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We extend the pure pseudo-power-spectrum formalism proposed recently in the context of the cosmic
microwave background polarized power spectra estimation by Smith (2006) to incorporate cross-spectra
computed for multiple maps of the same sky area. We present an implementation of such a technique,
paying particular attention to a calculation of the relevant window functions and mixing (mode-coupling)
matrices. We discuss the relevance and treatment of the residual E/B leakage for a number of considered
sky apodizations as well as compromises and assumptions involved in an optimization of the resulting
power spectrum uncertainty. In particular, we investigate the importance of a pixelization scheme, patch
geometry, and sky signal priors used in apodization optimization procedures. In addition, we also present
results derived for more realistic sky scans as motivated by the proposed balloon-borne experiment EBEX.
We conclude that the presented formalism, thanks to its speed and efficiency, can provide an interesting
alternative to the CMB polarized power spectra estimators based on the optimal methods at least on
angular scales smaller than ~10°. In this regime, we find that it is capable of suppressing the total
variance of the estimated B-mode spectrum to within a factor of ~2 of the variance due to only the

sampling and noise uncertainty of the B modes alone, as derived from the Fisher matrix approach.
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I. INTRODUCTION

The reliable characterization and scientific exploitation
of the polarized cosmic microwave background (CMB)
anisotropy signal is one of the main challenges facing the
CMB research at the present. The challenge is aimed at by
an entire slew of the experimental efforts which are cur-
rently ongoing [1], being deployed [2-7], or planned [8,9].
The majority, if not all, of these experiments will effec-
tively observe only part of the sky. This is either due to
observational/hardware  limitations, particularly for
ground-based and balloon-borne experiments, or the pres-
ence of foregrounds, or both. The resulting so-called cut-
sky effects will therefore have to be taken into account in
the data analysis of most of these experiments.

The focus of this paper is on the CMB power spectrum
estimation via the pseudo-spectrum technique [10]. The
power spectrum is the most fundamental statistics consid-
ered in the context of the CMB fluctuations, which are
thought of as being Gaussian or nearly Gaussian distrib-
uted. The pseudo-spectrum approach provides a computa-
tionally quick and flexible framework for estimating the
power spectra, which has been extensively and success-
fully employed in past analyses of the CMB data sets (e.g.,
[11,12]). However, it has been long recognized [13] that a
straightforward application of the pseudo-spectrum tech-
nique to cut-sky polarized CMB maps leads to the so-
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called “E-to-B” leakage, or power aliasing, as a conse-
quence of which the cosmologically important information
contained in the CMB B modes is overwhelmed by the
statistical uncertainty of the (much larger) £ modes. To
date two techniques alleviating the problem have been
proposed: one correcting the leakage on the correlation
function level [14] and the other attempting to do so
directly on the maps [15]. The latter approach relies on a
suitably chosen sky apodization to remove from the map
harmonic modes which are neither solely £ nor B. In a
recent paper [16] it has been suggested that the apodization
can be appropriately optimized to bring down the resulting
B-mode spectrum uncertainty in line with the optimal
methods, building up a strong case in favor of this ap-
proach. In this paper we extend the original formalism of
[15] to incorporate it within the framework of the cross-
spectra computations and discuss a number of implemen-
tation issues, related to derivative computation and apod-
ization choices in actual applications. Later, in this context
we discuss the performance of the approach.

We note here that other approaches to the polarized
power spectrum, which do not suffer from the leakage
problem, exist but are however hampered either by numeri-
cal efficiency [17] or convergence [ 18] issues, in particular,
for the high resolution observations (but see [19] for a
potential resolution of this problem). Consequently, the
pure pseudo-spectrum approach stands out as an important
alternative potentially capable of addressing successfully
the needs of the future CMB B-mode polarization
experiments.

© 2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevD.79.123515

J. GRAIN, M. TRISTRAM, AND R. STOMPOR

The outline of this paper is as follows. In Sec. II we start
from presenting the standard pseudo-power-spectrum tech-
nique and the E/B-leakage problem. We also summarize
the original approach of Smith (2006) [15] and describe its
specific variant as proposed in this paper and which in-
vokes harmonic domain derivatives and the cross-spectrum
idea. We conclude that section with an overview of the
numerical implementation of the method. In Sec. III we
elaborate on the issues related to the proper sky apodiza-
tions. In Sec. IV we consider the performance of the
formalism focusing on the role of the apodization and its
impact on the quality of the final results, as expressed by
the level of the remaining residual E/B leakage and the
uncertainty of the estimated power spectra. We summarize
the main results of this work in Sec. V.

For definiteness, hereafter, we will reserve the term
mask to a binary, pixelized map of a sky assuming only
two values 1 and 0, corresponding to an observed or
unobserved (or just not to be taken into the analysis) sky
pixel, respectively. The pixel weights which can assume
any nonzero value will be referred to as either apodizations
or windows. In this language a mask just defines an ob-
served sky. We will also refer to aliasing involving different
spin harmonics as leakage, reserving the term aliasing
solely to mixing between different modes of the same
type of the same basis functions. Though not strictly
precise such differentiations will be useful in the following
discussion.

II. NOTATION AND FORMALISM

A. Harmonic decomposition

The CMB (linear) polarization field is completely de-
scribed by two Stokes parameters, Q and U. Those can be
combined into two spin-2 and spin-(—2) fields defined as

P, =Q=*il. (1)

For the full sky, the spin fields can be expressed in the
harmonic space making use of the spin-weighted spherical
harmonic basis

P.y = Zi2a€mi2Y€m' @)
{m

Alternatively, the polarization field can be decomposed
into a gradient, E, and a curl, B, part, both of which are
coordinate independent. In the harmonic space, these two
approaches are related via the following relations:

E — _1
Aom = E(zaem + hag,) 3)

i
ag, = E(ﬂem — _ydyg,)- 4

From a point of view of physics, the E/B decomposition of
CMB polarization may seem more natural as it is directly
linked to the primordial cosmological perturbations lead-
ing to the presently observed CMB anisotropies. In par-
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ticular, only primordial gravity waves, and not density
perturbations, can create B-type polarization [20]. As a
consequence constraining the amplitude of such modes
could allow us to study the character of the primordial
cosmological perturbations. This simple picture is spoilt
somewhat by a presence of an additional B-mode type
contribution generated by the gravitational lensing of the
E-mode polarization [21] and which needs to be accounted
for if the primordial component is to be recovered.

A computation of polarized angular power spectra
makes use of spin-weighted spherical harmonics. Those
functions, a natural harmonic basis for spin-s fields on the
sphere, are derived from the standard (or spin-0) spherical
harmonics by applying the spin-raising (d) or spin-
lowering ) operators [20],

=9
sYom = ‘/mé Yom

(€ — s)!
(€ + s)!

(&)

Y, = (=1) Y e,
where hereafter s = 0. In the following, we will always
assume that s is non-negative. The main properties of the
spin-weighted spherical harmonics under different trans-
formation can be found elsewhere, e.g., [20,22,23].

Any complex, spin-s field, with ;¢t = _ ¢ is com-
pletely characterized by its projection on the spin-s spheri-
cal harmonics, defining its harmonic representation,

ixa€m = ‘/’dzﬂix¢isygm' (6)

Just as is the case for spin-2 polarization fields a spin-s
field can be also fully described by its E/B harmonic
decomposition. Adopting a vectorial notation,

() o

we can define the E and B spherical harmonic basis as

Y. = DEY m - A~ = Yem
EXstm € B \’ (€ + S)!( —i(d — (_1)563) ¢

1 SY{’m + (_I)S*SY(fm )
=_ e
(—iwm —cy,y) @

2

and

_ 1= )t i(0° = (1))
8 ¥oon = D¥n = 3477 s)!( 3 + (—1)°5° )Y"f’”
:l i(sY€m - (_l)sfsygm)
2\ Y, +(=D_y, )

9)

Here we have defined two differential operators DE(B)

which generalize to arbitrary spin the operators used in
[13]. The harmonic representation of the field ® in the E/B
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subspace then reads

Xy om = f POW(Q)P - YT (10)

s, €m’
where X = E or B and we have introduced an arbitrary
(scalar) weight, W, which we will later need to account
either for the noise present in the data, ®, or the cut-sky
effects. The dot denotes a standard componentwise dot
product. In the special case of CMB polarization, the
vector @ is simply the polarization vector defined as

p=(2)

It can be easily verified that introducing the polarization
vector P into Eq. (10) and setting s =2 and W = 1 over
the full sphere leads to the standard definition of the E and
B multipoles.

B. Pseudo-power spectra

The pseudo-C, estimator, e.g. [11,12,24], in a given
bandpower « with a width A€, is then based on the multi-
pole decomposition Eq. (10) and defined as

=) =)t
- €€+ 1)< xad a
X, a 2,6mX"2,4m
= : = 11
Cip % 2mAL % 20+ 1 (b

where X stands for E or B and i and j distinguish two sets
of measurements (maps) of the sky for which the harmonic
coefficients have been computed. Throughout this paper,
we use €(€ + 1)/27 as € weighting while computing the
bandpowers. Though this may not be the most natural
choice from the B-mode power spectrum perspective, the
results presented hereafter are expected to be largely inde-
pendent on it, given the relatively narrow € bins used in this
work and the fact that the B-mode power spectrum is
nearly structure free. For definiteness we will be assuming
hereafter that the two different sets of data always refer to
the same sky area, though we will allow for different
(nonzero) weights assigned to each of them. The pseudo-
spectrum formalism can be used to estimate EE and BB as
well as EB spectra. Hereafter, we will use a calligraphic
typeface, C, for the estimated and a roman one, C, for the
true underlying CMB power spectrum.

Because of the limited sky coverage and nonuniform,
pixel-dependent weights, the above estimator is biased and
its average over CMB realizations, <(~fi;'§>, involves a mix-

ing between different £ modes (or bins) and polarization
states. The latter can be described by a so-called mixing
kernel which we will denote as MXX,. The unbiased esti-

mator Cffj“) is thus obtained by inverting the following
linear system:

diag £ E,a! PEa _ arE«
(Maa/ M(%a’ Cg,j) — g/’g,/’) N%J’) (12)
Mt Mo )\ che coo —NEe )
aw

aa’ (i,)) (i,/) (i.))

PHYSICAL REVIEW D 79, 123515 (2009)

Here N()fll)“ is the noise contribution to the estimated

pseudo-spectra and vanishes, whenever the noise in the
two data sets is not correlated, as, for example, in a case of
two data sets produced by two different experiments or two
uncorrelated detectors of a single experiment. In fact, we
will always assume that N()f;;’/ = 0, whenever i # j, and
refer to the latter cases as pseudo-cross-spectra. We will
call a pseudo-spectrum computed from a single data set,
i.e., i = j, apseudo-autospectrum. We note that in this case
the noise term is usually nonvanishing and has to be
estimated from the data and/or our knowledge of the
experiment to allow the estimator in Eq. (11) to be cor-
rectly unbiased. This emphasizes one of the biggest advan-
tages of the cross-spectrum based estimators, which do not
need such a correction. However, the mixing kernel Mﬁi‘,’
will depend on the window functions applied to each of the
data sets and therefore be somewhat more cumbersome to
calculate in the cross-spectrum case. Moreover, as we will
discuss that later on, some of the most appealing choices
for the window function will often require the knowledge
of the noise in the data. Nevertheless, as the latter will be
used only for the power spectrum error estimation and not
for the computations of the spectral estimates, lower pre-
cision in modeling the noise may be sufficient. In the very
least, in a case of real data the cross-spectra provide a
useful and handy diagnostic in the analysis of any data set
[25], while for a discussion as the one presented here the
cross-spectra allow to simplify the analysis by avoiding
any explicit treatment of the noise bias, while retaining all
the other aspects essentially unchanged.
The mixing matrix can be computed as

- o€+ 1) 1
M =2 2 o+ 1)A€22€+1

(Eal'ed m

X ZY;M(X,-)S%(/X/(X,' - xj)?X,ém(xj)’ (13)
ij

where x; denotes a position of an ith pixel. The above
expression is fully general, as YX’gm can be any function
used to project the Stokes parameters maps into the har-
monic E and B subspaces. In particular, for the standard
spectra the windowing of the data with a window W can be
taken into account by setting

Y xom = WDXYy,,. (14)

The specific expressions for Mﬁﬁ: relevant for the case of
standard pseudo-spectra can be found elsewhere [12].
The S¥X' matrix is a convolution kernel relating the
pixel-domain correlation functions of the Q and U
Stokes parameters to the E and B angular power spectrum
(the explicit link between two-point correlation functions
and power spectra for polarization fields can be found in
the appendix of [17]). We point out that in some applica-
tions considered in the following the window, W, and
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therefore also the functions Y'X,gm will all depend on the
bin number, « (see Eq. (12)).

In general, the kernel, Mﬁ‘f,’, will mix different € modes
as well as E and B polarization types. The consequences of
this fact and the conditions, which ensure the diagonality
of the kernel in the polarization states are discussed in the
following sections.

C. The E/B leakage problem

The operators defined in Sec. II A, valid for any spin-s
complex field, define two orthogonal subspaces as

Dit-DE =0

However, the E/B subspaces defined by , / 5 Yo are or-

stm
thogonal (in the sense of Eq. (10)) only on the full sky. This
means that if the polarization field is known on a limited
part of the celestial sphere, the reconstruction of E and B
modes by projecting the measured polarization on the

£ /BY2€m basis is ‘“‘nonpure,” i.e., the estimated E or B

multipoles receive a contribution from both E and B
modes. This applies, in particular, to the pseudo-power
spectra, CEE and CBB, as defined in Eq. (11), each of which
will include a contribution from the other mode. Though
such a mixing can be removed on average, the leaked
modes will still contribute to the variance of the estimated
power spectra. Therefore, if the power contained in one of
the polarization states is much higher than in the other, as is
the case of, for example, the CMB anisotropies, the error
bars estimated for the mode with lower power will be
drastically exaggerated due to sample variance of the
leaked contribution.

The same conclusion can be arrived at by starting from
Eq. (10) which can be viewed as a harmonic decomposition
of the (WP) field. Multiplication by the window function,
W, is a convolution not only in the harmonic space but also
in the E/B subspace, turning thus % into a mixture of the
true B and E CMB multipoles.

This last observation highlights the fact that the standard
pseudo-C, technique may be in practice unable to provide
good estimates of the B-mode angular power spectra, in
particular, from data sets coming from small-scale CMB
experiments. Moreover, even for satellite experiments for
which angular power spectra can be estimated from a
significant fraction of the sky, the discussed effects may
be significant enough not to be negligible.

We can look at the E/B leakage problem also from the
mixing matrix perspective. The lack of orthogonality of E
and B type of spherical harmonics results in the coupling
between the E and B pseudo-power spectra. For this reason
the inversion in Eq. (12) needs to be performed simulta-
neously for both E and B spectra to allow for unscrambling
the modes with help of nonvanishing off-diagonal EB and
BE blocks of the mixing matrix. The resulting expression
for the power spectrum estimate, derived in the case of the
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B-mode spectrum reads now

Ba _ (pgdiag _ proff pgdiag—1y roff \—1r(PB.a’ _ arB.@’
C(i,;; - (Mao/ M(C)!LY/MLYLY/ Mgzo/) |:(C(i,;y) N(i,;;)

— MO M CRS — NG9 (15)
In the ensemble average sense the above expression is
unbiased as a result of a subtle cancellation of the
E-mode power present in the pseudo-B and E spectra.
Such a cancellation does not, however, apply to the vari-
ance of the estimator and as a result the variance of the
spectra of one type will include a contribution from the
other.

In the following we will quantify the E/B leakage using
both these perspectives, i.e., either looking at an excess
variance of the estimated B-mode power spectrum or at the
magnitude of nonvanishing, off-diagonal blocks of the
mixing matrix.

D. Pure pseudo-C, estimators for cross-spectrum
1. Definition

Pseudo-C, estimators of the polarization power spectra
which do not mix £ and B modes can be constructed in
projecting the polarization fields on the “pure” E and B
subspaces [13]. Pure E and B multipoles on a partial sky
are defined as follows (the vector P now represents the
polarization signal as measured on the sky) [15]:

i = [@DEW YW PO, (16)

gl = [ D, (W)Yot - P)  (17)

with W a spin-0 window function satisfying the Dirichlet
and Neumann conditions on the boundary of the observed
sky region. Such conditions on the window function are
mandatory for the estimated multipoles to be free of an
E/B leakage due to partial sky. This can be easily shown in
the pixel domain. On applying an integration by parts twice
to Egs. (16) and (17) and taking into account the boundary
properties of W, we can rewrite the estimated multipoles as
[15,16]

5l = f dxW(x)Y ¢, (x)DET - P(x), (18)

5l = f dxW(x)Y g, (x)DET - P(x). (19)

Given that the operator D5 (D%) filters out all the B(E)
modes, the multipole decomposition defined above indeed
should be free of any E/B mixing. (We point out that the
above harmonic decomposition corresponds to the decom-
position on a partial sky of the so-called y fields defined in
[16].) A simple way to understand this point is to notice
that applying D to the polarization field corresponds to a
local filtering of the E modes whereas projecting on the
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BY{ o Dasis corresponds to a global filtering. Because of
this difference, the latter of these two techniques suffers
from partial sky effects whereas the former one does not. In
other words, if the window, W, satisfies the Dirichlet and
Neumann boundary conditions, the multipoles estimated in
Egs. (16) and (17) are pure and the mixing kernel, Mﬁﬁf, is
a block diagonal matrix in the E/B subspace, i.e.,

MXX = MY 8y x. (20)

This last condition, intuitively obvious given our previous
discussion, can be formally derived from Eq. (13) defining

YX,(m = D%(WY(’m (21)

A more detailed discussion of the mixing matrix and
related issues is presented in the next section and
Appendix A.

2. Numerical implementation

a. Pure multipoles. In the actual implementation, we do
not make a direct use of Eqgs. (18) and (19) as this would
require taking numerical derivatives of noisy maps. We
rather calculate the pure multipoles using Eqs. (16) and
(17). We refer hereafter to this way of performing calcu-
lations as the spin-weighted approach. Consequently, Dg/ B
operators need to be applied directly only to products of the
spherical harmonics times the window function. This is an
approach also adopted in [15,16]. Our numerical imple-
mentation proceeds in two steps. First, we define two spin-
weighted windows,

W, =0W and W, =W, (22)
and construct three new fields,
Py =Wl(Q+iU),
Py = Wwi(Q +iU).

P, =W(Q +iU), o3

P, is a spin-s field, since WJ = W_, has spin (—s) and
(Q + iU)—spin 2. Then, on the second step, we calculate
the pure multipoles as linear combinations of the E and B
multipoles of the three new fields. The latter can be derived
from Eqgs. (16) and (17) with the help of Egs. (8) and (9).
For instance, in the case of the B modes, the pure estimated
multipoles read

€ —2)1(¢ + 1)
(€ + 21— 1) bim

{—2)!
+ “’ﬁBO,é’m’ 24)

with B, 4, denoting the B-type multipoles of the P, field as
in Eq. (10). Numerically the entire computation comes
down to an efficient calculation of the spin spherical har-
monic transforms. We comment on those in more detail

B&{fm = B2,€m +2
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later in this section. Equation (24) offers another insight
into the pure estimator formalism. The first term on the
right-hand side (rhs) of this equation corresponds to the
standard estimator, while the two following ones act as
counterterms removing the leaked £ mode. Indeed we have
found that they are anticorrelated with the first term as
expected in such an interpretation.

b. Numerical derivatives. The knowledge of the three
spin window functions is needed for numerically comput-
ing the pure multipoles. As will be clear in the next section,
there are cases where only the spin-O0 window is known.
Therefore, we need an efficient way to derive the spin-1
and spin-2 windows from the spin-0 one, which in turn
requires a numerical calculation of window derivatives.
Hereafter we will perform this computation in the har-
monic space,

’ €+ 5)!
Ws =0W— Wstm = Ee — §;|W€m' (25)

The final spin-1 and spin-2 windows are then obtained by
transforming back to the pixel domain. This technique
allows us to use simple analytic window functions on
complicated sky coverage, for which only the spin-0 part
can be easily computed. It also ensures that the conditions
given in Eq. (22) are fulfilled. By doing this computation in
harmonic space, we may introduce some ringing due to the
pixelization (or gridding) of the sphere. Indeed, we have
found some minor artefacts of this sort when comparing
numerically computed windows with the respective ana-
lytic expressions in cases when the latter could be calcu-
lated, e.g., in cases with apodizations as in Egs. (30) and
(31) and for simple observed sky patches. It appears, how-
ever, that such ringing does not seem to affect our ability to
control the E/B leakage at scales where this control is
mandatory. For instance, for a 20 X 20° square patch
pixelized with HEALPix pixels with Ng4. = 512, the re-
sidual, leaked E modes calculated using the numerical spin
windows reproduce closely those obtained analytically all
the way up to € ~ 400. For higher values of ¢, the use of
numerical computation leads to a slight increase of the
residual leakage. We expect that to be always the case,
independently of the apodization length as long as it is
sufficiently greater than the pixel size.

In general the discrepancy between the exact and nu-
merical spin windows depends on patch geometry. For
example, the discrepancy is reduced for a spherical cap
as compared to a square patch. Its magnitude will also in
general depend on the assumed pixelization and, in par-
ticular, may be greatly enhanced if the considered region is
in a particular position and/or orientation with respect to
the pixelization scheme. However, whenever necessary,
such a discrepancy can be reduced or at least shifted to
higher ¢ values by going to a higher resolution. We dem-
onstrate some of these effects in Sec. I'V.
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¢. Mixing kernel. The mixing kernel can be expressed as
a sum over the £ modes in the harmonic space of products
of the harmonic coefficients of the spin window functions
and 3j Wigner coefficients [11]. This is done by using
Eq. (21) in Eq. (13) and subsequently expanding the win-
dow function in harmonic space. We present relevant for-
mulae in Appendix A (see also [15] for an alternative
derivation of those kernels). They generalize the standard
expressions for the ordinary pseudo-spectra [26,27]. In our
numerical computations we implement these formulae and
perform all the required calculations directly in the har-
monic domain. This is in contrast to the previous study of
[15], which strives to make computations predominantly in
the pixel domain.

As we mentioned before for any scalar window function
we can calculate the harmonic coefficients of the spin
windows by using the relation in Eq. (25). If we then use
these in the computation of the mixing kernel, Egs. (A4)
and (AS), we find that the off-diagonal blocks of the
mixing matrices vanish within the numerical precision.
This simply reflects the fact that the pure estimators are
indeed pure and do not mix E and B modes. This is,
however, also not realistic. In practice, we expect that
some residual E/B leakage will be present due to the sky
discretization—an effect not corrected by the pure pseudo-
spectra formalism and not characterized properly in the
above-mentioned calculation of the mixing matrix. To

Diagonal block (Ng4.=512)
— T T T r T
X
3
= 4oL
it
S
5 107"°F
)
12}
o
5 107} :
0
"
m 107 . . . . .
200 400 600 800 1000
Multipole ¢
Diagonal block (Ng4.=1024)
%
3
= g ]
9
S
3 107" 1
(]
n
a.
5 1070 ]
)
;
m 107% . . .
500 1000 1500 2000

Multipole ¢

FIG. 1 (color online).
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account for the pixelization effects we propose to compute
the mixing kernel using coefficients of each of the spin
windows calculated via numerical spherical harmonic
transforms (SHT) of the pixel-domain representation,
Egs. (A7) and (A8). We do so even in the cases when the
window derivatives are computed numerically and thus are
directly available in the harmonic domain. In such cases,
our procedure corresponds simply to taking first an inverse
SHT of the spin windows as given in the harmonic domain.
This produces their pixel-domain representation, which we
transform back to harmonic domain via a direct SHT.
Because of sampling effects such an operation does not
reproduce precisely the input coefficients. The new har-
monic coefficients of the windows, when used now to
calculate the mixing matrix, lead the higher values of the
off-diagonal block elements, which, though still small
when compared with the diagonal elements of the diagonal
blocks, are not any more numerically zero. This can be
understood from Eq. (24): because of gridding effects
during the SHT, the multipoles involved in the pure esti-
mators are not computed exactly and the precise cancella-
tion of the leaked E mode is not perfect.

As those are the pixel-domain representation of the
windows, which are used in the pure pseudo-spectra com-
putation, we may expect that the observed change by
explicitly taking the SHT of each spin windows while
computing the mixing kernel, goes in the right direction,

side

Off—diagonal block (N,

=512)
107 T T

10718 ]
10718 |
10-20 ;'

1 0—22 [

1072 L 3
10726 [ 1

B-mode pseudo-C, [uK?]

200 600 800 1000

Multipole ¢

200

Off—diagonal block (Ng,.=1024)

107‘\4
1078+ g
1078 g
10720
10722

107
10725

B-mode pseudo—C, [uK?]

2000

1500

1000
Multipole ¢

500

Dashed (red) curves show a single column of the mixing kernel at €, = 700 computed using our numerical

approach as described in the text, for the diagonal, left, and off-diagonal blocks, right, and two different resolutions: ngg4, = 512, top
row, and ngy. = 1024, bottom. The overlapping solid (black) lines depict the EE, left, and BB, right, pseudo-spectra computed from Q
and U maps containing only E-mode power as €, = 700 and apodized with analytic window functions satisfying the boundary
condition and constrains in Eq. (22). The apodization length is set to 7° degrees. A very good agreement seen in all the cases validates
the proposed numerical approach. The off-diagonal elements in the left panels are due to the cut-sky mode mixing, while the nonzero
values in the right panels are due to a residual pixel-induced E/B leakage.
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properly reflecting the correlation pattern between the
modes of the pure spectra. We can test this expectation
with the help of numerical experiments. We first note that
we can compute any of the columns of the mixing matrix
by computing the pure £ and B pseudo-spectra of the sky
signal containing power only in one selected harmonic
mode ¢ = {,. Examples of such computations are shown
in Fig. 1. There we have allowed for nonzero power only in
a single €, = 700 mode of the E polarization. The derived
pure E and B pseudo-spectra are contrasted with the cor-
responding columns of the EE and BE blocks of M., both
computed using the procedure outlined before.

For a square patch assumed in the calculation visualized
in Fig. 1, the overall agreement between the pseudo-spectra
and the column of the kernel is indeed very good. For the
off-diagonal block some differences can be seen only at the
high-¢ end with the mixing kernel underestimating the
residual leakage. The discrepancy appears mostly benign
as it affects the multipoles for which the leaked signal is
found to be negligible.

We thus conclude that the simple way of incorporating
the pixel effects as proposed here works indeed very well
everywhere, where the leakage is significant and thus
requires a sufficiently accurate treatment. This also dem-
onstrates that the method of computing the mixing matrix
advocated here adequately describes the actual correlations
between the € modes of the computed polarized pseudo-
spectra. For more relevant examples of such a comparison
see Sec. IIT A and Fig. 2.

We note that in general different window functions can
be used for the estimation of the power in different € bins.
Indeed, as we discuss that later on, it is a common occur-
rence in practical applications in which we usually strive
for the smallest attainable uncertainty on a final power
spectrum. In such cases, we calculate the kernel row by
row, i.e. bin by bin, using an appropriate window assigned
to each of them. The kernel computed in this way is later
used to solve the inverse problem in Eq. (12).

d. Spherical harmonic transforms. At the core of the
numerical implementation of the formalism presented in
the paper is a calculation of the spin spherical harmonic
transforms. For this purpose we utilize here a publicly
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FIG. 2 (color online).
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available, Scalable Spherical Harmonic Transforms
(S’HAT) library [28]. This parallel library allows for an
efficient computation of arbitrary spin transforms for a
general class of sky griddings and pixelization in which
the pixels (grid points) are distributed along the constant
declination lines. These include therefore the most fre-
quently used in the CMB work, e.g., HEALPix [29],
GLESP [30], ECP [31] as well as some others. The spin
spherical harmonics are computed using the recurrence
relations as listed in [32], which are appropriately rescaled
to avoid numerical under and overflows. The library is
designed to treat optimally the cases with only a partial
sky coverage and is therefore particularly suitable for our
purposes here. It is parallelized using the message passing
interface (MPI) and distributes over the processors both the
pixel (maps) and harmonic (harmonic coefficients) domain
objects permitting to achieve high resolutions with modest
memory resources available per single processor.

III. SKY APODIZATIONS

Performance and in a result applicability of the pure
(cross) spectra formalism is clearly dependent on our
ability to compute a suitable apodization for any specific
CMB polarization experiment. In this section we introduce
a number of proposal functions, which could be used as
apodizations in calculations of the pure (cross) spectra. The
discussed functions range from ones derived as a result of
optimization procedures and therefore often numerically
involved, to ones proposed somewhat ad hoc but quick and
easy to calculate. We will discuss their relative merit only
briefly here, postponing a more thorough comparison of
their performance to the following sections.

A. Variance-optimized apodizations

In realistic applications we would like to have an apod-
ization function which would ensure that the total (i.e.,
noise plus sample variance) uncertainty of the recovered
power spectra is (nearly) minimal. In the case of the auto
pure pseudo-spectra a general ansatz for such optimized
weighting has been proposed recently by Smith and
Zaldarriaga [16]. It is derived as a condition on the apod-

side

Off-diagonal block (N,

T

=512)

T

1070 1

B-mode pseudo—C, [uk?]

400 600 800 1000

Multipole ¢

200

As Fig. 1, but computed assuming numerically optimized pixel-domain window functions and a more realistic

sky patch as could be observed by CMB B-mode balloon-borne experiments, such as EBEX (see Fig. 21 and Sec. IV for more details).
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ization window required to minimize the difference be-
tween the auto pseudo-spectrum of a map and its optimal
counterpart. Those authors have obtained a following rela-
tion for the (nearly) optimal weights,

Nobs
Z Cl.ngj?‘)W,- =1, forall j. (26)
=1

Here the summation is made over the N, observed pixels.
The matrix C is the covariance matrix of the data and P is a
geometrical matrix which comes from the projection on
harmonic space (for example, the Legendre polynomials
matrix in the case of temperature). The optimized weight
function can be then obtained by a numerical inversion of
the above linear system for each bin «. It can be shown
[16] that such optimized windows converge towards in-
verse square-noise weighting in the noise dominated case.
This is a regime usually reached at the high-€ end of the
estimated power spectrum. We refer the reader for more
details about the derivation of this relation to [16].

For the computation of the cross-spectrum we need to
compute an apodization for each of the available maps.
The approach of [16] has to be therefore extended to
accommodate such cases. This can be done in a number
of ways. For instance, using Eq. (26) we can compute an
apodization for each map considering them separately or
together. Alternately, we could apply a reasoning similar to
that of [16] but in the context of the cross-spectrum to
derive a relation analogous to Eq. (26) but applicable to the
cross-spectra. Though this last approach may seem the
most appropriate for the case at hand it unfortunately
results in an expression, Eq. (B13), which is computation-
ally rather involved. The two first options mentioned above
are numerically more tractable, though they produce win-
dows, which minimize the difference between the pure
pseudo-spectrum estimator and its optimal counterpart on
the autospectrum level. The first of these two approaches
uses for that purpose the autospectrum of the map for
which the apodization is sought, while the second one—
the single autospectrum of all the maps considered.
Clearly, which one of the two methods is more appropriate
will depend on the specific goals of the entire estimation
procedure. We note, for example, that in the case of two
maps with the same noise properties the difference be-
tween the two optimization approaches is limited only to
a different overall factor determining the level of the noise
with respect to the sky signal (see Appendix B for more
details). Hereafter, we will utilize the first option and solve
Eq. (26) as in the pure pseudo-autospectrum case for each
of the two maps. We will support this choice in the follow-
ing sections with the help of numerical experiments.

Equation (26) can be specialized to a particular case of
polarization when the input data used are composed of the

. . )
Stokes Q and U maps. The geometrical matrix Pf;( needs

to be then extended into the spin subspaces and nonzero
spin windows introduced. Their implicit definition conse-
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quently reads

Nobs 2 ( )
(o3 J—
Cl/ Z Pi+N0bSS,j+N0bSS/Wi+Nobss - ej+NobsS/’ (27)
=1 0

§=

L

where an additional summation over spins of the windows
is added. The geometrical matrix, P, describing the
projection on spin-weighted spherical harmonics, is now
explicitly dependent on the spin value, s, and in general is
not diagonal in the spin subspace. The vector e is a SNy
vector whose first N, entries are equal to one, correspond-
ing to the normalization of the spin-0 component, and all
the others are set to zero [16].

The approach can be also looked at as an attempt to
minimize the total, signal plus noise, power aliased to a
given bin either from the other adjacent bins or the other
modes (e.g., E/B leakage). This viewpoint is referred to as
the variational interpretation in [16]. Consequently, in
general there is always a different window function calcu-
lated for each bin as a result of this procedure. This has two
consequences. First of all, one has to deal with a set of
windows optimized for each bin. Second, this means that
one has to define each bin parameter before performing the
optimization procedure.

Below we discuss the implementation of this kind of
optimization procedure in both pixel and harmonic
domains.

1. Pixel-domain implementation

The matrix operations in Eq. (27) should be done pref-
erably in a pixel domain. That allows to consider a full
potential complexity of the map noise properties as well as
arbitrary masks with complicated boundaries and/or holes
due to point-sources extraction, rendering such an imple-
mentation very flexible.

In the context of the pure pseudo-spectrum estimators,
one should in principle ensure that the spin window func-
tions fulfill the relation in Eq. (22) as well as boundary
conditions. However, hereafter following [16], we relax
these constraints in the numerical implementation of the
procedure. This allows for greater flexibility and therefore
enables finding window functions better suited for our
needs. Nevertheless, this simplification has a major con-
sequence: the pure pseudo-C, estimator is not perfectly
pure and will unavoidably introduce some E/B leakage in
addition to the one induced by the pixelization itself. This
residual leakage may become problematic in the low-¢
region where sampling variance is the major contribution
to the error bars. We note, however, that in the high signal-
to-noise ratio regime the resulting windows are expected to
nearly fulfill all the constraints, even if those are not
explicitly imposed. This is because the total variance mini-
mization approach used in [16] to derive Eq. (26) implies
that the solution for which the counterterms in Eq. (24)
nearly cancel the leaked signal included in the first term is
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preferred over those for which three terms are independent,
which unavoidably boosts the variance. In the noise domi-
nated regime, the leaked E/B signal is quickly becoming
subdominant and therefore it will be the noise variance, not
the leaked E signal, which will be the major target of the
optimization. In this case, the perfect apodization of the
window, i.e., as required by the pure formalism, may not be
the best solution, which should gradually, with a decreas-
ing signal-to-noise ratio, approach the standard inverse
noise weighting.

We point out here that the window function satisfying
Eq. (26) ensures only that the uncertainty is minimized on
the pseudo-spectrum not on the power-spectrum level. In
particular, if the mixing matrix is not block diagonal, i.e.,
some residual E/B leakage allowed, the final power spec-
trum uncertainty may not be strictly at its minimum.
Nevertheless, though some E/B leakage may be indeed
present, it will be correctly accounted for in our calculation
of the mixing matrix, and therefore consistently treated in
the presented method. We show in Fig. 2 that the computa-
tional approach to the calculation of the mixing matrix
proposed here, and already discussed in the case of a
simple sky patch and analytic window, fares indeed very
well also in the case with the nearly optimized window
functions.

The fact that Eq. (27) is solved relaxing the derivative
constraints between the spin-s and spin-0 components does
not reduce it to a set of three independent equations—one
for each spin-weighted window. This is because the geo-
metrical matrix PE}") is not diagonal in the spin subspace.
Consequently all three windows have to be solved for
simultaneously. In order to do so, following [16] we have
implemented an iterative preconditioned conjugate gra-
dient (PCG) solver [33]. The numerical cost of such an
operation is high and on order of (f)(niterngix), if no sym-
metries are present. A number of the iterations, 7y, 1S
usually as high as a few hundred and it is strongly depen-
dent on a dynamic range spanned by the pixel noise
amplitudes. Nonetheless, for small-scale experiments
with the help of a proper thresholding the computational
load is clearly within the limits of available presentday
(super)computers. We note that for the high signal-to-noise
cases imposing explicitly the constraints on the window
functions could reduce the number of iterations required
for the procedure to converge. We have not, however,
attempted to include such an optimization in the current
version of the software in a general case (see, however, the
homogenous noise discussion in the next section).

To illustrate the results of our numerical optimization, in
Fig. 3 we show three windows computed for a spherical
cap with homogeneous noise and two different € bins. The
noise level is set to 5.75 wK-arcmin, the E-mode signal is
obtained with the WMAP 5-year cosmological parameters
[34], and the B-mode signal includes lensing-induced and
primordial B mode (T/S = 0.05). The radius of the cap is
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FIG. 3 (color online). From left to right: spin-0, spin-1, and
spin-2 spin-weighted optimized windows for two bins € €
(20, 60) and € € (60, 100) are shown in the upper and the lower
panels, respectively. In all cases only the real parts of the spin-1
and spin-2 windows are displayed. The noise level is set to
5.75 pK-arcmin, the E-mode signal is the WMAP 5-year best fit
[34], and the B-mode signal includes lensing-induced and pri-
mordial B mode (7'/S = 0.05). The sky patch is a cap of a radius
of 11° leading thus to a significant amount of E-to-B leakage.
Note that in the middle (left) panel, the color stretch is 3 (6)
times bigger for the case with ¢ € (60, 100) than for ¢ €
(20, 60).
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roughly 11°, leading to a significant level of E-to-B leak-
age in the represented bins. The resulting window func-
tions are well but not perfectly apodized as they do not
precisely vanish at the edge of the cap. However, as ex-
pected, the apodization length, defined as a width of the
boundary layer, see Eq. (30), decreases for bins with higher
€. This is in agreement with the discussion of [15] con-
cerning the choice of the apodization length for homoge-
neous noise cases.

2. Harmonic domain implementation

If the noise in the pixel domain is uncorrelated and
homogeneous over the observed sky patch, the overall
optimization procedure can be simplified by performing
the calculations in the harmonic space. That can be done
most straightforwardly starting from Egs. (18) and (19)
rather than Eqgs. (16) and (17) and therefore results in
windows for which the boundary conditions, Dirichlet +
Neumann, are explicitly imposed.

We begin deriving the average B-mode pseudo-spectrum
(see Appendix C),

<é€> = Z Cé(";//w(),f”m”waeum//, (28)

f”m”

where
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200+ 1

Cé{’” B ; dar
€ -2 + 2)!(€ VA
€+21¢—2)!1\0 0 O

2
y$%+ﬂ.

Here o> denotes the noise power spectrum, B,—the effect
of an azimuthally symmetric beam. The power spectrum
Cé( o represents the total aliased signal and noise power

leaking from the ¢’ bin into the € one.

The optimized apodization is then given by applying the
variational principle to wq v, with three external con-
strains, which have to be imposed: the window has to be
normalized within the observed region and together with
its first derivative, they have to vanish at the contour of the
observed region. The computation then consists of solving
a differential equation with the appropriate Dirichlet +
Neumann boundary conditions thus leading to the final
expression for the optimized window given by

1
WO,(”m” = CT(Amez/l,l// + ,u,?(g//m//). (29)
e,el(

Here M gn,,» and Pgn,,» are the harmonic representation of
the mask and the contour and A and u are two constants
given in Appendix C, which both depend on the signal and
noise power.

In practice the optimization proceeds in two steps. First,
Eq. (29) is used to provide the scalar component of the
optimized window. This requires taking the spherical har-
monic transform of the mask and of its contour and calcu-
lating the weights Cz(, - Subsequently, the spin-1 and spin-
2 windows are derived from the scalar one in the harmonic
space using the numerical tools. This procedure requires
taking the SHT of the binary mask and the one of the
contour of this mask. Because this last SHT is prone to a
numerical error (as it corresponds to calculating an integral
of a pixelized line), the resulting scalar window function is
not perfectly apodized. As a consequence, the window
derived in this way does not ensure that the estimator is
perfectly (or sufficiently) pure and may therefore reintro-
duce E/B leakage. We point out that unlike the pixel-
domain implementation for which the level of leakage is
by design smaller than the noise level, and therefore under
control, the extra leakage introduced is here not controlled
and thus may or may not be smaller than the noise. To cure
this problem, we add an extra apodization to the scalar
window, W, before computing its first and second deriva-
tives. This extra apodization is obtained by multiplying the
spin-0 window by the C?> window with a small apodization
length (see the following section ). This makes our window
optimal throughout the entire mask (its shape is driven by
the optimization procedure) except very close to the
boundary, where its shape is driven by the extra
apodization.

PHYSICAL REVIEW D 79, 123515 (2009)

The results of the numerical implementation for a
spherical cap with homogeneous noise are shown in
Fig. 4. These windows show the same behavior as the
windows obtained from the PCG with respect to bins and
signal level. In particular, we find that the apodization
length decreases for higher bins. The shapes of spin-1
and spin-2 windows computed in the pixel and harmonic
domains are, however, significantly different. Because of
the extra apodization and numerical issues, the windows
obtained in the harmonic space in a way proposed here are
not any more an exact solution of the optimization problem
fulfilling the boundary constraints. Nevertheless they pro-
vide an easy and quick-to-compute apodization, which one
may hope will result in spectral variances not substantially
larger than the one produced by the computationally heavy
pixel-domain optimized windows described below. We will
test these expectations against simulations in Sec. IV.
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FIG. 4 (color online). Left to right: spin-0, spin-1, and spin-2,
spin-weighted optimized windows computed in the harmonic
space for € € (20, 60) without, top row, and with, middle row,
the extra apodization as discussed in the text. We show here only
the real parts of the spin-1 and spin-2 windows. The color stretch
of the right panel is 2 times bigger from top to middle row.
Bottom: The same as the middle row but optimized for a bin £ €
(60, 100). In the middle and right panels, the color stretch is set
to be 4 (2) times bigger, respectively, as compared to the
corresponding panels of the middle row. In all the shown cases
the B-mode signal includes the lensing and primordial contribu-
tion for 7/S = 0.05 and all the other parameters are set as in
Fig. 3.
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3. Sky signal prior and the optimized windows

The computations of the properly optimized window
functions require some prior knowledge about the signal
expected in the data. In the context of the small-scale CMB
observations at the low and intermediate € the optimization
is mostly between the variance of the E polarization signal
leaked to B and the assumed (and presumed known) noise
level. Hence this is the level of the E-mode polarization,
which is of primary importance. As polarization experi-
ments measure usually both modes of polarization, there-
fore a high quality internal constraint on the E-mode power
should be available for an experiment aiming at the
B-mode detection. At the higher-€ end a reasonable guess
about the B-mode power is becoming, however, increas-
ingly more important. Nevertheless, the dominant B-mode
contribution on subdegree scales is due to the gravitational
lensing of the E-mode polarization and knowledge of the
latter should again be sufficient. We elaborate more on
these observations in the next section.

Nonetheless as the prior assumptions have an impact on
the final results they need to be chosen with care. In the
case of the pixel-domain optimization we illustrate the
dependence of the recovered windows on the assumed
sky signal in Fig. 5 considering five different assumptions
about the signal, while always keeping the noise level fixed
at o = 5.75 pK-arcmin. In the first three cases we assume
the E-mode power as in the best-fit WMAP 5-year model
and change only the B signal. The three cases correspond
to (i) no B mode, (ii) only lensing-induced B mode, and
(iii) both lensing-induced and primordial B mode for
T/S =0.05. In the two remaining cases we fix the
B-mode power as in the case (iii) and change that of the
E mode to be: (iv) a hundredth of the standard value and
(v) zero. In all the cases, shown in Fig. 5 from top to
bottom, the windows have been optimized for € €
(20, 60) where a high amount of leakage has to be corrected
for. For assumptions (i) and (ii), the B signal is lower than
the noise for all angular scales whereas it exceeds the noise
level in the last three cases. The shape of the optimized
windows slowly varies with the B-mode level meaning that
the E/B leakage from the dominant E mode is the main
source of extra variance and the optimization procedure
focuses on resolving this particular source. In the last two
cases, the £ mode is first set to be comparable to (case iv)
and then lower (case v) than the B-mode power, which
causes clearly discernible changes in the shape of the
computed apodizations. In the next section we discuss
consequences of the observed changes in the window
functions on the recovered power spectra variance.

In the case of the harmonic window the optimized
weight functions depend on the noise and B-mode signal
prior only, as emphasized by Eq. (29). The B-mode power
spectrum appears explicitly in C{ o aswell asin u and A.
Unlike in the pixel-domain case, the E-mode signal is not
involved here as by design the harmonic window perfectly
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FIG. 5 (color online). Spin-0, spin-1, and spin-2 optimized
window functions, left to right, computed for the € € (20, 60)
bin for three different assumptions about the B-mode signal: no
B mode (first row), lensing-induced B mode only (second row),
lensing-induced plus primordial B mode for 7//S = 0.05 (third
row). In all these three cases, the E-mode signal is obtained using
the cosmological parameters constrained by WMAP 5-year data
[34]. In the fourth row the E-mode signal amplitude is set to a
hundredth of that value, i.e., on par with the B-mode level, and
no E-mode signal is assumed in the fifth row. In these last two
cases, the B mode is the same as in the third row. The noise and
patch properties are the same as in Figs. 3 and 4. The shape of the
windows depends weakly on the assumed B mode, but clearly
more strongly on the £ mode. For visualization purposes, in the
fourth and fifth row the color stretch is 10 times smaller for the
spin-1 and spin-2 windows than in the first three rows.
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fulfills the Dirichlet + Neumann boundary conditions, en-
suring that the E-mode power leaked to B vanishes up to
pixel effects. The dependence of such a window on the
noise and B-mode prior is depicted on Fig. 6. The figure
displays the radial profile of the spin-0 window in the
noise-dominated (red curve) or the signal-dominated case
(black curve). In the noise dominated case, the power
spectrum in C{ o behaves as €"* and our numerical result
coincides with the analytic expression given in Eq. (33) of
[16] applied to a spherical cap as the survey region, small
enough for the flat sky approximation used in [16] to be
valid. The apodization length of the window in the signal-
dominated case is smaller due to the fact that in this case
Cf > €% and thus the power spectrum in Cy,, behaves
roughly like €. This conclusion corroborates the analytic
investigation of [16].

B. Analytic apodizations

Analytic window functions are in general not well suited
for providing an optimal performance in the presence of
the instrumental noise, given their limited ability to adapt
to the specific properties of the data. However, they are
quick to calculate, do not require any prior knowledge
about the sky signals, and can fulfill the boundary condi-
tions with high precision. They may therefore at least be
useful on exploratory, initial stages of any CMB data
analyses. Moreover, whenever prior information about
the sky signals is available, the parameters of the analytic
window functions can be tuned via Monte Carlo (MC)
simulations providing a competitive performance to the
optimized windows usually at much lower costs. The
analytic windows are therefore of considerable practical
interest and in this section we will discuss two specific
proposals of the analytic windows, elaborating and com-
plementing the discussion presented in [15].

First of the considered choices is a straightforward gen-
eralization of the analytic window function proposed in

¢=(60,100), Spherical cap
1.0[ ; T

0.8 4
0.6 4

0.4 4

Spin—0 window

0.2 4

L L

. .
0.0 0.2 0.4 0.6 0.8 1.0
Radial distance 6/6,,,,

FIG. 6 (color online). Radial profile of the harmonic domain
optimized spin-0 window function for the noise dominated case
(red curve) and the signal dominated case (black curve). For the
signal dominated case, the primodial B mode has been set to
T/S = 0.5 to emphasize the discrepancy between the two cases,
all the other parameters are set as in Fig. 5.
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[15] extended to be applicable to an arbitrary sky coverage.
Calling §; the distance between the ith observed pixel and
the boundary, i.e., the smallest angular distance form the
considered pixel to the contour of the mask, we can write
the relevant expression as

9
W, = {% -1 cos(—wg—c), 8, <8, (30)
1, 5,> 5.,

and is zero outside the mask. Here, §,. is a width of a
boundary layer of the window smoothly interpolating be-
tween the window core and the zero on the outside. In the
following, we refer to it as an apodization length and treat
it as an adjustable parameter. Hereafter we will refer to the
window defined in Eq. (30) as the C' window. One can
easily check that if §; = 0 (i.e., the pixel is on the contour
of the mask), the window function is indeed vanishing, as
well as that spin-1 window which can be derived from it.
Therefore, the window defined above indeed fulfills the
conditions as required by the pure pseudo-power spectrum
formalism. We note, however, that the related spin-2 win-
dow is not apodized and potentially therefore could be a
source of numerical problems, in particular, whenever SHT
are involved.

We therefore propose a second analytic formula for the
spin-0 window from which apodized spin-1 and spin-2
windows can be derived, reducing in principle the ringing
due to a sharp spin-2 window. With the same notation as
above and for every pixel in the mask the window is
defined as

W, — { — 5L sin<2ﬂ'§—£) —5 8 <4,
1, 8,> 5.,

3D

and vanishes outside the mask. We will refer to this choice
as the C? window.

The three spin windows, for each of the two cases, are
shown in Fig. 7 in a case of a spherical cap. The apodiza-
tion length is set to 7°. The spin-0 window indeed falls
more rapidly to zero in the second proposal, thus leading to
an apodized spin-2 window. Nevertheless the two analytic
windows are very similar with only small differences con-
centrated around the edge of the observed patch. We will
discuss an impact of such differences in the window shapes
on the E/B leakage in the next section.

Two remarks are in order here. First of all, the analytic
windows can account for the presence of holes in the mask,
for example, due to masked out point sources or unob-
served pixels. The distance &; just has to be computed
between the ith pixel and the boundary closest to it (exter-
nal or internal). Second, for an arbitrary sky coverage
(including holes), the spin windows need to be clearly
derived numerically, however, in some simple cases such
as that of a spherical cap or square patches the spin-1 and
spin-2 windows can be computed analytically from the
spin-0 window. We can, and will, use that latter observation
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FIG. 7 (color online). Analytic window functions, spin-0, spin-
1, and spin-2, left to right, respectively, calculated using the C!
(upper panels) and C? (lower panels) functions. Only real parts
of the spin-1 and spin-2 windows are shown.
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to quantify some numerical effects, involved in the dis-
cussed formalism. For instance, we will investigate the
effects of the numerical derivatives on the shape of the
spin-weighted windows, as shown for a spherical cap case
in Fig. 8.

spin—1 Window
Numerical derivative

spin—1 Window
or

spin—1 Window
Analytic derivative

0.0 s o 13.0

0.0 .0013

0.0 — — 13.0
spin—-2 Window
Numerical derivative
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Error
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Analytic derivative
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FIG. 8 (color online). Absolute value of the analytic spin-1
windows (upper panels) and spin-2 windows (lower panels)
derived via the analytic (left line) and numerical computation
(middle line). The plots in the right panels show the respective
differences. Note that in the right panels the adopted color scale
spans a range of values 10™* (up) and 10~2 (bottom) times
smaller than in the remaining panels.
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IV. TESTS AND APPLICATIONS

Performance of the technique discussed here depends on
many factors, ranging from the pixelization effects to the
assumed knowledge of the sky signals, and can be looked
at from different perspectives. In this section we discuss
some of the most relevant effects. As the presented esti-
mator first aims at solving the E/B leakage, we start this
section with a discussion of a quality of the E/B leakage
control and follow on with a study of the estimator effi-
ciency expressed in terms of the B-mode power spectrum
variance levels, which can be achieved using this approach
in different circumstances. Unless it is explicitly men-
tioned otherwise, we will work with the HEALPix pixeli-
zation scheme adopting the resolution Ng4. = 512. The
input E-mode signal is that of the cosmological model with
parameters as constrained by the WMAP 5-year data [34].
The B-mode signal includes lensing and primordial B
mode with 7/S = 0.05. For the case of homogeneous
noise the noise level is set to 5.75 wK-arcmin, which
corresponds to a typical level expected for the small-scale
B-mode experiments.

To study the dependence on the patch geometry, we
adopt five different patch shapes: a spherical cap, a square,
and three rectangular patches with a different elongation.
Their geometrical properties are summarized in Table I.
All the patches cover the same sky area (roughly 1%) but
the length of their contour increases progressively from the
spherical cap (C) to the most elongated rectangle (R3).

A. Mode mixing kernel

The mode mixing kernel provides the most direct mea-
sure of the E/B leakage. The root-mean-square (rms) of
the fraction of the power contained in one of the two
polarized modes which is leaked to the other mode is
characterized by the magnitude of the off-diagonal ele-
ments of the mixing kernel. For the pure estimators in
principle those should be vanishing if the proper apodiza-
tion window is used. However, in practice, the apodization
is only one of the factors on which the level of the leakage
depends and numerical effects due to approximations and

TABLE I. Geometrical properties of the five patches used in
the examples considered here: 6 is the zenithal aperture, ¢ the
azimuthal aperture, and the perimeter is the total geometrical
length of the contour of the patch. The five patches cover the
same sky area roughly equal to 1% of the entire celestial sphere.

0 1) Perimeter
[deg] [deg] [rad]
SQUARE S 20 20 1.38
RECTANGLE 1 (R1) 16 24.9 1.42
RECTANGLE 2 (R2) 12 33.2 1.57
RECTANGLE 3  (R3) 8 49.8 2.01
CAP ©) radius = 11.3 deg 1.23
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simplifications involved in the calculations of the esti-
mated spectra give often rise to the power leakages. In
this section we study dependence of the off-diagonal
blocks of the mixing kernels on the specific choices of
the apodization windows, pixelization scheme, pixel size,
sky location, and shape of observed sky areas, as well as
errors due to the approximations involved in the numerical
derivative calculations.

We show an example of the mixing kernels for both
standard and pure pseudo-spectra in Fig. 9. In the standard
case we note a strongly band diagonal character of both,
diagonal and off-diagonal, blocks of the mixing kernel
with a magnitude of the diagonal elements of the off-
diagonal block comprising a significant fraction of the
corresponding elements in the diagonal block. This is a
clear indication of the leakage. The off-diagonal block
elements are manifestly suppressed in the case of the
pure estimator, as expected given that in the displayed
case we have used a properly apodized, analytic C?> win-
dow. Also as expected the diagonal block remains strongly
diagonal dominated. Nevertheless there is a substantial
level of mixing between the low-€ multipoles of the power
spectra with essentially all multipoles of the corresponding
pure pseudo-spectra seen for both the blocks. This extra
mixing arises due to the presence of the counterterms in the
definition of the pure modes, Eq. (24). As a consequence a
special treatment on the map level aiming at reducing the
power contained in the modes comparable and larger than
the observed sky patch may be required prior to the power
spectrum estimation.

diagonal, standard off-diagonal, standard

1000 o 1000 9 WO
145 800 s

600

/ -10 | -10
400

/ -15 -15
y 200

-20 -20

400 600 800 1000 0 200 400 600 800 1000
multipole ¢ multipole ¢
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|
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FIG. 9 (color online). Upper row: Diagonal, BB, (left) and off-
diagonal, EB, (right) blocks of the mixing kernels for the
standard estimations. Lower row: Same as above but for the
pure estimator computed using the analytic C> window. The
color scale is logarithmic and the same in all the panels. The
vertical axes correspond to the power spectrum multipoles, while
the horizontal ones to the pseudo-spectrum, Eq. (12).
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1. Pixel size

As we already hinted at before (Sec. II D 2), pixelization
of the sphere is a source of residual E/B leakage, which
will in general depend on the pixel sizes and shapes. The
dependence of such a leakage on the HEALPix pixel size
for two types of window functions is displayed in Fig. 10.
Each of the three lower curves shows a single column of
the off-diagonal block of the mixing kernel, Mf, com-
puted using the C?> window and corresponding to, from top
to bottom, Ng4. = 256, 512, and 1024. The residual,
leaked E mode decreases for higher resolution confirming
the pixel origin of this leakage. The three upper curves in
Fig. 10 show the case of the optimized window computed
in the pixel domain. These windows have been optimized
for the range of € from 60 to 100 and we kept the noise per
pixel area constant. In all three cases we find a substantial
level of the residual leakage, which is independent on the
adopted pixel size. This leakage appears therefore mostly
due to the cut-sky effects, which are, by design, not fully
removed in the case of the optimized windows which do
not fulfill the proper boundary requirements and are only
suppressed to the levels below that of the other
uncertainties.

2. Window choice

A comparison of the residual levels of the E-to-B leak-
age for the different sky apodizations as considered here is
presented in Fig. 11. We plot there a single column of the
off-diagonal block of the mixing kernel for €/ = 80 and

(¢=80, Cap)

Off —diagonal block

100 200 300 400 500
Multipole ¢

FIG. 10 (color online). Off-diagonal block of the mixing ker-
nel MY¥ for two different classes of windows and for different
HEALPix pixel sizes: N4, = 1024 (black-solid curves), Ngq. =
512 (blue-dashed curves), and N4, = 256 (red-dashed-dotted
curves). The three lower curves are for the C> window and the
three, overlapping upper curves—for the optimized window
computed in the pixel domain. The apodization length has
been set equal to 9° for the C?> window and the optimized
windows have been optimized for € & (60, 100). For the analytic
windows, the residual leaked E mode is induced by pixel effects
and therefore decreases for the higher resolution. For the opti-
mized window, the residual leakage is mainly due to a sky cut
and as such does not depend strongly on the pixel size.

123515-14



POLARIZED CMB POWER SPECTRUM ESTIMATION USING ...
C'-window (¢=80, Cap) C®*-window (=80, Cap)

PHYSICAL REVIEW D 79, 123515 (2009)
t=(60,100) (£=80, Cap)

T T T T

1078 g 1078+ g 1078
_~< sl _~< sl _~<
g 10 g 1078 18
B qo-roh 3 jo-rof |1 =
@ © _ ©
g 10712 .‘~ g WO 12 g
S [ ° [0 7
“L ;‘0715 “L 10716 -~ J_‘
S 1078f 1 & 108f S
10720 . . . . . 10720 . . T 10720 . . . . .
200 400 600 800 1000 200 400 600 800 1000 100 200 300 400 500 600

Multipole ¢ Multipole ¢ Multipole ¢

FIG. 11 (color online). A ¢’ = 80 column of an off-diagonal block of the mixing kernel M;‘?, for the four classes of apodized
windows. Left panel: C'-analytic window for three different values of the apodization length: §, = 3 deg. (black-solid curve), §, =
5 deg. (red-dashed curve), and 8, = 8 deg. (blue-dashed-dotted curve). Middle panel: Same as the left panel but for the C> window.
Right panel: optimized windows computed in the pixel domain (black curves) and in the harmonic domain (red curves). Solid curves

are for optimized windows derived without B mode and dashed curves for optimized windows with lensing-induced and primordial B

mode for T/S = 0.05.

computed for the four types of windows defined in Sec. III
and the spherical cap area as defined in Table 1. As ex-
pected the optimized window computed in the pixel do-
main leads to the highest amount of leakage. The harmonic
space window fares better in part thanks to the boundary
conditions which are explicitly imposed on it and in part
due to the extra apodization. For the two types of optimized
windows, the level of leakage varies slightly depending on
a prior assumed for the B-mode power.

Both the analytic windows satisfy the Dirichlet and
Neumann conditions and therefore lead only to a residual
amount of E-to-B leakage. Nevertheless, the C?-window
performance is superior to that of the C' window, produc-
ing the level of leaked E mode 10~ to 10~2 smaller. This
is because the level of the leakage is reduced by increasing
the apodization length. For the analytic windows, more
apodization is achieved either by increasing the apodiza-
tion length or by additionally forcing the spin-2 window to
vanish at the edges of the survey. For the optimized win-
dows, as discussed before the amplitude of the adopted
B-mode prior leads to an increase of the effective apodiza-
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FIG. 12 (color online).

tion length, thus affecting the leakage level. Because of
pixelization, the windows are discretized and the Dirichlet
and Neumann boundary conditions are inevitably broken.
By increasing the apodization, we reduce the size of the
discrete jump in the window values between two neighbor-
ing pixels at the patch boundary, thus mitigating the extent
to which that affects the boundary conditions.

3. Derivatives

For arbitrary patch geometries and in the case of the
analytic apodizations the spin-1 and spin-2 windows may
have to be computed from its spin-0 counterpart numeri-
cally and therefore being often only approximate. In this
paper, as described before, we perform the numerical
derivation in the harmonic domain. The effect of using
the approximate rather than exact nonzero spin windows is
depicted in Fig. 12, where again a single column of the
mixing kernel is shown for the spherical cap computed
using either the analytic formula (in black) or numerical
computations (in red) for the spin-1 and spin-2 component.
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A column of a diagonal (upper curves) and off-diagonal (lower curves) block of the mixing kernel using

analytically (black-solid curves) and numerically (red-dashed curves) computed spin-1 and spin-2 windows. The dashed and solid
curves overlap over most of the angular scale. The left panel shows a column calculated for €/ = 80 and right—for €/ = 500. The
numerical computation of the spin-1 and spin-2 windows leads to a slight increase of the leakage in the high-¢ part seen as a difference
in the off-diagonal block curves.
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This shows that calculating the derivatives numerically
does not affect the diagonal block elements and leads
only to a slight increase of the E-to-B leakage, as expressed
by a small change in the off-diagonal block element mag-
nitudes. This latter effect is indeed very small and only
appears at the smallest scales, confirming thus that our
prescription for the derivative computation permits us to
retain very good control of the leakage, especially in the
low-¢ part, where it is of primary importance.

4. Patch geometry

The remaining leakage as a function of the geometry of
the observed sky area is depicted in Fig. 13 for the two
analytic windows and for two values of the apodization
length. For an apodization length of 3° the level of leaked
E mode is the same in all the considered cases, demon-
strating that we can achieve a good control of the leakage
for any elongation. For 6, = 5° the leakage for the most
elongated patch, i.e., the R3 geometry, is greatly enhanced.
This is because for such a patch, apodization lengths
greater than 4° exceed half of its smallest size causing
the spin-0 window, as defined in Eqgs. (30) or (31), to be
strictly speaking nondifferentiable. Nevertheless the spin-1
and spin-2 windows can still be formally introduced, using
the fact that one-sided derivatives exist. That, however,
unavoidably results in the spin-1 and spin-2 windows,

C'-window (8,=5 deg.)

10—10

10715

Off—diagonal block

107%

100 600
Multipole ¢
C!'-window (6,=3 deg.)

10*15

Off—diagonal block

10720

600 800 1000

200 400
Multipole ¢
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which are not always continuous, leading the leakage
excess. This emphasizes the importance of ensuring that
all three spin-s windows are continuous throughout the
entire observed region—a condition, which on occasion
may require either trimming some irregular edges of real-
istic sky patches as observed by actual experiments or
applying an extra smoothing to the spin-0 window.
Nevertheless, whenever this condition is fulfilled the leak-
age is largely independent on the observed patch shape,
and with the help of the presented formalism can be, at
least in principle, removed down to the level as defined by
the pixelization effects.

The case of optimized windows computed in the pixel
domain is displayed in Fig. 14 where the level of leakage is
shown for the windows optimized in the € € (60, 100) bin.
The noise and signal prior is the same for all the patches.
As for the analytical sky apodizations, the level of leakage
only marginally depends on the patch geometry. This
means that the optimization procedure manages to lower
the level of leaked £ mode below the noise irrespectively
of the shape of the boundaries (we remind that the five
surveys cover the same sky area, which roughly leads to the
same amount of noise in € space). We note that as expected
the level of leakage allowed by the optimized windows is a
few orders of magnitude higher than for the analytic
windows.

C*-window (8,=5 deg.)

1g-10 [

10715 [

Off—diagonal block

107 [

200 400 600 800
Multipole ¢
C®*-window (6,=3 deg.)

10*15
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FIG. 13 (color online). A column of the off-diagonal block of the mixing kernel M‘{’g for €/ = 80 and for five different patch
geometry: spherical cap (black-solid curve), square (blue-solid curve), rectangle R1 (red-dashed curve), rectangle R2 (black-dashed-
dotted curve), and rectangle R3 (blue-dashed curve). The left panels show the results for the C' window and the right panel for the C>
window. Upper panels are for §. = 5 deg. and lower panels for §, = 3 deg. For the (R3) geometry, an apodization length of 5 deg.
exceeds half of the smallest size of the patch. As a consequence, the spin-1 and spin-2 windows are not continuous right in the middle
of the patch, leading to a significant increase of the pixel-induced leaked E mode (see blue-dashed curves of the upper panels). For all
the other cases, the curves overlap proving good control of the E/B leakage irrespectively of the geometry.
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FIG. 14 (color online). A column of the off-diagonal block of
the mixing kernel MY, for £/ = 80 and calculated for windows
optimized in a pixel-domain for a range € € (60, 100) and the
five different patch geometries (the five curves overlap): spheri-
cal cap (black-solid curve), square (blue-solid curve), rectangle
R1 (red-dashed curve), rectangle R2 (black-dashed-dotted
curve), and rectangle R3 (blue-dashed curve). The axis ranges
coincide with those in Fig. 13.

5. Dependence on a sky position/pixelization

Numerical computations of derivatives of spin-0 win-
dows will depend in general on the sky location and on the
adopted pixelization scheme, even if the windows are
defined analytically. For instance, in the case of a spherical
cap centered at the north pole, the precision of a calculation
of the azimuthal part of the SHT quickly deteriorates in the
HEALPix scheme because of the decreasing number of
constant declination pixels present in the polar areas. As a
consequence, the spin-1 and spin-2 windows computed in
the harmonic space can, sometimes drastically, depart from
their true behavior often exaggerating the level of the leak-
age. Such a problem can be cured either by rotating the cap
close to the equatorial plane, as often plausible in cases
with a small sky coverage, or by using a different pixeliza-
tion/gridding scheme such as GLCP (i.e., Gauss-Legendre
celestial pixelization—ECP-like but with the constant dec-
lination rows distributed as the zeros of the Legendre poly-
nomial of some order as supported by the SZHAT software
[28]), for which the number of azimuthal pixels (grid
points) remains the same for each constant declination
row, and which provide a nearly exact quadrature over the
polar angle. We provide examples of the potential effects in
Fig. 15. We note that the choice of the pixelization used for
the derivative computations can be different from that used
for the analyzed maps, though care needs to be taken while
performing interpolations required in such a case. In addi-
tion, similar effects may also play a role whenever any
SHT is to be done, as, for example, in the computation of
the pure multipoles, and therefore the choice of the pixe-
lization and/or its orientation are of primary importance for
techniques as the one discussed here.

B. Power spectra uncertainty

The errors of the estimated B-mode power spectra in-
clude contributions due to both the signal and the noise.

PHYSICAL REVIEW D 79, 123515 (2009)

For any ¢ bin the signal sample variance is due to the
variance of the B-mode signal modes from that bin but
also from other multipoles aliased to it. It is also due to
power of the leaked E mode into B, i.e., the E/B leakage.
The window functions discussed before lead to different
trade-offs between these different sources of the uncertain-
ties. In this section, we will assess the power spectra
uncertainty using MC simulations comparing the perfor-
mances of the pure pseudo-cross power-spectrum approach
for different choices of the window functions. We will also
consider the effects due to patch geometry and signal
priors, complementing the discussion in the previous
section.

Hereafter, we estimate the variance as the standard
deviation of 1000 MC simulations. Unless specified ex-
plicitly otherwise we will employ the same set of parame-
ters as before, i.e., we will work with the HEALPix scheme
with the resolution N4, = 512 and assuming the WMAP
5-year data cosmological model [34] for the input £E-mode
signal. The B-mode signal includes the lensing and pri-
mordial B mode with 7/S = 0.05. We first focus on the
homogeneous noise case with a level of 5.75 uK-arcmin.
The estimated power spectrum are binned with the bins of a
width of A€ = 40 and with the lowest-¢ bin starting at € =
20. Except for the cases investigating effects of the patch
geometry, the simulated maps cover a spherical cap (C)
area centered at the equator as described in Table 1.

As a benchmark for the derived numerical results we
will use the simplified, theoretical variance derived for a
cross-spectra from the Fisher consideration [11,35],

Zfi] o ot
ACB = (| —2— <32+ B—+—) 2
C \J(2€+ p\cP + e 5 5) (32)

where o is the noise power spectrum and Ssky will be
hereafter taken to be an actual covered sky area. As such
this uncertainty provides a lower limit on any power spec-
trum estimation error, including the one derived using the
pure estimator discussed here, and therefore a useful ref-
erence to gauge the performance of the pure method
against. We emphasize that we do not expect that our
estimator will be ever able to reach this limit even in the
cases when no E/B leakage is allowed for, i.e., when Cf is
set to 0. In fact a tighter lower limit could be readily
obtained, if an effective, and thus usually smaller, rather
than actual sky area is used as f, in Eq. (32) accounting
for the presence of the apodizations in the pure formalism.
However, even then the excess variance is usually seen
owing to the presence of the counterterms in Eq. (24).

We illustrate some of these effects in Fig. 16, where we
present the results of the signal-only MC simulations for
both standard and pure pseudo-spectra approaches and
contrast them with the semianalytic predictions as calcu-
lated using the Fisher approach, Eq. (32).
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FIG. 15 (color online). An impact of the sky location and the pixelization scheme on the diagonal block (upper panels) and off-
diagonal block (lower panels) of the mixing kernel M. The different curves partially overlap for the diagonal block. Left panels:
Computation in the HEALPix scheme for a cap centered at the equatorial plane using analytic spin-1 and spin-2 windows (black-solid
curve) or numerical spin-1 and spin-2 windows (red-dashed curve) and for a cap centered at the north pole using analytic spin-1 and
spin-2 windows (blue-dashed-dotted curve) or numerical spin-1 and spin-2 windows (green-dashed-dotted curve). Middle panels:
Same as the left panels for the ECP pixelization scheme. Right panels: Same as the left panels for the GLCP pixelization scheme. The
window function used here is the C! window with the apodization length set §, = 8°. In all three cases the pixelization parameters are
chosen in such a way that there is the identical number of the constant declination rings within the sky cap for each of them. For the
HEALPix scheme, the bad sampling of the sphere close to the north pole (particularly along the azimuthal direction) leads to strong
pixelization effects becoming dominant even for the diagonal block. A similar problem is also seen in the ECP case, but is resolved in
the case of the GLCP scheme, which properly samples the sphere all the way to the poles in both polar and azimuthal directions. The
effect can be also alleviated by shifting the cap closer to the equatorial plane.

1. Effect of the window function

The variance of the estimated B-mode power spectra for
a number of the apodization lengths and the two analytic
proposals is displayed in Fig. 17 and contrasted against the
variance derived using the optimized windows computed 0100
in the pixel domain (red curve) and its Fisher estimate T mean
(black-dashed curve). As a reference, the input theoretical
B mode used in the simulations is plotted as black-solid
lines. Given the adopted here sky coverage (and hence bin
width) as well as the noise level, both in a ball park of the
anticipated experiments, we find that in the range of € from
20 to 1000 the variance is always a few times smaller than
the signal itself thus in principle allowing for a good
reconstruction of the B-mode power spectrum.

The apodization length has clearly an effect on the
performance of the method. For the C! windows, the low-
est variance is reached using a 5° apodization in the first
bin and 2° in all the others. For the C% windows, 4° and 3°
should be used in the first and second bins, respectively,

the leakage level somewhat increases for the smaller apod-
izations, boosting up the variance. This is compensated by

CZWindow (8deg)

0.010

I(1+1)/2pi C

0.001

multipole

FIG. 16 (color online). Average B-mode spectra (solid curves)
and their sample variances (dashed curves) obtained using stan-
dard, in blue, or pure estimators, in red, and computed from 1000
signal-only MC simulations done on a spherical cap covering 1%
of the sky. Also shown are the input power spectrum (black-solid
line) and the Fisher estimate of the variance (black-dashed line).

whereas the 2° window gives the lowest variance for all the
other bins. This is due to the fact that noise in the subse-
quent bins is bigger for the higher € values and thus though

The extra variance for the standard estimators comes from the
E-mode power leaked into B, while the sample variance for the
pure estimators is close to optimal.
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FIG. 17 (color online).
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Variance of the estimated B-mode power spectrum using the C' window, left panel, and the C*> window, right

panel, for different apodization lengths: from 2 (blue) to 9 (yellow). The red curve shows the variance obtained using the optimized
windows computed in the pixel domain and optimized bin by bin. The observed survey is the spherical cap (C) and the cosmological
model and the level of homogeneous noise are described in the text. The input theoretical B mode is shown with a black-solid line and

a Fisher estimate of the variance with a black-dashed curve.

the simultaneous decrease of the noise variance. At least
for the homogeneous noise the best optimization length
can be clearly tuned for every analytic window and each
bin if some prior information about the sky power is
available. This can be done determining via MC simula-
tions the total estimator variance for a range of considered
apodizations and selecting the one leading to the minimal
scatter.

The variance derived using the optimized windows com-
puted either in the pixel domain (red curve) or in harmonic
space (blue curve) is displayed in Fig. 18. The two win-
dows lead to a similar level of variance, which is also on
par with the Fisher forecast at least for € > 200. Clearly, in
the cases studied here the use of a pure pseudo-spectrum
technique yields results close to the best achievable for
angular scales smaller than a degree. Moreover, the derived
variance is indeed at least no larger than the one obtained
with the analytical windows as can be seen in Fig. 17. The
very good agreement between the harmonic space compu-
tation and the pixel-domain computation of the optimized
windows shows that the extra apodization used during the
harmonic computation does not cause any significant de-

Variance for Optimized Windows
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FIG. 18 (color online). Variance of the estimated B-mode
power spectrum using the optimized windows computed in the
pixel (blue) and harmonic space (red curve). The black-dashed
curve shows the Fisher estimate of the variance and the black-
solid line—the input theoretical B mode. The same performance
is achieved using the two implementations of the optimized
window and is close to optimal for € > 200.

parture from optimality. This justifies the use of the har-
monic window in the homogeneous, or nearly so, noise
cases as it is much faster, and better controls the E/B
leakage across the entire range of € and does it without
any apparent loss of performance for the final precision of
the estimated power spectrum.

2. Effect of the signal prior

As we have emphasized before the optimization proce-
dure requires knowledge of both the noise and signal
properties, including the B mode. In most of the cases of
the forthcoming CMB polarization experiments noise and
E-mode properties will be probably sufficiently con-
strained for high and intermediate £ modes, so the major
source of uncertainties will result from our ignorance of the
primordial B mode and low-¢ E-mode power.

To assess the influence of the B-mode prior on the
performance of the optimized windows, we have per-
formed simulations using lensing-induced and primordial
B mode (T/S = 0.05) as input signal but estimating the
power spectrum using three different sets of windows
optimized for a different B-mode signal: (1) no B mode,
(2) lensing-induced B mode, and (3) lensing-induced plus
primordial B mode for 7/S = 0.05. As the two first as-
sumptions differ from the B mode used to synthesize the
map in the simulations, we expect that the optimized
windows derived under those hypotheses could occur to
be suboptimal. The results of such simulations are shown
in Fig. 19, left panel, where the signal variance (solid
curves) and the noise variance (dashed curves) for the three
sets of optimized windows are displayed. The black curves
correspond to their Fisher estimates. It clearly shows that
the prior on the B mode used in the optimization procedure
does not significantly affect the performance of the pure
pseudo-spectrum estimation, as long as the postulated
power of the B mode remains much smaller than that
assumed in the E-mode prior. This last condition will be
always fulfilled taking into account the current upper limits
on the B mode at least as long as CMB is the only sky
signal considered. As a consequence, a conservative, but
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Optimized window with various priors on B signal
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FIG. 19 (color online).
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Optimized window with various priors on E signal
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Left panel: Noise (dashed curves) and sampling (solid curves) variance of the estimated B-mode power

spectrum using pixel-domain optimized windows calculated for three different assumptions about the B-mode signal: no B mode (blue
curves), only lensing-induced B mode (red curves), and lensing-induced plus primordial B mode for 7/S = 0.05 (yellow curves). The
Fisher estimates of the noise and signal variances are shown in black. This is the 3rd case model, which has been used to generate the
signal maps analyzed in all three cases. Though the assumed sky priors for B modes in the two first cases are wrong, that does not seem
to have a strong impact on either the signal or the noise variance. Right panel: Same as left panel but using windows optimized for
three different assumptions of the E-mode signal via a varying reionization optical depth: 7 = 0 (red curves), 7 = 0.2 (yellow curves),
and 7 = Tyyap = 0.087 (blue curves). This last model was also used to generate the signal maps analyzed in all three cases. As
before, no strong impact of the priors on either the recovered signal or the noise variance is seen in any of the considered cases.

sufficient, i.e., nearly optimal approach would consist in
assuming the lensing-induced B mode for optimization, as
its level and shape will be largely known from the model-
ing of the E-mode spectrum.

Though in general we expect to have a sufficiently well-
constrained E-mode power spectrum for the future
polarization-sensitive experiments, that may not be always
so at least as far as the very lowest multipoles are consid-
ered. To test the impact of those on the variance of the
recovered power spectra we have computed the optimized
windows with a fixed B-mode power spectrum, including
the lensing-induced and primordial B mode for T/S =
0.05, but using three different E-mode priors. The three
E-mode power spectra used in this test were calculated for
three different values of the reionization optical depth 7:
1) 7=0, 2) 7=0.2, and (3) 7= Tywmap = 0.087 as
constrained by the WMAP 5-year results. These three
power spectra have been used to first compute the corre-
sponding optimized windows and later to perform MC
simulations in order to obtain the variance estimates. The
“true’” sky used to produce the maps to be analyzed here
assumed 7 = Tyyap and thus coincided with the third
prior as considered above. The resulting noise (dashed-
colored curves) and sample (solid-colored curves) for the
three prior are displayed in Fig. 19, right panel, alongside
the Fisher estimate (black-dashed curve) and the input C?
(black-solid curve). We find that the variance is only
marginally affected by the E prior, even at large angular
scales where a varying optical depth significantly changes
the shape and amplitude of the £ mode. We note that our
knowledge of the E-mode spectrum will be soon much
more precise than the uncertainty permitted in the test
described here, providing therefore an external prior cer-
tainly sufficiently accurate for the purpose of the method
discussed in this paper.

3. Effect of the patch geometry

From the previous discussion, we have already learned
that the shape of the observed sky area does not affect our
ability to control the E/B leakage with the help of a proper
apodization and pure formalism. We can therefore antici-
pate that the dependence of the variance of the estimated
B-mode power spectrum on the patch geometry will follow
the same pattern as for the standard pseudo-spectrum
estimator.

We show the numerical results in Fig. 20, alongside the
Fisher estimate, which is the same for all considered sky
patches as they all have the same sky area (Table I). The
power spectra have been estimated using the C?>-window
function with an apodization length optimized for each bin

Variance for various patches
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FIG. 20 (color online). Variance of the estimated B-mode
power spectrum with respect to the patch geometry using the
C? window with an apodization length optimized via MC
simulations for each bin and each considered patch. The
black-dashed curve shows the Fisher estimate of the variance
and the black-solid line—the theoretical input B-mode spectrum.
For € > 200, the estimation is close to optimal and a good
reconstruction of the B mode can be obtained. For smaller
multipoles, the performance deteriorates for more elongated
patches though a variance smaller than the expected power level
is recovered in most of the studied cases.
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and every patch separately. Except for the REC3 patch, for
which the variance of the estimated power spectrum ex-
ceeds the power level in the first bin, the variance is small
enough to ensure a good reconstruction of the B-mode
power spectrum. Moreover, for all the patches, it is roughly
the same and on the level comparable to that of the Fisher
variance at least down to € ~ 200. For larger angular
scales, however, the patch geometry starts affecting the
performance of the estimation of the power spectrum as the
variance increases for more elongated patches. A similar
behavior can be seen also in the case of the optimized
windows, as expected given that the patch geometry does
not affect the level to which the E/B leakage is controlled.

C. More realistic example

The sky coverage of the realistic experiments is clearly
more complex than any of the cases studied so far. The
observed patches are usually irregular and a density of
observations per sky area is pixel dependent giving rise
to significant noise inhomogeneity of sky maps recovered
from data of such experiments. In this section we therefore
assess the performance of the pure pseudo-power spectrum
approach in the case of an observation mimicking a long-
duration CMB balloon-borne experiment, such as, for in-
stance, EBEX [36]. The adopted here sky coverage and its
sampling, i.e., a number of observations per pixel, corre-
sponds to one of the possible scanning strategies for that
experiment and is shown in Fig. 21. As is typical of the
small-scale experiments the realistic distribution of the
observations is very inhomogeneous. The number of
samples per pixel ranges from 1 at the patch edge to
roughly 2 X 107 in the center. Though in principle includ-

e 2.0e+07 e 2.0e+07

1.0 m—

1.0 m—

FIG. 21 (color online). A distribution of sky observation for an
observational strategy mimicking that of the EBEX balloon-
borne experiment. The left panel shows the full observed sky
patch, while the right one—its well-observed part. The latter
contains pixels for which a number of the observations is not
smaller than 5 X 1073 of the best observed pixel. The density of
observations per pixel ranges from ~2 X 107 in the center down
to 1 or 107 at the edge in the full and reduced sky cases,
respectively. The pixel size is roughly 7 arcmin, corresponding
to Ngge = 512. The size of the shown panels is roughly 20° X
20° each. The color stretch adopted here is linear.
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ing all the pixels could be advantageous, if they are prop-
erly apodized, in practice it turns out not to be always the
case. Moreover, we find that due to the dynamical range for
the noise levels the PCG-based, iterative calculation of the
optimized windows fails to converge within a reasonable
number of iterations, while a direct inversion of the in-
volved matrix is clearly too costly to be performed. For this
reason, in the following examples together with the full
observed sky patch we consider also its well-observed part
as shown in the right panel of Fig. 21. It contains all the
pixels for which a number of observations is not smaller
than 10°, reducing the dynamical range of the noise levels
from roughly 3000 to 15. This has an unavoidable and
unfortunate impact on a observed sky area, which in the
studied case decreases from 1.1% down to 0.89% of the
total sky. We set the noise level per sample in such a way
that the average noise level for the full patch corresponds to
that used in the homogeneous noise cases studied earlier.

In Fig. 22 we show the variances of the B mode spectra
computed using the full (left panel) and only well-observed
part of the patch (right panel). The gain with respect to the
noise variance largely compensates for the loss in terms of
sample variance due to the removal of the very noisy pixels
close to the edge of the full survey area. This is especially
apparent for € < 150. When analyzing the full sky survey,
long apodization length is preferred as underlined by the
red crosses displaying the minimal variance achieved for
each bin. This is because a long apodization length allows
us better to mitigate the influence of the noisiest pixels at
the edge and thus to lower the noise variance. This also
explains why small apodization lengths are suboptimal for
the entire range of considered € modes. However, once the
noisiest pixels are removed (top-right panel), the situation
changes drastically. Moderate apodizations are preferred at
large angular scales (4° for € < 100). This value of the
optimized apodization length is the same as for the homo-
geneous case. Nevertheless, at small angular scales, the
behavior of the variance with respect to the apodization
length for the inhomogeneous noise differs from the ho-
mogeneous noise case. For the latter, small, ~2°, apodiza-
tions are preferred at small angular scales whereas long
apodizations should be used at small scales, ~8° for € >
800, for the former. Such a modification is due to the noise
variance (we remind that with analytic windows, the
E-to-B leakage is sufficiently lowered below the noise
level). In this part of the spectrum, windowing should
converge towards inverse-noise weighting for the estima-
tion to be close to optimal. In the homogeneous noise case,
this requires to lower as much as possible the apodization
length. In the inhomogeneous case, however, this means
that windowing should be as close as possible to the actual
noise distribution. For our realistic example, the noise
distribution as shown in Fig. 21, exhibits a relatively high
apodization length, which translates into a large apodiza-
tion needed for the window to be optimal.
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FIG. 22 (color online).
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Upper panels: Variance of the estimated B-mode power spectrum computed using C> windows with different

apodization length (color curves) for the full observed (left panel) and the well-observed (right panel) sky area. The black-dashed
curves show the Fisher estimate of the variance calculated assuming the average noise level (see text) and are only shown as a reference
here. The black-solid curve represents the input B-mode power spectrum. The red crosses indicate the lowest variance found for each
bin, thus defining the optimized apodization length selected via the MC optimization procedure. For a given apodization length,
removing the noisiest pixel significantly reduces the noise. Nevertheless, except for the first two bins the optimized variance is nearly
the same for the two considered sky patches. Lower panels: Same as above but using a window function given as a product of the
analytic C?> window and the inverse square-noise variance. This extra noise weighting largely alleviates the problem of the noisiest
pixels resulting in similar variance estimates for the full and reduced observed sky patches. Moreover the optimized apodization
length, marked with red crosses, is independent of the bin number.

In a more general case the question if any given analytic
window can produce the results close to the optimal is
more complex and will depend on both the window and the
noise distribution. In fact, at high €, the near optimality can
be reached only if the adopted window function approx-
imates the inverse noise weighting.

Our discussion and results derived above show that the
analytic windows introduced in this paper can indeed be
appropriate for a noise pattern similar to EBEX. A more
general approach, applicable to other noise inhomogeneity
patterns is also, however, possible. We first note that multi-
plying any of the analytic apodization studied here by some
smooth function of the sky position will result in a proper
apodization, which suppresses the E/B leakage. We em-
phasize that this observation is indeed strictly true only for
nonpixelized skies and as usual care has to be exercised
whenever pixelization is introduced. In general, for pixel-
ized skies the smooth function needs also to be sufficiently
flat at the boundary not to lead to some uncontrolled level
of leakage. In the case at hand we derive the new spin-0
window by multiplying the analytic windows by a pixel-
dependent weight corresponding to the inverse squared
noise weighting, « 1/0?(p), where o*(p) is the estimated
noise variance at pixel p. We then numerically compute the
spin-1 and spin-2 components from it. This allows us to
mimic inverse-noise weighting while fulfilling the proper

boundary constraints. The effect of such inverse-noise
weighting is displayed in the lower panels of Fig. 22 for
the full survey (left panel) and its well-observed part (right
panel), where colors refer to the value of the apodization
length of W,. The results show that using this inverse-noise
weighting significantly reduces the total variance, particu-
larly for small apodization length. This explains the origin
of the extra variance at the low-€ end seen in the upper
panels of Fig. 22 relating it to the noise of the noisy pixels
present at the map boundary.

Interestingly whatever survey we use (full or reduced),
the lowest variance is always reached for a small apodiza-
tion length (6, = 2°) apparently alleviating the need of
going through the optimization procedure of the apodiza-
tion length. We note, however, that this fact is related to the
specific noise distribution considered here and will be
applicable in general only to the cases with a sufficient,
noise-induced apodization present at the patch edges,
which, as shown here, are however of a practical interest.
At the high-{ part, this is because the near optimality is
reached thanks to the inverse-noise weighting and there-
fore the small apodization length of the analytic part of the
window is preferred, as it affects the total window shape to
the least extent. At the low-€ part of the spectrum, without
the extra noise weighting an apodization length of 4° was
needed for the analytic weighting alone. The effective,
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noise-induced apodization is larger than that and the apod-
ization length for the analytic part of the window can be
therefore smaller as the latter is needed only to fulfill the
boundary conditions and reduce the E/B leakage.

Somewhat counterintuitively the numerically derived
estimates of the power spectrum uncertainties are seen in
Fig. 22 to be superior to the forecasts based on the Fisher
formalism. This is due to the fact that the latter are based
on the average noise level computed assuming the same
number of observed samples as in the actual case, but now
homogeneously distributed over the entire observed sky
area, and the numerical calculations benefit, thanks to
either noise weighting or appropriate €¢-bin dependent
apodization, from the very low noise core of the patch,
which dominates the constraints at the high-€ end of the
spectrum.

A comparison of the best estimates of the spectral vari-
ance derived with different analytic windows is shown in
Fig. 23. It demonstrates the importance of the down-
weighting of the very noisy pixels for the full patch analy-
sis (left panel), which is needed to achieve a variance level
lower than the input B mode at large angular scales. This
effect is particularly prominent for the C' window, which
by construction is less smooth towards the patch boundary
than the C?> window, and adding inverse noise weighting is
here mandatory. If the noisiest pixels are removed from the
analysis (right panel), using inverse-noise weighting per-
forms the same as analytic windows alone except for € <
200, where inverse-noise weighting is somewhat subopti-
mal as compared to analytic windowing alone. This effect
is analogous to the usual loss of precision in the signal-
dominated regime also seen in the standard pseudo-power
spectrum cases. However, as noted previously, the results
derived with the explicit inverse-noise weighting have not
required any MC-based optimization in the case studied
here. Therefore though suboptimal for € < 200 they can
certainly be used to provide a first and reliable estimate of
the B-mode power spectrum, at least in the cases whenever
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FIG. 24 (color online). Variance of the estimated B-mode
power spectrum for the realistic study case considered here.
Four different windows have been used: C! window (yellow
curve), C?> window (red curve), optimized window computed in
the harmonic domain (green curve), and the optimized window
computed in the pixel domain (blue curve). The apodization
length of the analytic windows has been optimized in each bin.
The black-dashed curve stands for the Fisher estimates of the
variance and the black-solid one for the input theoretical B
mode. The Fisher estimate has been calculated assuming the
average noise level. All the windows show comparable perform-
ance with an exception of the harmonic domain optimized one.
This departure is due to the homogeneous approximation of the
noise making the effective apodization length of the harmonic
optimized window suboptimal.

the noise distribution complies with the assumptions as
already spelled out earlier.

In Fig. 24 we show the variances derived using the
numerically optimized windows and compare them against
those obtained with the help of the analytic ones discussed
already before. Only the reduced, well-observed sky area
has been used here, due to the numerical convergence
problems experienced by the PCG procedure as mentioned
before. The apodization length of the analytic windows
(which include no noise weighting here) has been opti-
mized in each bin in order to minimize the variance.
Clearly, the windows optimized numerically in the pixel-
domain display very similar levels of the uncertainty on the
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Variance of the estimated B-mode cross-spectra using the C' and C> windows as well as their inverse-noise

weighted extensions for the full observed (left panel) and well-observed sky (right panel) areas. The black-dashed curves show the
Fisher estimate of the variance derived for the average noise level and the black-solid curve depicts the input B-mode power spectrum.
If the full observed map is to be analyzed, adding inverse-noise weighting suppresses the variance below the estimated power spectrum
level at the low-€ regime. With the noisiest pixels removed, adding inverse-noise weighting does not change much except at the large
angular scale where it results in some excess variance, when compared with the simple analytic windowing.
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recovered power spectrum level as derived with the ana-
lytic apodizations. The harmonic space optimized window
shows, however, an excess of variance in the entire range of
considered € modes. This is because it has been calculated
using the average noise level, which in all bins has incor-
porated all the pixels, including those close to the patch
boundary, therefore it does not benefit from the low vari-
ance of the pixels in the very center of the patch. At the
high-¢ end the variance obtained with the harmonic do-
main window follows closely the Fisher matrix estimate,
which has been derived using the same approximation for
the adopted noise level.

V. CONCLUSIONS

We have implemented the pure pseudo-spectrum for-
malism of [15,16] extending it to incorporate the cross-
spectrum approach and discussed practical issues related to
its implementation. In particular, we have presented a
quick, efficient way to compute pure multipoles and their
respective mode mixing kernels utilizing harmonic domain
derivatives and demonstrated its overall consistency. We
have also considered a number of apodization proposals.
Those have included analytical, semianalytical, and nu-
merically derived functions. We have studied the perform-
ance of the implemented formalism from the point of view
of a level of the residual E/B leakage as well as final
variance of the estimated spectra and investigated their
dependences on a number of factors such as an observed
sky geometry, window choice, pixelization type, and pixel
size. We have considered the role of the sky priors in the
apodization optimization procedures, as well as proposed
an iterative, prior-free approach to the B-mode power
spectrum estimation.

Our results support the assertion of [15,16] and show
that the pure pseudo-spectrum approach not only can suc-
cessfully resolve the E/B leakage problem but, if properly
applied, it also allows to bring down the total variance of
the estimated power spectrum to levels comparable with
those derived from the optimal approaches. And it can do
that at the significantly lower computational costs. In fact,
we usually find that the power spectrum variance derived
with the pure approach is within a factor of 2 away from the
reference variance based on the Fisher matrix approach,
which neglects the E/B leakage and assumes no apodiza-
tion (but a binary mask).

We have shown that the analytic apodizations, in par-
ticular, the C*> window proposed here, can deliver a com-
petitive performance, particularly if optimized using the
MC simulations, at the low calculational cost. The appli-
cability of the analytic windows can be greatly extended by
combining them with the inverse square noise weighting.
Such weighting may sometimes produce somewhat sub-
optimal results at the intermediate and low end of the ¢
range, where it can/should be replaced by the unweighted
analytic or numerically optimized windows. We have,
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however, found that in some cases of practical interest
the noise weighted analytic windows may not require any
optimization procedure. They therefore provide a suitable
first guess useful, in particular, in a preliminary quick-look
analysis.

In the cases with a nearly homogeneous or mildly in-
homogeneous noise distribution, we have derived a semi-
analytic, quick-to-compute harmonic domain window,
which though requires some prior information about the
sky signal, provides yet another cheap and efficient alter-
native to be used in the pure spectrum calculation.
However, in the highly inhomogeneous cases such a pro-
cedure may be suboptimal and further work is needed to
bring its performance in line with the other methods dis-
cussed here.

The numerical window optimization as proposed in [16]
have been shown to provide an efficient framework for the
optimized window computation applicable to a wide vari-
ety of the problems. It can, however, be numerically pro-
hibitive and iterative solvers needed to overcome this
problem may suffer due to lack of convergence. We have
found that a particularly common case is whenever a high
dynamic range of expected noise levels is present. In such
circumstances a conservative tresholding procedure may
have to be applied in practice to avoid such difficulties.

We note that although these conclusions have been
derived from the cross-spectrum analysis they should be
equally applicable to autospectra cases.

In this work we have not considered issues related to
bin-bin correlations of the power spectrum estimates. This
is an important topic for the further applications of the
results of the method discussed here, in particular, for the
cosmological parameter estimation, and will be treated in
the forthcoming work.

This paper focuses only on the statistical uncertainty
incurred due to either the noise and/or sampling variance.
Other potential sources of error, for instance, resulting
from a foreground component separation and/or systematic
effect treatment are not included. Clearly, such effects will
have to be incorporated in a final error budget of B-mode
power spectrum estimated from any realistic CMB polar-
ization data. The results presented here set a stage for an
analysis of those issues in future work.

In this work, we have not discussed the role and a
potential impact of pixels missing from the main body of
the observed map. Such “holes” in the maps could result
from, for example, a point-sources removal or masking.
We note that their presence does not lead to any funda-
mental problems in the pure formalism, as has been shown
in the case of the pixel-domain optimized windows in [16].
However, the practical issues exist. In particular in the
cases with the analytic windowing, whenever the missing
pixels are closer to each other and/or the observed patch
edge than the considered apodization length special care
must be taken to avoid windows discontinuities
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(Sec. IVA 4). Such effects may cause some additional £/B
leakage, however they are unlikely to lead to any appre-
ciable increase of the total variance of the recovered
B-mode power spectrum. A more detailed study of the
effect of holes in B-mode reconstruction will be presented
in a future work.

The results derived in this paper were obtained with the
help of a publicly available software package SZHAT [28].
The set of MPI-parallel routines permitting quick compu-
tation of the pure multipoles as well as spin-weighted
apodizations given an input spin-0 window, developed in
the course of this work, can be downloaded from [37].
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APPENDIX A: MIXING KERNEL

The mixing kernel is implicitly defined by Eq. (12). It
can be explicitly derived in the harmonic space by express-
ing the pseudo-C,’s, averaged over CMB realizations, as
functions of the CMB power spectrum. The derivation is
very similar to the one described in [11]. We first recall that
the pure pseudo-ay,,’s are given by the following expres-
sion:

N,
=FE +2—FE —Eqy s Al
E 2,{m N€ l€m ]\]&2 0,{m ( )
N 1
sty = Baen + 25 Bron + g —Boem  (A2)
Neo
where N¢, = /(€ + 5)!/(€ — 5)!. Employing now har-

monic space decompositions for the polarization field Q +
iU and the different spin-s window functions, we can show
that

(- 1)m 20+ D2 + D2 + 1) ¢ o g ¢ o e
Batn = (/Z/ e//z// Neo 4 WWmN( -m m' m' ){[( -5 2 -2+ s)
N I O S Y SV AN
+<s -2 2—s>]“€’m/ * ‘[( —s 2 —2+s> (s -2 2—5)_“€’m’}’
(- 1) 20+ D2+ D2 + 1) VAR AN (A A R
Boon = e,z,e,,z,, s 4 Wg”m”( -m m' m' ){_( -s 2 -2+ s)
RN U 2 A N N SV R T I
* (s -2 Z—S)]a‘”m’ l[(—s 2 —2+s) (s -2 2—s)_a€'m'}'

The above expressions can be then inserted into Eqgs. (A1)
and (A2), which we can use to define the pure pseudo-C,’s.
Taking then the average over CMB realizations and mak-
ing use of the orthogonality relations

/ €// € €/ €///
2" + DZ( -m m m' )( -m m m”’)
= 5({//({///5,”//,”///,
we arrive at

> diag off E
Cg) Z(MN’ M€€’ )( C€’ )
~B off dia B | (A3)

( Ce M Mye® J\ Co

On defining the power spectrum of the spin-0 window
function by

1
_ Z T
’Wel/ - —2€// 1 We”m”w(”m”’
m"

and introducing the following notation:

4
—2+s

(L)

2—35
we can express the diagonal and off-diagonal blocks (in the
E/B subspaces) of the mixing matrix as

¢
2
V2
-2

€Il

s

JE(, €, ) = (

)

€//
N

M?Zg _ 2€ + IZ(2€// I)WWI:JJ(e’ ¢ e
é//
€+ Dwe-1e"+n
2\/((7 — DI+ 2)1(¢" — 1)!-]1 (¢, ¢, €
(€_2)'(€”+2)' I opll
e =2 60t )] (A4)
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We note that in the standard pseudo-spectrum approach,
the mixing kernels are obtained by removing the J;~ and J5-
terms in the above expressions as the latter encode the

contribution of the counterterms.
If the window function is apodized up to its first deriva-
tive, the off-diagonal block of the mixing matrix should be
|

Moff

l)we"l:‘]()_ (¢, ), €”)

+2

(A5)
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equal to zero. We have checked numerically that this is

indeed the case, when the above formulae are applied.
For the binned power spectrum estimation, the mixing

matrix as implicitly defined in Eq. (12), is given by

€€+ 1)

Z Z 0 + )A€

{eEalt’'ea

dlag

MY, — M (A6)

6xxl

In the above formulae we have assumed that the deriva-
tive constraints between the three spin-s windows are
exactly fulfilled. However, in practice they may be only
approximately satisfied and the mixing kernel should be
therefore expressed not only as a function of W, but also of
W, and W,. If such extensions are incorporated, the mixing
kernel reads

. 26/ + 1 g 6/ €// € €/ €//
dlag I ss— 1o 1l 1ol
124 1677 g;n" Wo,0"m (_2 2 0 ) + Wo, ¢"'m (2 2 0 )
€+ DI —2)! ¢ ¢ ¢ ¢ ¢ ¢
2 (€ — 1)!(€+2)z[ v “’”'"”( 1 2 —1) * Wl»e”'"”<1 -2 1 )]
(€ —2)! ¢ ¢ ¢ o 2
m[w,zewmu(o 2 _2) + W2,€”m”<0 _2 2 )] (A7)
200+ 1 ¢ 0 ¢ ¢
off — — 1ol
Mee = o (Zm W””'"”( -2 2 o) Wo.e'm (2 -2 o)
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-+l e\ -1 o2 1) T e\ 2
’({5 —2)! ¢ ¢ ¢ ¢ 2
+ m[w,l(//m//(o 2 _2> Wz,(//m//(o _2 2 )] s (A8)
where di 20 + 1 B
Mg = 167 Z Wo,ermr o
W 0 m! :[ WtS(Q)tSY;,,m,,(Q)dzﬂ. (Ag) ¢m"
4 ’
€+ DI —2)!
These last expressions can be rewritten using the £ and B +2 m (IE{;)H Iy
decomposition of the spin-weighted window functions, )
defined as (€ —2)! eI 2
Wl = W00 (A10) (€+ 21" 20m 2
() _ _1 s €+ DI —-2)
Weem = _(Ws m +( 1) W m)’ (All) + | 24— (B),, "
e ! (€= i + 2 et
B _! :
Woem = _(Ws,(fm - (_l)was,fm)) (A12) € —2) i
2 + @+ 2)!w2 ods | (A13)

with s = 1 or 2. Using this decomposition in the expression
for the mixing kernel leads to
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We point out that because the spin-0 window is real, it does
not have any B component. As a consequence, when the
derivative relation is completely fulfilled, the spin-1 and
spin-2 windows have also a vanishing B part and the
second line in Egs. (A13) and (A14) are equal to zero.
This is the case when using analytic windows or optimized
windows computed in the harmonic domain. However,
because the derivative relation is relaxed during the pixel
implementation of the optimized windows, the B part of
the two spin-weighted windows is not zero anymore in this
special case, though it remains much smaller than their £
part.

Equations (A13) and (A14) are directly applicable to the
mixing kernel computations for both auto- and cross-
spectra, but in the latter case only when the same apodiza-
tion is adopted for all the maps. However, two different
apodizations are often required in the cross-spectrum case,
for example, because noise properties of the two maps
differ, and then the above equations have to be appropri-
ately generalized. This can be done by representing each of
the moduli present on the right-hand sides of Egs. (A13)
and (A 14) as a product of a respective expression, of which
the modulus is taken, and its complex conjugate and sub-
sequently using one of the two different apodizations for
calculations of the expression and the other—its conjugate.
For example, the square modulus

(Al4)

(B)

1
1 oy— (B) -
—J + —J2 W2,€”m”

w
1’€//m//
Neo

in Eq. (A13) is replaced by

Nev .o ) _® )
2——J W ——J W
( N€,2 100) "™ 1,€"m ]\']&2 200) " 2,4"m

Nev B | G )
X(2—=—J \ T +—J Wy onn )y
( Ng,z 1" 1,0"m N(,z 2(1) 724" m

where (O)WEI?,,m,, and (l)Wng)”nz” are the window functions

applied to the first and second map, respectively.

In this paper we use Egs. (A13) and (A14), or their
generalization as described above, for the calculations of
all the mixing kernels.
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APPENDIX B: OPTIMIZED WINDOW FOR CROSS-
SPECTRA

In this appendix, we show how the optimized ansatz
proposed in [16] in the context of the autospectra can be
extended to incorporate the case of cross-spectra.
Depending on the general context, different choices can
be adopted for such an extension. We will present three
options, focusing on the case of two maps, d and d'V. In
the following, i, j indices will run over pixels and A, B
indices over maps.

The first and simplest choice is to optimize with respect
to the auto pseudo-spectrum of each of the maps. The
optimized windows are then directly given by the ansatz
of [16] applied to each of the maps separately,

N, obs

> cOPwO =1, (B1)
=1
Nobs
> clipw =1, (B2)
j=1

where C/* = (d/'d/) is the covariance matrix of the Ath
map and Pg-)‘) the geometrical matrix projecting in the €, m
space (see [16]).

The second option optimizes with respect to the auto-
spectrum of the two maps combined together in the optimal
way. In this case the optimal, quadratic estimator and the
pseudo-spectrum one can be written as

Nobs 1

0.= 3 3 alcTPUCTE B
1L,]j= ,B=
Nobs 1 ( )
— AwAp\Y)IWwBgB
Co= _Zl ABZ()di WAP Y Whd?, (B4)
1L,j= ,B='

where C = (dd’) is the full covariance matrix of the data
consisting of the two maps concatenated together, i.e.,

(00)
C — Sij + Ni; S;j .
i )
Sij Sij + Nj;
with S and N the signal and noise covariance matrices,

respectively. From the above definitions of the estimators,
the formalism of [16] is easily generalized to get,

Nobs 1 ( )

ABpla B __
> D CPIwE=1.
ij=0 B=0

(B5)

This is easily generalized to an arbitrary amount of maps
by summing over the entire set of maps.

To compare the above optimized window to the one
given by Egs. (B1) and (B2), we assume the noise proper-
ties to be the same for the two maps. As a consequence,
optimal windowing will be identical for each map. By
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plugging this into Eq. (B5), one can easily show that
optimal windows coming from this last equation differs
from optimal windows coming from Eqs. (B1) and (B2) by
the way the noise is accounted for: with Eq. (B5), the noise
part is divided by a factor 2 as compared to Egs. (B1) and
(B2). If Ny,p maps are to be analyzed, then the noise
contribution would be divided by a factor N, instead of 2.

The third and final option we consider consists of opti-
mizing the weighting with respect to each cross-spectrum.
For two maps, the optimal, quadratic and pseudo-sepctrum
estimators read

Nobs
0, = 'Zl dEO)(CflP(a)cfl)g?l)dﬁl), (B6)
i,j=
Z d(O)W(Ol)P(a)W(Ol)d(l) (B7)

i,j=1

The optimal, quadratic estimators can be recasted as a
function of the inverse of the covariance matrix D = C ™!,

Nohe
O d(o)(D(OO) + DUy P\ (DD
‘ ljzl m;I
11 (m
+D( ))njdj . (B3)
The explicit expressions of D are given by
D0 = [C00) — cOncancon]-t (B9)
pil = [ctD — OO ¢On]-1 (B10)
DOy — _C(OO)"C(OI)D(”), (B11)
pUo) = _Un~ 01 p©00) (B12)

Following [16], the optimized window is obtained by
minimizing the distance between the optimal, quadratic
estimator and the cross pseudo-spectrum estimators with
respect to WD This leads to the following linear system:

Z CVREwe = Z COIP (D + Do
i=1 i,j=1

+ D" + D). (B13)
This last approach is probably the more appropriate as the
resulting windows are optimized for each cross-spectra.
However, due to the rather complicated right-hand side in
Eq. (B13), it is also more numerically involved than the
two first approaches.

APPENDIX C: HARMONIC COMPUTATION OF
OPTIMIZED WINDOWS

In this appendix, we describe the major steps to compute
the optimized windows in the case of white and homoge-
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neous noise. As such noise is completely described by its
power spectrum, we perform all the computations in the
harmonic space. We start from Eqs. (18) and (19) and thus
choose to use the y fields rather than the spin-weighted
approach in parlance of [16]. Consequently, we will opti-
mize only the spin-0 window and compute the spin-1 and
spin-2 windows as its numerical derivatives. We remind
that the x® field is a scalar field defined as [16]

2 (€ +2)

B
X = )‘D - P,

(CDH

where the €-dependent prefactor compensates for the
¢-dependant normalization of the D¥ operator as defined
in Eq. (9). The harmonic decomposition of the x? field
reads

B €+2)! ,
X Z ( ¢ — 2)' €m
where af denotes a type B multipole of the polarization
vector P.

Following the variational interpretation as proposed in
[16], the optimized windows are the ones which minimize
the total aliased power in the pseudo-C,’s. The B pseudo-
spectrum averaged over CMB realization reads then

Yfm’ (CZ)

(Cod =D CL iwo.crmm Wy g (C3)
€//m//
where
20/ + 1 (€ —2)\(€' +2)!
X =
Coe fz 4 (€ + 21 —2)!
€ €I €/l

X CEBZ + Cc4
(£ 0 Yoo,

and wq ¢, stands for the harmonic representation of the
spin-0 window function. This window has to be apodized
up to its first derivative to make Eqgs. (18) and (19) and
Egs. (16) and (17) (i.e., the y fields and the spin-weighted
approaches) equivalent.

As a consequence, we have to minimize (C;) with
respect to wq ¢, under the three constraints. First of all,
the spin-0 window has to be normalized within the ob-
served region

(€5)

ZWOY(mM}m = 1,
tm

where M, is the harmonic representation of the mask.
(The normalization constant can be set to unity without
loss of generality.) Second, the spin-0 window and its first
derivative, the spin-1 window, have to vanish at the contour
of the observed region, denoted 7 in the following. This
translates into 2N, constrains, where N, is the number of
pixels on the contour
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W@ =0 and W,(i)=0, forallie P. (C6)

With such a large number of external constraints, the
standard Lagrange multiplier technique used to derive the
optimized spin-0 window function becomes hard to solve.
The complexity of the problem can be reduced by assum-
ing that the integral of the spin-0 and the spin-1 windows
on the contour have to vanish, leading to only two addi-

tional constraints
w ’.PT =0
§ 0,m< ¢m >
tm

S Ve + Dwo, Pl = 0.
tm

(C7)

(C8)

Here P, is the harmonic representation of the contour.
The second equation above corresponds to the spin-1 con-

straint as wy ¢, = /£(€ + 1)wg ¢,. The optimized spin-0
window can be then derived by applying the standard
Lagrange multiplier techniques, resulting in

(AM(;Hm// + ,u,?eum//)
0"

Wo,e'm!" = C)( (C9)

The two constants, A and w, are derived by plugging the
above solution into the constraints. Defining the following
total power:

Nio= D c* | Mg |2, (C10)
f(/ " (/I
Npy = Z CX | P oy, (C11)
(// " €H
0+ 1)
Nio= > —or |P o2, (C12)
€/!m!/ e,el!
Nxo= Y. cX | Mg P, i, (C13)
e//mll €,€H
VO +1
NXI - z CX |M€”m”P}-//mu|, (C14)
€/In1/! eel(
i+ e 1
- s Dip,p (C15)

{/// " € (”
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the two constants read

N2 N4>+ N2 N,y — 2Ny N2
A= Ny — x,00Va2 x,11Va,1 i x0%2  (c6)
Np1Na2 — Ny,
__ A [(NyoN s — Ny (Nys)
m= Na1Nas _N)2<,2 x,00V4,2 x,11Vx,2
— V(€ + 1)(NxoNx, — Nx 1Ny 1)l (C17)

In this derivation the boundary constraints have been
partially relaxed, making the window only partially opti-
mized. The numerical experiments, however, show that the
resulting power spectra uncertainties are at the same level
as the ones obtained using the exact, pixel-domain compu-
tation of the optimized window (see Fig. 18). This dem-
onstrates that the proposed boundary constraint
simplification does not compromise the performances of
this fast computed, optimized window.

We point out that the above approach is general and does
not apply only to the B-mode fields. For instance, we can
use it to calculate optimized windows for a temperature
(scalar) map. It suffices then to replace

(€ = 2)1(€ +2)!
€+ 2)1(¢ —2)! (CoBy + o)

in Eq. (C4) by the total (signal plus noise) power spectra,
ie., CIB} + o7, of the map. Moreover, we can straight-
forwardly relax some of the boundary requirements. For
example, if no boundary conditions are to be imposed, we
just need to replace Eqgs. (C16) and (C17) with

A=Ng, (C18)

u =0, (C19)

while in a case when only the Dirichlet boundary condition
is to be imposed, the two constants are given by

N
A=— AL (C20)
NA,()NAI - Nx,o
N
po= (c21)
Nio = NaoNai
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