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ξ(
ρ)

ρ
h

FIG. 2 (color online). Metric coefficient �ð�Þ for the ‘‘�’’
branch of the vacuum solution. The solution has a null surface

at �=�� ¼ 3
ffiffiffiffiffiffi
2=5

p
�1=2 and a naked singularity as � ! 1. In this

coordinate system, the solution is incomplete.
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1. First branch

Let us introduce the new coordinate vð�Þ such that

�ð�Þ ¼ 5
3ðu2 � 1Þ; (33)

where

u ¼ 5�0 � 2
ffiffiffiffiffiffi
10

p
�v

5�0 � 5�v
and �0 � 13þ 4

ffiffiffiffiffiffi
10

p
3

: (34)

In terms of v, the equation of motion (20) becomes

dv

d�
¼ v

�½vð�Þ�� �0� : (35)

This equation can be inverted to obtain �ðvÞ:
d�

dv
¼ �2 � �0

�

v
: (36)

This is a Riccati equation, which can be linearized with
another change of variable. Introducing sðvÞ such that

�ðvÞ ¼ � 1

s

ds

dv
; (37)

one can rewrite Eq. (36) as

d2s

dv2
þ �0

v

ds

dv
¼ 0: (38)

This equation has the symmetry v ! �v, and the general
solution is

s ¼ c1jvj1��0 þ c2: (39)

Therefore for every solution sðvÞ with v > 0 there is
another solution sð�vÞ ¼ sðvÞ. Without loss of generality,
we can study only the region v > 0. It is interesting to
notice that under this symmetry �ð�vÞ ¼ ��ðvÞ and
�ð�vÞ ¼ �ðvÞ. Finally, the general solution for � reads

�1ðvÞ ¼ �0 � 1

vð1� Cjvj�0�1Þ ; (40)

where C is a dimensionful integration constant. It is clear
that �1 does not seem to be necessarily positive for all
value of v and C.

2. Second branch

As for the first branch, the new coordinate vð�Þ is
defined by

�ð�Þ ¼ 5
3ðu2 � 1Þ; (41)

where

u ¼ � 5�0 þ 2
ffiffiffiffiffiffi
10

p
�v

5�0 þ 5�v
; (42)

and the differential equation for v becomes

dv

d�
þ v

�½vð�Þ�� �0� ¼ 0 (43)

and is inverted into

d�

dv
¼ ��2 � �0

�

v
: (44)

Denoting by �2ðvÞ the solution of the above equation and
comparing Eqs. (36) and (44), one finds �2ðvÞ ¼ ��1ðvÞ.
Therefore, the solution reads

�2ðvÞ ¼ � �0 � 1

vð1� Cjvj�0�1Þ : (45)

3. Joining the branches

For any value of C and v, either �1ðvÞ or �2ðvÞ will be
positive, as �2 ¼ ��1. Hence, for all v � 0, we can set

�ðvÞ � j�1ðvÞj ¼ j�2ðvÞj: (46)

Similarly, for the two branches, the metric factor verifies
�1ðvÞ ¼ �2ðvÞ for all v � 0, and we define

�ðvÞ � �1ðvÞ ¼ �2ðvÞ: (47)

In terms of the v coordinate, the two branches are there-
fore unified, and, assuming from now that v > 0, we have

�ðvÞ ¼ �0 � 1

jv� Cv�0 j ; �ðvÞ ¼ 20C�0v
�0þ1

3½C�0v
�0 � v�2 : (48)

4. Singularities

For all C � 0 these solutions give

lim
v!þ1� ¼ 0; lim

v!þ1� ¼ 0; (49)

and, as can be checked with the Kretschmann scalar, there
is a singularity for v ! 1 (� ! 0). For vanishing v, we
recover the asymptotic singularity

lim
v!0

� ¼ þ1; lim
v!0

� ¼ 0: (50)

For intermediate values of v, we recover the null surface
at the values of v such that � ! 1. As can be checked in
Eq. (48), the existence of coordinate singularities in the
intermediate region depends on the values of the integra-
tion constantC. Denoting by vh the location of this surface,
Eq. (48) yields

vh ¼ 1

ð�0CÞ1=ð�0�1Þ ; (51)

provided C> 0, and no solution if C< 0.
We can also separate the different regions of spacetime

by looking at the behavior of �ðvÞ for finite values of v.
Denoting by v1 the point at with � ! 1, from Eq. (48),
one gets
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v1 ¼ 1

C1=ð�0�1Þ : (52)

Also in this case, there is a solution only for C> 0.
Moreover, for any nonvanishing values of v1 one has � !
1, and the spacetime is asymptotically flat.

From Eqs. (51) and (52), it is clear that we always have
vh < v1. As a result, for positive C, there are two different
patches for the spacetime

(i) 0< v< v1.—A singularity is present for v ! 0,
together with a null surface at vh, and an asymptoti-
cally flat region for v ! v1. We refer to this patch as
the wormhole solution (see Fig. 3). Notice the multi-
valued and unbounded behavior of �ðvÞ which is
reminiscent with a wormhole solution. As we show
in the next section, the divergence of �ð�Þ comes
from the bad choice of the coordinate system: The
null surface is not a horizon and traces instead a
wormhole throat. This wormhole, however, connects
the asymptotically flat region to a singularity, which
is at a finite proper distance from the throat.

(ii) v > v1.—The asymptotically flat region occurs for
v ! v1, and there is a singularity for v ! 1 (see
Fig. 4). There is no horizon nor a wormhole con-
figuration in that patch, and the singularity is naked.

For completeness, let us consider the case C< 0. From
Eq. (48), two singularities are now present for v ! 0 and
v ! 1, without any horizon and with � < 0. This solution
exhibits two naked singularities and two timelike coordi-
nates. Therefore it is pathological and will not be discussed
any longer in the following.

D. Wormhole solution

All solutions discussed in the previous section exhibit
singularities, and we discuss in this section the ‘‘wormhole
patch.’’ As can be seen in Fig. 3, it is a nontrivial merging
of the first and second branches of the �-coordinate
system.

1. Nature of the null surface

Clearly, the v-coordinate system is nonsingular for this
solution (except at most the physical singularity where
� ! 0), and the metric becomes

d s2 ¼ A½�ðvÞ�ð�dt2 þ d ~x2Þ þ �ðvÞ
�
d�

dv

�
2
dv2

þ ½�ðvÞ�2d�2: (53)

From Eq. (48), one can express the metric coefficient
gvv as

gvv ¼ �ðvÞ
�
d�

dv

�
2 ¼ 20�0ð�0 � 1Þ2Cv�0�1

3ðCv�0 � vÞ4 : (54)

This quantity does not blow up at vh, namely, for the points
at which � ! 1, so that in these variables the coordinate
singularities are no longer present. In order to determine
the behavior of AðvÞ, we still need to integrate Eq. (25) in
terms of v and, in particular, the integral

I1 � 1

2

Z �ðvÞ
�ðvÞ

d�

dv
dv: (55)

Explicitly, I1 reads

I1 ¼ � 10

3C

Z v�0�2dv

½v�0�1 � C�1�½v�0�1 � ðC�0Þ�1� ; (56)

which can be integrated exactly into

0 0.2 0.4 0.6 0.8 1
v

0
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ξ(v)

K(v)

ρ(v)

FIG. 3 (color online). Wormhole patch: A singularity is
present at v ! 0, together with a null surface at � ¼ �h and
an asymptotically flat region for v ! v1 ¼ 1. The behavior of
�ðvÞ is multivalued and describes a wormholelike configuration.
Notice that the divergence of � is simply the results of the ill-
defined �-coordinate system. The null surface is not a horizon
and corresponds to the wormhole throat. Although the wormhole
has no horizon, it exhibits a singularity on the brane side and at a
finite proper distance from the throat.
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FIG. 4 (color online). Naked singularity patch: An asymptoti-
cally flat region is reached as v ! v1 ¼ 1 but there is a naked
singularity as � ! 0.
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I1 ¼ � 1

2
ln

�������� Cv�0 � v

C�0v
�0 � v

��������þconst: (57)

Therefore AðvÞ simplifies to

A ¼ A0jCj1=4vð�0þ1Þ=4; (58)

where A2
0 ¼ jCj1=ð�0�1Þ is a constant of integration fixed

according to the clock of an asymptotically flat observer.
The ‘‘redshift function’’ AðvÞ is therefore regular at the
v ¼ vh location, and, at this point, it does not vanish.

In this coordinate system, one can immediately check
that the constant radial hypersurfaces still correspond to
constant v hypersurfaces. From Eq. (53), it is then clear
that the lightlike geodesics can intercept and cross the null
hypersurface located along � ¼ �h. This hypersurface is
therefore not a horizon.

The nature of the coordinate singularity at � ¼ �h can
be further clarified by studying the convergence �r of a
congruence of radial null geodesics. In fact, although the v
coordinates cure the coordinate singularity at the null
hypersurface location, it is not well defined asymptotically,
and one may question the existence of an asymptotically
flat observer at infinity. Therefore, let us define a new radial
variable as

	 ¼
Z v

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gvvðv0Þ
Aðv0Þ

s
dv0; (59)

so that the singularity is located at 	 ¼ 0. Then it is
straightforward to find a null coordinate system which is
regular everywhere and asymptotically flat by defining

u ¼ t� 	; w ¼ tþ 	: (60)

In this coordinate system, one gets

d s2 ¼ �A½vðu;wÞ�dudwþ Ad ~x2 þ �½vðu;wÞ�2d�2;

(61)

as v ¼ vð	Þ ¼ v½	ðu; wÞ�. For the outgoing radial light
geodesic u ¼ const, we can define then �r ¼ rAkA, where
kA ¼ �@Au is the normal to the surface. We find that �r
can be written as

�r ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffi
Agvv

p
�
3

A

dA

dv
þ 4

�

d�

dv

�
; (62)

so that, giving the expressions of AðvÞ and �ðvÞ, one can
check that, in vs < v< v1, one has

�r > 0: (63)

In particular, this implies that there are no trapped surfaces
for v � vh, so that the surface vh is not a horizon [35].

In fact, as the �ðvÞ behavior suggests, such a spacetime
is of the wormhole kind, the throat of which is precisely
located at v ¼ vh [36,37]. This wormhole does not possess
any horizon and may seem to be traversable. Usually,
traversable wormholes require exotic matter to connect

two asymptotically flat regions of spacetime in four di-
mensions [36]. Here we are only in vacuum, and our
wormhole does not connect two asymptotically flat re-
gions: A singularity is still present on one side.
In order to understand the physical meaning of C, it is

instructive to study the asymptotic limit. In fact, � ! 1 at
v ! v1 (C> 0) with

�ðvÞ 	 1

v1 � v
; �ðvÞ 	 1þ ð�0 þ 1Þ

�
1� v

v1

�
;

(64)

or, in terms of �,

�ð�Þ 	 1þ ð�0 þ 1ÞC1=ð�0�1Þ

�
þO

�
1

�2

�
: (65)

Similarly, expanding Eq. (58) in terms of �, one gets

Að�Þ 	 1� ð�0 þ 1ÞC1=ð�0�1Þ

4�
þO

�
1

�2

�
: (66)

Therefore, for an observer at rest at infinity, C is simply
encoding the tension T of a three-brane associated with the
Poincaré invariance

C ¼
�
�0 þ 1

4G7T

�
1��0

: (67)

Notice that C (or T) also fixes the size �h of the wormhole
throat

C ¼ 1

�
�0

0 �
1��0

h

: (68)

2. Embedding function

At a fixed four-dimensional location ðt; ~xÞ, the spatial
metric reads

d ‘2 ¼ �ð�Þd�2 þ �2d�2: (69)

Following Ref. [36], this hypersurface can be embedded in
a four-dimensional Euclidian space of metric

d s2e ¼ d!2 þ d�2 þ �2d�2: (70)

This hypersurface has spherically symmetric sections and
is described by the function !ð�Þ such that�

d!

d�

�
2 ¼ �ð�Þ � 1: (71)

The embedding function is no longer defined for � < 1, the
hypersurface being no longer embeddable into an
Euclidian space (but instead it is inside a Minkowski
space). In Fig. 5, we have represented !ð�Þ in the domains
for which � � 1. In the asymptotically flat region, from
Eq. (65), one gets

!ð�Þ / ffiffiffiffi
�

p
: (72)
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3. Radial motion

It is instructive to study the radial geodesics around the
wormhole solution (see Fig. 3). Assuming without loss of
generality that C ¼ 1, the spacetime is asymptotically flat
for v ! v1 ¼ 1. In this case, if t is the proper time of the
asymptotic observer, one has A ! 1, and thus A0 ¼ 1 and

AðvÞ ¼ vð�0þ1Þ=4: (73)

The metric for a purely radial motion simplifies into

d s2 ¼ �vð�0þ1Þ=4dt2 þ 20�0ð�0 � 1Þ2v�0�5

3ðv�0�1 � 1Þ4 dv2: (74)

For a timelike geodesics, denoting by 
 the proper time, a
constant of motion is

A
dt

d

� ffiffiffiffiffiffi

A�
p

: (75)

The meaning of A� is clear in the asymptotic region: dt=d

corresponds to the energy per unit mass, so that

A� ¼ 1

1� V21
� 1; (76)

where V1 stands for the radial velocity of the particle at
infinity. Conservation of energy along the geodesics now
implies

1

2

�
dv

d


�
2 þUeffðvÞ ¼ 0; (77)

where

Ueff ¼ 1

2gvv
� A�

2gvvA

¼ � 3ð1� v�0�1Þ4ðA� � v1=4þ�0=4Þ
40ð�0 � 1Þ2�0v

5�0=4�19=4
(78)

is the effective potential. Since A� � 1, then Ueff � 0 and
limv!0þUeff ¼ �1. In this case any radial geodesics will
fall into the singularity. Although the coordinate � goes to
infinity as v vanishes, the proper distance dsh between the
singularity and the wormhole throat is actually finite. From
Eq. (54), one indeed obtains

dsh ¼
Z v1

0

ffiffiffiffiffiffiffiffi
gvv

p
dv ’ 9:988: (79)

On the other hand, one can check that the asymptotically
flat region is at an infinite proper distance from the throat.
The proper time of a free-falling particle along a radial

geodesics is given by

�
 ¼ �
Z 0

vi

dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gvvA

A� � A

s
: (80)

Since A� � 1, the geodesics is well defined for all 0< v<
1. Similarly, the asymptotic time t reads

�t ¼ �
Z 0

vi

dv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gvvA�

AðA� � AÞ

s
: (81)

As an example, considering A� ¼ 2 and vi ¼ 0:9, one finds
that the singularity v ¼ 0 is reached in the finite proper
time �
 ’ 12:1 but also for a finite �t ’ 43. For any vi <
1, it takes a finite amount of proper time �
 and of �t (the
time measured from an observer in the flat region) to hit the
singularity.
Having clarified the coordinate system artifacts for the

vacuum case, we derive in the next section exact solutions
for the generic charged case. In fact, the situation is quali-
tatively similar, and one has to introduce a new regular
coordinate system to fully describe the manifold.

IV. CHARGED SOLUTIONS

In this section, we derive the charged solutions gener-
ated by the monopole. Instead of discussing the solutions in
terms of the radial coordinate �, we directly introduce a
generalized version of our new radial coordinate v, in a
way similar to the vacuum case.

A. First branch

As in Sec. III, this branch refers to choosing a plus sign
for the square root in Eq. (20), and we define v such that

11 12 13 14
ρ

0

2

4

6

8

10

12

14
ω

(ρ
)

C = 1
C = 2
C = 3

ξ=1

ξ=1

throat

FIG. 5 (color online). Embedding function !ð�Þ of the worm-
hole configuration for three values of C. The plot has been
truncated to the � values for which � � 1 and does not show
the singularity.
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�ð�Þ ¼ 5�2

3ð�2 � 1Þ
��½4�2 þ ð4þ ffiffiffiffiffiffi

10
p Þ�þ ffiffiffiffiffiffi

10
p �v� ð8þ 2

ffiffiffiffiffiffi
10

p Þ�
½ ffiffiffiffiffiffi

10
p

�2 þ ð4þ ffiffiffiffiffiffi
10

p Þ�þ 4�v� ð8þ 2
ffiffiffiffiffiffi
10

p Þ�
�
2 � 1

�
: (82)

The coordinate v is now obtained in terms of � by using
Eq. (20), and one finds an Abel differential equation of the
second kind, namely,

dv

d�
¼ 2ð4� ffiffiffiffiffiffi

10
p Þðv� 1Þv

2ð4þ ffiffiffiffiffiffi
10

p Þ�� ð�þ 1Þð ffiffiffiffiffiffi
10

p
�þ 4Þv : (83)

As for the vacuum case, we can invert the previous relation
such that now � is a function of v, and one gets

d�

dv
¼ �

ffiffiffiffiffiffi
10

p
�2

2ð4� ffiffiffiffiffiffi
10

p Þðv� 1Þ �
ð4þ ffiffiffiffiffiffi

10
p Þðv� 2Þ�

2ð4� ffiffiffiffiffiffi
10

p Þðv� 1Þv
� 2

ð4� ffiffiffiffiffiffi
10

p Þðv� 1Þ : (84)

This equation is again a Riccati differential equation which
can be linearized by defining sðvÞ such that

�ðvÞ ¼
�
4

5

ffiffiffiffiffiffi
10

p � 2

�
v� 1

s

ds

dv
: (85)

One can use Eq. (84) to finally get

d2s

dv2
þð19þ 4

ffiffiffiffiffiffi
10

p Þv� 8
ffiffiffiffiffiffi
10

p � 26

6ðv� 1Þv
ds

dv
þ 40þ 13

ffiffiffiffiffiffi
10

p
18ðv� 1Þ2 s¼ 0:

(86)

As in the vacuum case, there is still a symmetry in this
differential equation, that is, v ! v=ðv� 1Þ. As a result,
each solution in the range 0< v< 1 can be mapped to the
region v < 0, each solution in the range 1< v< 2 to the
region v > 2, and conversely. Therefore it is sufficient to
study the interval 0< v< 2. Along this range, the general
solutions of Eqs. (85) and (86) are

(i) 0< v< 1.—The function sðvÞ is given by

s ¼ c1s1 þ c2s2; (87)

where s1 and s2 stand for

s1 ¼
�

1� v

ð ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p þ 1Þ4
�
�1

;

s2 ¼
�

1� v

ð ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p � 1Þ4
�
�1

;

(88)

and

�1 ¼ 5
6 þ 1

3

ffiffiffiffiffiffi
10

p
: (89)

Hence, we obtain �ðvÞ as

� ¼
�
4

5

ffiffiffiffiffiffi
10

p � 2

�
ðv� 1Þ

ds1
dv � C ds2

dv

s1 � Cs2
; (90)

where the integration constant C ¼ �c2=c1. From
the above-mentioned symmetry �ðv; CÞ ¼
��½v=ðv� 1Þ; C�, and �ðv; CÞ ¼ �½v=ðv� 1Þ; C�.
Using this property, it is possible to find the solution
for v < 0 from the one in 0< v< 1.

(ii) 1< v< 2.—For this region, one can first extend the
previous solution to the complex domain, and then,
by choosing real linear combinations of the complex
mode functions, one finds

s ¼ c1s1 þ c2s2; (91)

where s1 and s2 are now given by

s1 ¼
�
v� 1

v2

�
�1

cos½�ðvÞ�;

s2 ¼
�
v� 1

v2

�
�1

sin½�ðvÞ�;
(92)

with

�ðvÞ � �1

�
�� 4 arccos

� ffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

v

s ��
: (93)

Notice that �ð2Þ ¼ 0 so that s1 and s2 are, respec-
tively, even and odd under the symmetry v !
v=ðv� 1Þ. The solution for �ðvÞ is still given by
Eq. (90) in terms of the above s1 and s2 functions
and therefore explicitly exhibits the above-
mentioned symmetry. Because of the antisymmetry
of s2, we now have �ðv; CÞ ¼ ��½v=ðv� 1Þ;�C�,
and �ðv;CÞ ¼ �½v=ðv� 1Þ;�C�.

B. Second branch

This branch corresponds to the plus sign in Eq. (20), and,
this time, we define vð�Þ such that

�ð�Þ ¼ 5�2

3ð�2 � 1Þ
��½�4�2 þ ð4þ ffiffiffiffiffiffi

10
p Þ�� ffiffiffiffiffiffi

10
p �v� ð8þ 2

ffiffiffiffiffiffi
10

p Þ�
½ ffiffiffiffiffiffi

10
p

�2 � ð4þ ffiffiffiffiffiffi
10

p Þ�þ 4�vþ ð8þ 2
ffiffiffiffiffiffi
10

p Þ�
�
2 � 1

�
: (94)
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The Abel equation for vð�Þ reads
dv

d�
¼ 2ð4� ffiffiffiffiffiffi

10
p Þðv� 1Þv

2ð4þ ffiffiffiffiffiffi
10

p Þ�þ ð�� 1Þð ffiffiffiffiffiffi
10

p
�� 4Þv ; (95)

which, as for the first branch, can be written as a Riccati
equation, and one gets

d�

dv
¼

ffiffiffiffiffiffi
10

p
�2

2ð4� ffiffiffiffiffiffi
10

p Þðv� 1Þ �
ð4þ ffiffiffiffiffiffi

10
p Þðv� 2Þ�

2ð4� ffiffiffiffiffiffi
10

p Þðv� 1Þv
þ 2

ð4� ffiffiffiffiffiffi
10

p Þðv� 1Þ : (96)

Comparing this expression to Eq. (84) shows that the
solutions �2ðvÞ ¼ ��1ðvÞ, where �1ðvÞ denotes the solu-
tion of the first branch. As for the vacuum case, for every
v � 0 and v � 1, there is always a positive solution for �:
If � is negative for a branch, it is positive in the other and
vice versa. We also have �2ðvÞ ¼ �1ðvÞ in between the two
branches.

As for the vacuum case, we join the two branches by
defining �ðvÞ � j�1ðvÞj ¼ j�2ðvÞj and �ðvÞ � �1ðvÞ ¼
�2ðvÞ for all 0< v< 2. In the following, we discuss the
nature of the solution over the coordinate v.

C. Singularities

At the boundary of the intervals 0< v< 1 and 1< v<
2, the metric coefficient and coordinates behave as

lim
v!0þ

� ¼ þ1; lim
v!0þ

� ¼ 0; (97)

lim
v!0þ

K ¼ þ1; lim
v!0þ

R ¼ 0; (98)

and a singularity is present for v ¼ 0 (and � ! 1). As
v ! 1 we have

lim
v!1

K <1; lim
v!1�

� ¼ 1; (99)

and one may wonder if the manifold patches can be
matched at v ¼ 1. However, the metric factor �ðvÞ is not
continuous at that point, and one has

lim
v!1�

� ¼ 160C

ð13� 6�1Þ2ðCþ 1Þ2 ; (100)

lim
v!1þ

� ¼ 40ðD2 þ 1Þð13� 6�1Þ�2

½sinð��1Þ �D cosð��1Þ�2
; (101)

where we have allowed a different integration constant D
for the regions v > 1. In fact, there is no real solution for
the constantD to match the value of � for all C. As a result,
these two patches cannot be prolonged one onto another.

For v ! 2, and assuming C � 0, there is no singularity,
and one has

lim
v!2

� ¼ jCj; lim
v!2

� ¼ 40C2ðC2 þ 1Þ
½C2ð6�1 � 5Þ þ 8�2 : (102)

For the intermediate regions, as for the vacuum case, the
metric in the � coordinate system possesses a null surface,
which ends up being the throat of a wormhole, if there is a
value vh for which

lim
v!vh

� ¼ 1: (103)

A singularity is present when the Kretschmann scalar
diverges, i.e., for the values vs such that

lim
v!vs

� ¼ 0: (104)

We will also separate the patches explored by the � coor-
dinates according to the values v1 for which

lim
v!v1

� ¼ 1: (105)

The values of vh, vs, and v1 are obtained by taking the
corresponding limits in Eqs. (82) and (90). In general, these
equations do not have any obvious analytical solution, and
they have been numerically solved as a function ofC on the
two domains 0< v< 1 and 1< v< 2.

1. Over 0< v< 1

Taking the limit � ! 1 in Eq. (90) gives

v1 ¼ 1�
�
1� C1=ð4�1Þ

1þ C1=ð4�1Þ

�
2
; (106)

which is such that 0< v1 < 1 for 0<C< 1 only.
From Eq. (82), the null surface position is the solution of

fð1Þh ðvh; CÞ ¼ 0; (107)

where fð1Þh ðv;CÞ is given by Eq. (A3). Finally, except for

some particular cases, the singularity coincides with the
points where �ðvÞ vanishes, so that vs is the solution of

fð1Þs ðvs; CÞ ¼ 0; (108)

fð1Þs ðv;CÞ being given in Eq. (A4).
The solutions of the above equations have been plotted

in Fig. 6, where vh, vs, and v1 are functions of C. From
this plot, one can distinguish three cases:
(i) For C< 0, we have a singularity for v ! 0, a null

surface (for �1<C< 0) and � < 0 for all v in 0<
v< 1. We will therefore not consider any longer this
pathological case.

(ii) For 0<C< 1 and 0< v< v1, we have a worm-
hole configuration whose solution is shown in
Fig. 8. This case is discussed in more detail in the
next section.

(iii) For 0<C< 1 and v1 < v< 1, � vanishes without
changing its sign and a naked singularity appears.

ANTONIO DE FELICE AND CHRISTOPHE RINGEVAL PHYSICAL REVIEW D 79, 123525 (2009)

123525-10



Notice that the proper distance in this interval tends
to infinity, although � ! 1 as v ! 1�.

(iv) For C> 1, there is a naked singularity in vs ¼ 0.
In the next section, we perform the same analysis on the

domain 1< v< 2.

2. Over 1< v< 2

It is interesting to notice the difference with respect to
the previous case, as now � is positive definite. The ex-
istence of coordinate singularities is still given by the
condition � ! 1, and vh is the solution of

fð2Þh ðvh; CÞ ¼ 0; (109)

where fð2Þh ðv;CÞ is derived in the appendix. In the domain

1< v< 2, Eq. (A5) is well defined only for

1< v<
�ð6þ 24�1Þ þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
78�1 þ 15

p
12�1 � 23

’ 1:003: (110)

The singularities are given by the values for v at which �
vanishes and are the zeros of

fð2Þs ðvs; CÞ ¼ 0; (111)

where fð2Þs ðv;CÞ is given by Eq. (A6).
The conditions for the points v1 at which � ! 1 can be

simplified into

v1 ¼ 1

1� cos2½�4 � arctanðC�1Þ
4�1

�
: (112)

The condition of existence and dependency of vh, vs,
and v1 with respect to the integration constantC have been
represented in Fig. 7.

For a given value of C, this plot shows whether and
where there are singularities, bounded or unbounded �

domains, and the null surfaces. Among the many possibil-
ities, none of them seems to represent physically interest-
ing regions, as there are naked singularities and no horizon
connected to asymptotically flat spacetime. Therefore we
will not consider further this part of the full solution,
although some of these configurations may have some
interest once regularized.
In the next section, we study in more detail the charged

wormhole solution exhibited for 0< v< 1.

D. Charged wormhole configuration

We denote by this charged wormhole configuration the
solution obtained in the region 0< v< v1. By definition

lim
v!v�1

�ðvÞ ¼ þ1: (113)

Defining the following polynomials:

P1ð�Þ ¼ 4�2 þ ð ffiffiffiffiffiffi
10

p þ 4Þ�þ ffiffiffiffiffiffi
10

p
; (114)

P2ð�Þ ¼
ffiffiffiffiffiffi
10

p
�2 þ ð ffiffiffiffiffiffi

10
p þ 4Þ�þ 4; (115)

P3ð�Þ ¼ 2ð ffiffiffiffiffiffi
10

p þ 4Þ�; (116)

one gets from Eq. (82)

�ðvÞ ¼ 10�2v

ðP2v� P3Þ2
½ð�þ 1Þ2v� 4�� (117)

and from Eq. (84)

d�

dv
¼ P2v� P3

2ð4� ffiffiffiffiffiffi
10

p Þvð1� vÞ : (118)

Therefore, in the v variable, the metric component gvv
becomes

-0.2 0 0.2 0.4 0.6
C

0.7

0.8

0.9

1
v

v
h
(C)

v
s
(C)

v
i
(C)

v
h
(C)

FIG. 6 (color online). Location of the singular points and
asymptotic � domains as functions of C in the region 0< v<
1. For v ! 0, � vanishes and a singularity appears (not repre-
sented; see text).
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FIG. 7 (color online). Position of the singularities and asymp-
totic � domains as a function of C in the region 1< v< 2. These
patches exhibit naked singularities.
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gvv ¼ �

�
d�

dv

�
2 ¼ 5

2ð4� ffiffiffiffiffiffi
10

p Þ2
�2½ð�þ 1Þ2v� 4��

vð1� vÞ2 ;

(119)

where �ðvÞ is explicitly given by Eq. (90). It is already
clear using the v variable that the gvv component of the
metric is no longer divergent at the �ð�hÞ null surface. As
for the uncharged case studied in Sec. III, one can look for
the presence of horizons by studying Eq. (62). We find that
�r > 0 for any v < vh, so that this field configuration is in
fact a wormhole which does not possess any horizon. The
proper distance from the singularity (vs ¼ 0) to the throat
is actually finite, and this configuration is reminiscent with
the uncharged one:

�s ¼
Z vh

0

ffiffiffiffiffiffiffiffi
gvv

p
dv <1: (120)

Also in this case, v grows continuously from the singular-
ity point to an asymptotically flat region, whereas � shows
a multivalued typical behavior of a wormhole configura-
tion. The various geometrical quantities associated with
this solution have been represented in Fig. 8.

We have plotted in Fig. 9 the embedding function of the
charged wormhole solution, and, as can be checked in this
figure, the topology is similar to the uncharged one. In fact,
Eq. (19) shows that changing the charge simply rescales
the radial coordinate and therefore modifies the throat
width. However, the wormhole solution exists only for 0<
C< 1, and in the limit C ! 1 the throat width collapses to
zero and a naked singularity appears. The physical mean-
ing of the constant C can be inferred from the asymptotic
behavior of �ðrÞ. In the limit r ! 1, from Eq. (117) one
has

�ð�Þ 	 1þ 8ffiffiffiffiffiffi
10

p 2� v1
v1

r0
r
þO

�
1

r2

�
: (121)

By using Eqs. (19) and (106), C is related to the brane
tension T and magnetic charge 1=q by

C ¼ ð ffiffiffi
5

p
x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5x2 � 1

p
Þ4�1 ; (122)

where x ¼ qG7T=�. As a result, the throat collapses now
when the magnetic charge equals the brane tension, i.e., for

G7T=� ¼ 1=ð ffiffiffi
5

p
qÞ, and there is no longer a wormhole

solution for T less than this value.

V. CONCLUSIONS

We have presented exact solutions of the Einstein equa-
tions in seven dimensions in the presence of matter in the
form of a monopolar magnetic field. The solutions have
been derived for compactified spacetimes of the form
M4 � R� S2 for which the extra dimensions exhibit
spherical symmetry. The form field considered is generated
by a spatially extended Dirac monopole present in the
origin and found to generate a charged brane configuration.
This charged brane will be in general a singularity of the
spacetime and may or not be naked. In the pseudoregular
case, a null surface is situated at a finite proper distance
from the brane and corresponds to the throat of a wormhole
configuration. In order to derive such an explicit solution
that covers the whole spacetime, we have proposed a new
coordinate system which cures the incompleteness of the
natural spherical coordinates (� coordinate). Such a choice
of coordinates clarifies the issues of the apparent ‘‘holes’’
in the manifold, and our approach may be applied to other
similar braneworld models. Notice that the solution de-
scribed here corresponds to the asymptotic behavior of
more complicated models exhibiting a residual Uð1Þ sym-
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FIG. 8 (color online). Charged wormhole solution. There is a
singularity for v ! 0, the wormhole throat is located in v ¼
vh < v1, at a finite proper distance from the singularity, and the
space is asymptotically flat as v ! v1. For convenience, the
brane tension has been chosen such that v1 ¼ 9=10.
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FIG. 9 (color online). Embedding function !ð�Þ of the
charged wormhole configuration for three values of C. If C ¼
1, then the throat of the wormhole collapses to zero and a pure
naked singularity appears.
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metry, such as the ones described in Refs. [15,16]. Let us
also notice that we have not discussed the stability of our
solutions. Since they correspond to wormhole configura-
tions with spatially unbounded traverse sections, one may
be concerned about instabilities. It is indeed possible that
such systems, in the way presented here, may be unstable
against breakdown into standard seven-dimensional black
holes [38–40]. However, since such solutions also match
with exterior spacetime of higher-dimensional topological
defects, the stability of the latter remains an open question
for future works.
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APPENDIX: GEOMETRICAL QUANTITIES

1. Scalar invariants

From the metric of Eq. (5), the Ricci and Kretschmann
scalars are given by

R ¼ � 4A00

�A
þ 2A0�0

A�2
� 8A0

r�A
þ 2�0

r�2
þ 2

r2
� 2

r2�
� A02

�A2
;

(A1)

K ¼ �A00A02

�2A3
þ 1

4

A02�02

�4A2
þ 1

2

A03�0

�3A3
þ A002

�2A2
þ 2A02

�2�2A2

þ 1

�4
þ 1

2

�02

�2�4
� A00A0�0

�3A2
� 2

�4�
þ 5

8

A04

�2A4
þ 1

�4�2
:

(A2)

2. Singularities

As discussed in Sec. IV, the location of singularities in
the �-coordinate system for the charged solution are given
by, respectively, considering the limit � ! 1 and � ! 0 in
Eq. (82).

a. Region 0< v< 1

For 0< v< 1, the null surface location vh is given by
the root of the limit �ðvÞ ! 1 in Eq. (82) where �ðvÞ is
obtained from Eq. (90) with the mode functions s1 and s2
of Eq. (88). After some calculations, vh is found to be the
root of

fð1Þh ðv;CÞ ¼�Cþ 2ð ffiffiffiffiffiffiffiffiffiffiffiffi
1�v

p þ 1Þ6�8�1v4�1

6�1 � 13

� 6�1ðv� 1Þ� ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv� 1Þf12�1½vðvþ 4Þ� 4�þ ð12� 23vÞv� 12gp þ 3v� 3

vfv½ð ffiffiffiffiffiffiffiffiffiffiffiffi
1�v

p þ 8Þv2 � 8ð4 ffiffiffiffiffiffiffiffiffiffiffiffi
1�v

p þ 11Þvþ 160
ffiffiffiffiffiffiffiffiffiffiffiffi
1�v

p þ 272�� 64ð4 ffiffiffiffiffiffiffiffiffiffiffiffi
1�v

p þ 5Þgþ 128ð ffiffiffiffiffiffiffiffiffiffiffiffi
1�v

p þ 1Þ :

(A3)

Similarly, the singularities location vs are given by the root of

fð1Þs ðv;CÞ ¼ �Cþ vþ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p � 2

v� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p � 2

� ð ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p � 1Þ4
v2 � 8vþ 4ð1� vÞ3=2 þ 4

ffiffiffiffiffiffiffiffiffiffiffiffi
1� v

p þ 8

�
�1

: (A4)

b. Region 1< v< 2

As for the previous domain, one obtains vh and vs from the corresponding limits of Eq. (82), with �ðvÞ given by Eq. (90)
but with now the mode functions s1 and s2 of Eq. (92). The locations vh end up being the root of

fð2Þh ðv;CÞ

¼�Cþ �6ð2�1 þ 1Þ ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1

p � 2ð6�1 � 13Þ ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1

p
cos½2�ðvÞ�þ ð6�1 � 13Þðv� 2Þ sin½2�ðvÞ�

ð6�1 � 13Þðv� 2Þcos½2�ðvÞ�� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�24�1ðv2 þ 4v� 4Þþ 46v2 � 24vþ 24

p þ 2ð6�1 � 13Þ ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1

p
sin½2�ðvÞ�

:

(A5)

The singularities positions vs are obtained by the zeros of
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fð2Þs ðv;CÞ ¼ Cþ ðv� 2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1

p
cos½�ðvÞ� þ 2ðv� 1Þ sin½�ðvÞ�

2ðv� 1Þ cos½�ðvÞ� � ðv� 2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
v� 1

p
sin½�ðvÞ� : (A6)

In both of the previous expressions, the function �ðvÞ is given by Eq. (93).
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