New constraints on radiative decay of long-lived particles in big bang nucleosynthesis with new ⁴He photodisintegration data

Motohiko Kusakabe,^{1,2,*,†} Toshitaka Kajino,^{1,2,3} Takashi Yoshida,¹ Tatsushi Shima,⁴ Yasuki Nagai,⁴ and Toshiteru Kii⁵

¹Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan

²Department of Astronomy, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

³Department of Astronomical Science, The Graduate University for Advanced Studies, Mitaka, Tokyo 181-8588, Japan

⁴Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan

⁵Institute of Advanced Energy, Kyoto University, Gokasyo, Uji, Kyoto 611-0011, Japan

(Received 24 June 2008; revised manuscript received 1 May 2009; published 19 June 2009)

A recent measurement of ⁴He photodisintegration reactions, ⁴He(γ , p)³H and ⁴He(γ , n)³He with laser-Compton photons shows smaller cross sections than those estimated by other previous experiments at $E_{\gamma} \lesssim 30$ MeV. We study big bang nucleosynthesis with the radiative particle decay using the new photodisintegration cross sections of ⁴He as well as previous data. The sensitivity of the yields of all light elements D, T, ³He, ⁴He, ⁶Li, ⁷Li, and ⁷Be to the cross sections is investigated. The change of the cross sections has an influence on the nonthermal yields of D, 3 He, and 4 He. On the other hand, the nonthermal ⁶Li production is not sensitive to the change of the cross sections at this low energy, since the nonthermal secondary synthesis of ⁶Li needs energetic photons of $E_{\gamma} \gtrsim 50$ MeV. The nonthermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of ⁶Li observed in metal-poor halo stars. In the parameter region of the radiative particle lifetime and the emitted photon energy, which satisfies the ⁶Li production above the abundance level observed in metal-poor halo stars, the change of the photodisintegration cross sections at $E_{\gamma} \lesssim 30$ MeV as measured in the recent experiment leads to $\sim 10\%$ reduction of resulting ³He abundance, whereas the ⁶Li abundance does not change for this change of the cross sections of ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ and ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$. The ${}^{6}\text{Li}$ abundance, however, could show a sizable change and therefore the future precise measurement of the cross sections at high energy $E_{\chi} \ge$ 50 MeV is highly required.

DOI: 10.1103/PhysRevD.79.123513

PACS numbers: 25.10.+s, 26.35.+c, 98.80.Cq, 98.80.Es

I. INTRODUCTION

In standard cosmology, the Universe is thought to have experienced big bang nucleosynthesis (BBN) at a very early stage. The light nuclides D, T + ³He, ⁴He, and ⁷Li + ⁷Be are produced in the standard BBN (SBBN) at observable levels, while this model does not make appreciable quantities of ⁶Li. The WMAP satellite has measured the temperature fluctuations of the cosmic microwave background (CMB) radiation, and parameters characterizing the standard big bang cosmology have been deduced [1,2] from these data. For the baryon-to-photon ratio η_{CMB} deduced from fits to the CMB, the BBN model predicts abundances of the light elements except for ⁶Li and ⁷Li, which are more-or-less consistent with those inferred from astronomical observations.

Spectroscopic lithium abundances have been detected in the atmospheres of metal-poor stars. Nearly constant abundances of ⁶Li and ⁷Li in metal-poor Population II (Pop II) stars have been inferred. There is about a factor of 3 under abundance of ⁷Li in metal-poor halo stars (MPHSs) with respect to the SBBN prediction when using the baryon-tophoton ratio η_{CMB} . This is called the ⁷Li problem [3–5]. In addition, spectroscopic measurements obtained with high resolution indicate that MPHSs have a very large abundance of ⁶Li, i.e., at a level of about 3 orders of magnitude larger than the SBBN prediction of the ⁶Li abundance, which is called the ⁶Li problem [5,6]. Cayrel *et al.* [7] studied line asymmetries to be generated by convective Doppler shifts in stellar atmospheres, and found that the convective asymmetry might mimic the presence of ⁶Li, and an error of ⁶Li/⁷Li amounts to a few percent that is roughly comparable to the values estimated from MPHSs. The ⁶Li problem, therefore, may not exist in fact, since the convective asymmetry could give a possible solution to the ⁶Li problem within the framework of SBBN.

The possibility of ⁶Li production in nonstandard BBN triggered by the decay of unstable relic neutral massive particles X has been studied [8–16]. Several critical constraints on the properties of X particles were derived from the studies of radiative decay [9–12], hadronic decay, or annihilation [13–16] of X particles along with the BBN constraints on the light elements. These particle decay induces electromagnetic and/or hadronic showers triggering the destruction of preexisting nuclei and the production of different nuclear species. A recent detailed study [12] of the radiative decay and its influence on the ⁶Li production has found a parameter region of lifetime $\tau_X \sim 10^8-10^{12}$ s

^{*}Research Fellow of the Japan Society for the Promotion of Science

[†]kusakabe@th.nao.ac.jp

and abundance parameter $\zeta_X \sim 10^{-13} - 10^{-12}$ GeV where the nonthermal nucleosynthesis of ⁶Li can explain the observed abundance level in MPHSs. This parameter region satisfies the two observational constraints on the CMB energy spectrum and the primordial light element abundances. Three important characteristics were found for the interesting parameter region. First, ³He and t are the seeds for ⁶Li in the processes ⁴He(³He, p)⁶Li and ⁴He(t, n)⁶Li. Second, the excess of ⁶Li abundance is therefore regulated by the amounts of ³He and t that are produced by the nonthermal photodisintegration of ⁴He, i.e., ⁴He(γ , p)³H and ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$. Hence, the radiative decay model that results in ⁶Li production above the MPHS abundance level is also reflected by an enhancement of the ³He abundance with respect to the SBBN value. Third, the radiative decay does not resolve the ⁷Li problem [17]. It is therefore concluded that other mechanisms such as the stellar depletion of the lithium isotopes in the atmosphere of MPHSs [19,20] or new burst of late-time BBN on the exotic X-bound nuclei in the case of negatively charged leptonic particles X^{-} [21–35] must operate to lower the ⁷Li abundance.

A recent measurement of ⁴He photodisintegration reactions ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ and ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ with laser-Compton photons [36] shows much smaller cross sections than those estimated from the other previous experiments [37] and those summarized in Ref. [11] at the photon energies 20 MeV $\leq E_{\gamma} \leq$ 30 MeV. If these nonthermal photon energies dominate the destruction of ⁴He, the production of ³He and t and also the subsequent production of ⁶Li via 4 He(3 He, p) 6 Li and 4 He(t, n) 6 Li, this would change the parameter region of τ_X and ζ_X of massive relic particles X so that the resultant nonthermal nucleosynthesis of 6 Li can explain the abundance level observed in MPHSs. The first purpose of this article is to study the sensitivity of nonthermal BBN of all light elements D, T, ³He, ⁴He, ⁶Li, ⁷Li, and ⁷Be to the photodisintegration cross sections of ⁴He. The second purpose is to infer the uncertainties of the two parameters τ_X and ζ_X of massive relic particles X, which would arise from the uncertainties of the measured reaction cross sections.

In Sec. II, we present a result of a new measurement of ⁴He photodisintegration cross sections. In Sec. III, we briefly explain the model of nonthermal nucleosynthesis and the calculated result of the effect of the considered change of the photodisintegration cross sections. In Sec. IV, we summarize our conclusion and offer an outlook for measurements of ⁴He photodisintegration.

II. ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ AND ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ CROSS SECTIONS

So far the cross section data of the photodisintegration of ⁴He have been obtained from the direct photodisintegration experiments as well as the inverse radiative capture experiments. Indirect probes such as the (p, p') reaction [38] and

the $(^{7}\text{Li}, ^{7}\text{Be})$ reaction [37] have also been applied to investigate the property of the dipole excitations of ^{4}He .

The direct experiments have been performed by detecting either charged fragments $(p, {}^{3}\text{H}, {}^{3}\text{He})$ or neutrons from the photodisintegration reactions. As incident real photon beams, either continuous bremsstrahlung photons or quasimonochromatic ones generated with various methods such as the photon tagging, the positron annihilation in flight, and the laser Compton backscattering were used. Since the energies of the emitted particles are small due to high threshold energies of the photodisintegrations of ⁴He, many efforts have been devoted to detect those particles clearly from the backgrounds caused by the incident highenergy γ rays. In the inverse experiments, the reaction cross sections are much smaller than the photodisintegrations because of the difference of the phase space factors, and therefore the measurements have been performed with great care to the influence of the background γ rays as well as the determinations of the experimental parameters such as the detector efficiency for high-energy capture γ rays, the effective target thicknesses, the incident beam intensity, and so on.

In spite of the above experimental efforts, there have been large discrepancies in the previous data as shown in Fig. 1. Especially in the energy region below ~ 30 MeV, the data show either a pronounced peak at around 25– 26 MeV or a rather smooth curve as a function of the excitation energy. In order to determine the cross sections more accurately, Shima *et al.* recently performed measurements using quasimonochromatic laser-Compton photons and a time projection chamber containing a gas mixture of He and CD₄ [36,39,40]. The method had the following features:

- (i) Thanks to the quasimonochromatic and wellcollimated γ -ray beam, the background due to lowenergy γ rays is very small.
- (ii) Since the time projection chamber gas serves as an active target, low-energy charged fragments from the photodisintegrations can be detected simultaneously for ${}^{4}\text{He}(\gamma, p)$ and ${}^{4}\text{He}(\gamma, n)$, with efficiencies of nearly 100% and a solid angle of 4π .
- (iii) The absolute sensitivity of the measurement can be accurately checked with the $D(\gamma, n)p$ reaction, whose cross section is well known in the energy region of the present interest.

Previously, Shima *et al.* measured the cross sections in the γ -ray energy region from 20 to 30 MeV using the laser-Compton γ -ray source at the National Institute of Advanced Industrial Science and Technology (AIST) [36].

As shown in Fig. 1, the cross sections from the experiments are found to monotonically increase as a function of the γ -ray energy up to ~ 30 MeV, being quite different from the standard fitting functions previously evaluated by Cyburt *et al.* [11]. With the above mentioned situation in mind, the sensitivity of the BBN to the photodisintegration

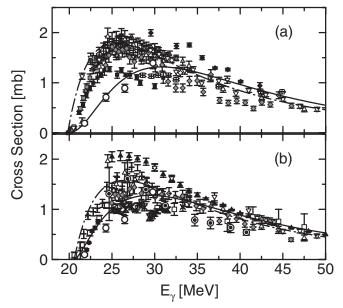


FIG. 1. The cross sections of the ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ (upper panel: a) and ${}^{4}\text{He}(\gamma, n){}^{3}\text{H}$ (lower panel: b) reactions. The open circles stand for the published data [36] from experiments performed using quasimonochromatic laser-Compton photon beams at AIST. The dotted circles are the latest data of the (γ, n) reaction measured by means of a tagged photon beam [64]. The other symbols indicate the previous data (see the references in Ref. [36]). The error bars show 1σ uncertainties in the cross section data. The solid curves are the most probable excitation functions determined from the experimental data at $E_{\gamma} \leq 30 \text{ MeV}$ [36] and the previous ones at higher energies 30 MeV $\leq E_{\gamma} \leq 116 \text{ MeV}$ [41–43]. The dashed-dotted curves are the fitting functions to some of the available data summarized in Ref. [11].

cross sections of ⁴He was studied in the present paper by using the recent experimental results as well as the previously adopted standard fitting functions in Ref. [11].

The present excitation functions were determined as follows. Since no sharp resonance has been observed in the excitation functions of the photodisintegration of ⁴He in the energy region up to ~ 100 MeV, we assumed the excitation functions can be approximated by a fitting function in Ref. [11], i.e.,

$$\sigma(E_{\gamma}) = \sigma_c \frac{|Q|^a (E_{\gamma} - |Q|)^b}{E_{\gamma}^{a+b}}.$$
 (1)

Three parameters σ_c , *a*, and *b* are determined by fitting this functions to the data measured at AIST [36] and the data measured at high energies of $E_{\gamma} \gtrsim 30$ MeV [41–43] by means of the χ^2 -minimization method. This function is suitable for use in numerical calculation because it has no discontinuity and no divergence at high energies. In this study we take published values for errors of cross sections at all fitting procedures.

The most probable fitting functions for the cross sections of the ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ and ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ reactions turn out to be

$$\sigma(E_{\gamma}) = 128.9 \text{ mb} \frac{|Q|^{4.524} (E_{\gamma} - |Q|)^{2.512}}{E_{\gamma}^{4.524 + 2.512}},$$
 (2)

and

$$\sigma(E_{\gamma}) = 31.68 \text{ mb} \frac{|Q|^{3.663} (E_{\gamma} - |Q|)^{1.580}}{E_{\gamma}^{3.663 + 1.580}}, \qquad (3)$$

respectively, and they are plotted in Fig. 1. Reaction Q values are taken from experiments as |Q| = 19.8139 MeV and |Q| = 20.5776 MeV, respectively. We take these two cross sections as our recommended cross sections in this paper.

The dashed-dotted curves are standard expressions from Ref. [11]. Parameter values are given as $\sigma_c = 19.5$ mb, a = 3.5, and b = 1.0 for ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ reaction, and $\sigma_c = 17.1$ mb, a = 3.5 and b = 1.0 for ${}^{4}\text{He}(\gamma, n){}^{3}\text{H}$ reaction.

As another implementation, we fit all data adopted in this study including the data measured at AIST [36] at low energies of $E_{\gamma} < 30$ MeV and previous ones obtained in other experiments. The fitting parameters turn out to be $\sigma_c = 61.82$ mb, a = 4.300, and b = 1.756 for ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ reaction, and $\sigma_c = 31.38$ mb, a = 3.651, and b = 1.583 for ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ reaction. The derived cross sections are displayed in Fig. 2.

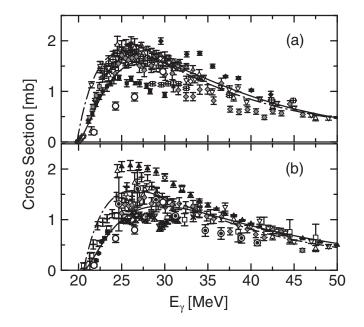


FIG. 2. (a) and (b) are the same as those in Fig. 1. The solid curves and the short-dashed curves are the most probable excitation functions determined from all data adopted in this study, including the experimental data at $E_{\gamma} \leq 30$ MeV [36] and the previous ones at whole energy range of $E_{\gamma} < 116$ MeV [37,38,41–43,64]. The dashed-dotted curves are the same as in Fig. 1.

One can see in Figs. 1 and 2 that there is a large dispersion in experimental data at low photon energies of 20 MeV $\leq E_{\gamma} \leq 40$ MeV. This dispersion is much larger than the $\pm 1\sigma$ deviation of any single fitting function. We therefore adopt the above three functions in BBN calculations and compare the calculated results with one another in order to study the sensitivity of BBN with the radiative particle decay to the ⁴He photodisintegration reaction cross sections.

III. BBN OF THE LIGHT ELEMENTS

A. Model

We assume the creation of high-energy photons from the radiative decay of a massive particle X with a mass M_X and a mean life of $\tau_X = 10^2 - 10^{12}$ s. We represent the emitted photon energy by $E_{\gamma 0}$. We assume that the decaying dark particle is nonrelativistic, and almost at rest in the expanding universe.

A decay-produced energetic photon interacts with the cosmic background and induces an electromagnetic cascade shower. The faster processes, pair production through background photons $\gamma_{\text{bg}} (\gamma \gamma_{\text{bg}} \rightarrow e^+ e^-)$ and inverse Compton scattering of produced electrons and positrons through background photons $(e^{\pm} \gamma_{\text{bg}} \rightarrow e^{\pm} \gamma)$, produce electromagnetic showers, and the nonthermal photon spectrum realizes a quasistatic equilibrium [44,45]. The attained zeroth-generation photon spectrum is [46]

$$p_{\gamma}(E_{\gamma}) \approx \begin{cases} K_0(E_X/E_{\gamma})^{1.5} & \text{for } E_{\gamma} < E_X \\ K_0(E_X/E_{\gamma})^{2.0} & \text{for } E_X \le E_{\gamma} < E_C, \\ 0 & \text{for } E_C \le E_{\gamma} \end{cases}$$
(4)

where $K_0 = E_{\gamma 0}/(E_X^2[2 + \ln(E_C/E_X)])$ is a normalization constant fixed by energy conservation of the injected photon energy. This spectrum has a break in the power law at $E_{\gamma} = E_X$ and an upper cutoff at $E_{\gamma} = E_C$. We take the same energy scaling with the temperature *T* of the background photons as in [44], i.e., $E_X = m_e^2/80T$ and $E_C = m_e^2/22T$ at the temperature *T*, where the cascade spectrum was calculated by numerically solving a set of Boltzmann equations. Here, m_e is the rest mass of an electron.

Because the rates of electromagnetic interactions are faster than the cosmic expansion rate, the photon spectrum $p_{\gamma}(E_{\gamma})$ is modified into a new quasistatic equilibrium (QSE). This distribution is given by

$$\mathcal{N}_{\gamma}^{\text{QSE}}(E_{\gamma}) = \frac{n_X p_{\gamma}(E_{\gamma})}{\Gamma_{\gamma}(E_{\gamma})\tau_X},\tag{5}$$

where $n_X = n_X^0 (1 + z)^3 \exp(-t/\tau_X)$ is the number density of the decaying particles at a redshift *z*. The quantity Γ_{γ} is the energy degradation rate through three slower processes; Compton scattering $(\gamma e_{bg}^{\pm} \rightarrow \gamma e^{\pm})$, Bethe-Heitler ordinary pair creation in nuclei $(\gamma N_{bg} \rightarrow e^+ e^- N)$, and double photon scattering $(\gamma \gamma_{bg} \rightarrow \gamma \gamma)$ for the zeroth-generation photons. We use this steady state approximation for the cosmic nonthermal constituent of photons.

The equation for the production and destruction of nuclei by nonthermal photons is given by

$$\frac{dY_A}{dt} = \sum_T N_{AC} [T\gamma]_A Y_T - \sum_P [A\gamma]_P Y_A, \qquad (6)$$

where we have defined the reaction rate

$$[T\gamma]_{A} = \frac{n_{\gamma}^{0} \zeta_{X}}{\tau_{X}} \left(\frac{1}{2H_{r}t}\right)^{3/2} \exp(-t/\tau_{X})$$
$$\times \int_{0}^{\infty} dE_{\gamma} S_{\gamma}^{\text{QSE}}(E_{\gamma}) \sigma_{\gamma+T \to A}(E_{\gamma}), \qquad (7)$$

and

$$S_{\gamma}^{\text{QSE}}(E_{\gamma}) = \frac{\tau_X}{E_{\gamma 0} n_X} \mathcal{N}_{\gamma}^{\text{QSE}}(E_{\gamma}).$$
(8)

 $Y_i \equiv n_i/n_B$ is the mole fraction of a particular nuclear species *i*, and n_i and n_B are number densities of nuclei *i* and baryons. The first and second term on the right-hand side are the source $(\gamma + T \rightarrow A + C)$ and sink $(\gamma + A \rightarrow C)$ P + D) terms for nucleus A. E_{γ} is a nonthermal photon energy. The cross section of the process $\gamma + T \rightarrow A + C$ is denoted by $\sigma_{\gamma+T\to A}(E_{\gamma})$. Further, we use N_{AC} to represent the number of identical species of nuclei in a production or destruction process; $N_{AC} = 2$ when particles A and C are identical and $N_{AC} = 1$ when they are not. For example, in the process ⁴He(γ , d)D, $N_{\rm DD} = 2$. We defined $H_r \equiv$ $\sqrt{8\pi G \rho_{\rm rad}^0/3}$, where the superscript 0 denotes present values (z = 0), therefore n_{γ}^0 and ρ_{rad}^0 are the present photon number density and present radiation energy density of the cosmic background radiation, respectively. We defined $\zeta_X = (n_X^0 / n_\gamma^0) E_{\gamma 0}.$

The equation describing the secondary production and destruction is obtained by taking account of the energy loss of nuclear species, while propagating through the background. In general, because of the high energy loss rate, the primary particles establish a quasistatic equilibrium. The abundance evolution is then represented by

$$\frac{dY_S}{dt} = \sum_{T,A,T'} Y_T Y_{T'} \frac{N_{AX_1} N_{SX_2}}{N_{AT'}} [T(A)T']_S - \text{(sink term)},$$
(9)

where $[T(A)T']_S$ is the reaction rate for a secondary process $T(\gamma, X_1)A(T', X_2)S$ with any combination of particles X_1 , A, and X_2 . For example, $[\alpha({}^{3}\text{He})\alpha]_{6\text{Li}}$ for a secondary process ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}(\alpha, p){}^{6}\text{Li}$ is given by

NEW CONSTRAINTS ON RADIATIVE DECAY OF LONG- ...

$$[\alpha\alpha]_{^{6}\mathrm{Li}} = \frac{\eta(n_{\gamma}^{0})^{2}\zeta_{X}}{\tau_{X}} \left(\frac{1}{2H_{r}t}\right)^{3} \exp(-t/\tau_{X})$$

$$\times \int_{E_{p,\mathrm{th}}}^{\mathcal{E}_{3}_{\mathrm{He}}(E_{C})} dE_{^{3}\mathrm{He}} \frac{\sigma_{^{3}\mathrm{He}(\alpha,p)^{6}\mathrm{Li}}(E_{^{3}\mathrm{He}})\beta_{^{3}\mathrm{He}}}{b_{^{3}\mathrm{He}}(E_{^{3}\mathrm{He}})}$$

$$\times \int_{\mathcal{E}_{3}^{-1}_{\mathrm{He}}(E_{3}_{\mathrm{He}})}^{E_{C}} dE_{\gamma}S_{\gamma}^{\mathrm{QSE}}(E_{\gamma})\sigma_{^{3}\mathrm{He}(\alpha,p)^{6}\mathrm{Li}}(E_{\gamma}), (10)$$

where η is the baryon-to photon ratio: $\eta \equiv n_B^0/n_\gamma^0$, and β_A is the velocity of the primary particle *A*. $b_A = -dE/dt$ is the energy loss rate of the primary particle by Coulomb scattering. $\mathcal{E}_A(E_\gamma)$ is the energy of the nuclide *A* produced by the photodisintegration process $\gamma + T \rightarrow A$, and $\mathcal{E}_A^{-1}(E_A)$ is the energy of the nonthermal photons, which produce the primary species *A* with energy E_A . $\mathcal{E}_A(E_\gamma)$ and $\mathcal{E}_A^{-1}(E_A)$ are derivable in the limit of low-energy scattering, where the relevant nuclei are nonrelativistic, i.e., $\mathcal{E}_{^{3}\text{He}}(E_\gamma) = (E_\gamma - E_{\gamma,\text{th}})/4$ and $\mathcal{E}_{^{3}\text{He}}^{-1}(E_{^{3}\text{He}}) = 4E_{^{3}\text{He}} + E_{\gamma,\text{th}}$, where $E_{\gamma,\text{th}}$ is the threshold energy of primary photodisintegration reaction.

B. Constraints on the radiative decay of long-lived particles

We focus on the nonthermal production of mass 3 nuclides, ³H and ³He, and secondary production of ⁶Li. In Fig. 3, photodisintegration cross sections of ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ and ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ are shown as a function of nonthermal photon energy E_{γ} (above threshold energy 20 MeV). These cross sections are fitted with data from the laser-Compton photon experiment (solid curves) and those from Ref. [11] (dotted curves). The dashed line is the energy spectrum of nonthermal photon produced by the radiative decay when the cosmic temperature is 10 eV corresponding to the decay life $\tau_X \sim 10^{10}$ s [12]. It is normalized with respect to intensity at $E_{\gamma} = 20$ MeV. Since the yield of nonthermally produced mass 3 nuclides is proportional to the integration of the nonthermal photon spectrum times photodisintegration cross sections, the change of photodisintegration cross sections at $E_{\gamma} \lesssim 30$ MeV has a relatively large influence on the resulting ³He abundance.

On the other hand, nonthermal secondary production of ⁶Li is not affected by ⁴He photodisintegration cross sections at low energies. When we consider the nonrelativistic limit of nuclear reactions, the center-of-mass energy $E_{\rm cm}$ in ³He(α , p)⁶Li and ³H(α , n)⁶Li reactions is given by

$$E_{\rm cm} = \frac{1}{2}\mu v^2 \sim \frac{1}{2}\frac{m_3m_4}{m_3 + m_4}v_3^2 \sim \frac{4}{7}E_3,\qquad(11)$$

where μ , m_3 , and m_4 are the reduced mass, the mass of a nucleus ${}^{3}A$ (*t* or ${}^{3}\text{He}$) and that of ${}^{4}\text{He}$, v, and v_3 are the relative velocity and the velocity of ${}^{3}A$, E_3 is the kinetic energy of ${}^{3}A$, respectively. The energy of ${}^{3}A$ generated in primary ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ and ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ reactions, i.e., E_3^0 ($\geq E_3$) is given by

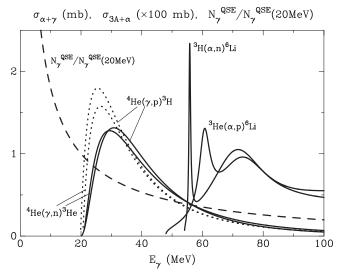


FIG. 3. The fitted cross sections of ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ and ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ with data from the laser-Compton photon experiment at low energies of $E_{\gamma} \leq 30$ MeV are shown by solid lines above ~20 MeV. The standard cross sections [11] are also shown as dotted lines. Cross sections of secondary ⁶Li production reactions ${}^{3}\text{H}(\alpha, n){}^{6}\text{Li}$ and ${}^{3}\text{He}(\alpha, p){}^{6}\text{Li}$ are superimposed. The energy spectrum of nonthermal photon produced by the radiative decay when the cosmic temperature is 10 eV corresponding to the decay life $\tau_{X} \sim 10^{10}$ s is also shown (dashed line), which is normalized with respect to intensity at $E_{\gamma} = 20$ MeV.

$$E_3^0 \sim \frac{m_p}{m_3 + m_p} (E_\gamma - E_{\gamma,\text{th}}) \sim \frac{1}{4} (E_\gamma - E_{\gamma,\text{th}}),$$
 (12)

where m_p is the mass of proton, and $E_{\gamma,\text{th}}$ is the threshold energy of the ⁴He photodisintegration reaction. The centerof-mass energy E_{cm} in the secondary reactions thus relates to the nonthermal photon energy in primary reactions as

$$E_{\rm cm} \lesssim \frac{E_{\gamma} - E_{\gamma,\rm th}}{7}.$$
 (13)

The inequality means that nonthermal ³He and ³H nuclides lose energies from a time of their production to a time of nuclear reactions to produce ⁶Li. We plot the cross sections of ³He(α , p)⁶Li and ³H(α , n)⁶Li reactions as a function of E_{γ} neglecting the energy losses of ³He and ³H in Fig. 3. Since secondary ⁶Li production needs photon energy of at least $E_{\gamma} \ge 50$ MeV to produce energetic ³He and ³H, the yield of ⁶Li is insensitive to the change of the ⁴He photodisintegration cross section at the low energy of $E_{\gamma} \le$ 30 MeV. (See Sec. III B 1.) On the other hand, a change of the cross section at high energies of $E_{\gamma} \ge 50$ MeV causes a change of resulting yield of ⁶Li (See Sec. III B 2 for estimation of uncertainty on the ⁶Li yield associated with possible uncertainties in cross sections at high energies.)

1. Effect of uncertainties from low-energy reactions

Figure 4 shows contours corresponding to the constraints for the primordial abundance [12] for the present result with our recommended smaller cross sections of ⁴He photodisintegration Eqs. (2) and (3) [thick lines]. For example, a contour of the ⁴He mass fraction Y > 0.232 is shown in the (τ_X, ζ_X) plane. The region above this contour should be excluded for Y < 0.232. The contours of ⁷Li/H lower limit, ${}^{7}\text{Li}/\text{H} > 1.1 \times 10^{-10}$, D/H upper and lower $D/H \le 5.2 \times 10^{-5}$ and $D/H \ge 1.4 \times 10^{-5}$ limits. (dashed line), respectively, and ³He/H upper limit, ${}^{3}\text{He/H} \le 3.1 \times 10^{-5}$ are also drawn. Dotted lines show contours of the same constraints for the result with larger standard cross sections of ⁴He photodisintegration [11]. The thick solid line shows a constraint from the consistency requirement of the CMB with a blackbody [12]. The region above the line is excluded. The contour for the MPHSs level of ${}^{6}\text{Li}/\text{H} = 6.6 \times 10^{-12}$ is plotted. The gray region above the contour and below the nucleosynthesis plus CMB constraints is allowed and abundant in ⁶Li.

For this figure, we use the two sigma upper limit on the observed 3 He/H abundance ratio from the Galactic HII region [47] as a conservative constraint on primordial

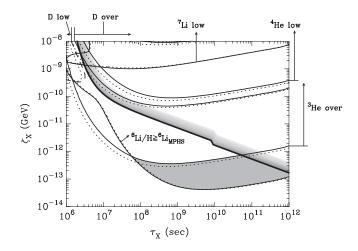


FIG. 4. Contours in the (τ_X, ζ_X) plane corresponding to the adopted constraints for the primordial abundances in the present calculation with smaller cross sections of ⁴He photodisintegration Eqs. (2) and (3) [thick lines]. Contours for the mass fraction of ⁴He Y = 0.232 and the number ratios of ³He/H = 3.1×10^{-5} , D/H = 5.2×10^{-5} , D/H = 1.4×10^{-5} (dashed line), and ${}^{7}\text{Li}/\text{H} = 1.1 \times 10^{-10}$ are shown. The notation "over" and "low" identifies overproduced and underproduced regions, respectively. The same constraints on the result calculated with larger standard cross sections of ⁴He photodisintegration [11] is shown as dotted lines. The region above the thick solid line is excluded by the consistency requirement of the CMB with a blackbody. The contour of ${}^{6}\text{Li}/\text{H} = 6.6 \times 10^{-12}$ is also drawn. The gray region above the contour and below the nucleosynthesis plus CMB constraints is the allowed region where the abundant ⁶Li is produced.

abundance. Alternatively, a constraint from the ³He/D ratio is often used. Since deuterium is fragile and more easily burned in stars than ³He is, the ³He/D ratio is thought to increase monotonically as a function of time by stellar processing from the formation of first stars to the solar system formation. The ³He/D ratio for primordial abundances can, therefore, be constrained by the solar ³He/D ratio. Since the solar ³He/D ratio is $({}^{3}\text{He/D})_{\circ} = 0.82$ [48], one can obtain a constraint of ${}^{3}\text{He/D} < 1$ for primordial abundances. Although this constraint is slightly stronger than the constraint for the ³He/H ratio, the contours for both constraints are not distinguishable from each other in Fig. 4.

One can see that ⁷Li abundance does not change drastically by the new ⁴He photodisintegration cross sections. The contour for the ⁴He over destruction by the nonthermal photons shifts upward by ~300% at most for $\tau_x =$ $10^{6}-10^{10}$ s with respect to that with the larger cross sections (dotted line). Since a destruction rate of ⁴He is lowered at low energies when its cross sections are taken to be small, larger energy is necessary to destruct ⁴He considerably. The ⁴He destruction leads to nonthermal production of ³He and D. Then, D over-destruction regions, which are above the region of this figure, shift upward reflecting the change of relic abundance of seed nuclide ⁴He. The ³He over-production region also shifts upward by ~30%. Since the cross sections of ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$ and ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ are lowered, the amount of produced mass 3 nuclides is lowered. One finds an upward shift of D over-production region. We confirmed that this change is caused since D is produced by $p(n, \gamma)$ D using nonthermally produced neutrons by ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$, whose cross section changed. Figure 4 shows that the contour of ⁶Li abundance also changes slightly by $\sim -20\%$ at most for

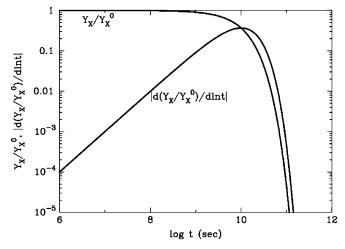


FIG. 5. Time evolution of abundance of X particles Y_X/Y_X^0 , where Y_X^0 is the initial abundance before X decays. Also shown is $t \times |d(Y_X/Y_X^0)/dt| = (t/\tau_X) \exp(-t/\tau_X)$, which characterizes the amount of energy from the particle decay at time t. The decay life is assumed to be $\tau_X = 10^{10}$ s.

 $\tau_X = 10^6 - 10^{10}$ s, but this change does not result from the change of photodisintegration cross sections of ⁴He at low energy $E_{\gamma} \leq 30$ MeV. It is due to the difference of excitation functions between our recommended fit and the standard fit [11] at higher energy, $E_{\gamma} \geq 30$ MeV. (See Fig. 3.) The reason has already been explained at the beginning of this section.

We pick up the most interesting parameter region, where ⁶Li is produced at the level higher than that of MPHSs. We take a look at the result of nucleosynthesis of the parameters $(\tau_X, \zeta_X) = (10^{10} \text{ s}, 3 \times 10^{-13} \text{ GeV})$ [12] for this reason. In Fig. 5, the abundance of *X* particle Y_X is shown as a function of the cosmic photon temperature. It is normalized as Y_X/Y_X^0 , where Y_X^0 is the initial abundance before the *X* decay decreases its abundance. As the indicator of energy amount injected by the *X* decay at an epoch, we also plot $|d(Y_X/Y_X^0)/d \ln t| = t \times |d(Y_X/Y_X^0)/dt| = (t/\tau_X) \times \exp(-t/\tau_X)$. Most of the energy content is injected in the time scale of τ_X . These lines are for only the case of $\tau_X = 10^{10}$ s.

Figure 6 shows the ³He and ³H abundances as a function of temperature T [$T_9 \equiv T/(10^9 \text{ K})$] when parameters are (τ_X, ζ_X) = (10¹⁰ s, 3 × 10⁻¹³ GeV) [upper panel]. The results with our recommended and the standard cross sections of ⁴He photodisintegration correspond to the solid and dashed lines, respectively. An apparent reduction of

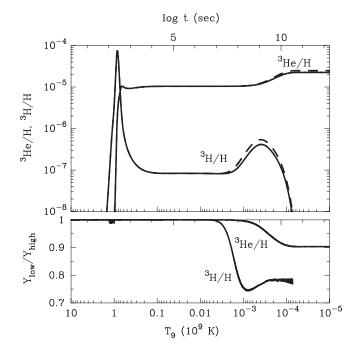


FIG. 6. (upper panel) Temperature (time) evolution of ³He and ³H abundances when parameters are $(\tau_X, \zeta_X) = (10^{10} \text{ s}, 3 \times 10^{-13} \text{ GeV})$. The solid and dashed lines are the results for our recommended and the standard cross sections of ⁴He photodis-integration. (lower panel) Ratios of ³He and ³H abundances calculated with our recommended cross sections to those with the standard cross sections.

nonthermally produced 3 He abundance is found in our recommended case. The resulting difference of nonthermal yield of 3 He is about 10%.

2. Effect of uncertainties from high-energy reactions

The measured ⁴He photodisintegration cross sections are still subject to large uncertainties, which depend on the different experimental setup and methods over the wide energy range. The energy dependence of the cross sections is not well understood theoretically. If either cross section of ⁴He(γ , p)³H or ⁴He(γ , n)³He in the energy region of $E_{\gamma} \gtrsim 50$ MeV is different from the adopted cross section, nonthermal BBN abundance of ⁶Li would change significantly.

It should be noted here that the data below 30 MeV of Shima *et al.* [36] are significantly smaller than previous ones, and therefore one may expect enhancement of the cross sections in the higher energy range from the wellknown Thomas-Reiche-Kuhn (TRK) sum rule, which relates the energy-integrated cross section σ_0 to the ground state property of a target nucleus. The E1 sum rule is expressed by

$$\sigma_0 = \int_{E_{\rm th}}^{\infty} \sigma(E_{\gamma}) dE_{\gamma} = \sigma_{\rm TRK} (1 + \kappa)$$

= 59.74(1 + \kappa) MeV mb, (14)

where $\sigma_{\text{TRK}} = (2\pi^2 \alpha/m)(NZ/A)$ with α , m, N, Z, and A the fine structure constant, the nucleon mass, the neutron number, the proton number, and the nucleon number, respectively. κ is the so-called TRK enhancement factor defined as

$$\kappa = \frac{mA}{NZ} \langle 0 | [D_z, [V, D_z]] | 0 \rangle, \tag{15}$$

where $|0\rangle$ is the nuclear ground state wave function, D_z is the dipole operator $D_z = \sum_{i=1}^{A} z_i \tau_i^3 / 2$ with τ_i^3 and z_i the third component of the isospin operator and the z coordinate of the *i*th particle in the center-of-mass frame, respectively, V is the nuclear potential. There is another sum rule, i.e., bremsstrahlung sum rule, which is expressed by

$$\sigma_B = \int_{E_{\rm th}}^{\infty} \frac{\sigma(E_{\gamma})}{E_{\gamma}} dE_{\gamma} = 4\pi^2 \alpha \langle 0 | D_z D_z | 0 \rangle$$
$$= \frac{4\pi^2 \alpha}{3} \frac{NZ}{A-1} (\langle r_{\alpha}^2 \rangle - \langle r_p^2 \rangle) = 2.60 \pm 0.01 \text{ mb},$$
(16)

where $\langle r_p^2 \rangle^{1/2} = 0.875 \pm 0.007$ fm [49] and $\langle r_\alpha^2 \rangle^{1/2} = 1.673 \pm 0.001$ fm [50] are the root mean square charge radii for proton and ⁴He, respectively.

Energy-weighted integrals $\int_{E_{\rm th}}^{\infty} (E_{\gamma})^n \sigma(E_{\gamma}) dE_{\gamma}$ with n = 0 for Eq. (14) and n = -1 for Eq. (16) are listed in Table I for the four different models of photodisintegration cross sections of ${}^{4}{\rm He}(\gamma, p){}^{3}{\rm H}$ and ${}^{4}{\rm He}(\gamma, n){}^{3}{\rm He}$. The three

KUSAKABE	et	al.
----------	----	-----

TABLE I.	Energy-weighted integrals of	photodisintegration cross section	ons $\sigma(E_{\gamma})$ in Eqs. (14) and (16).

Models for $\sigma(E_{\gamma})$	Equations (2) and (3)	Fit with all data ^a	Cyburt <i>et al.</i> [11] ^b	Sum rule ^c
σ_0 [MeV mb]	77.7	79.7	84.4	118. ^d
$\sigma_B [\mathrm{mb}]$	1.94	2.08	2.32	2.60

^aEquation (1) with |Q| = 19.8139 MeV, $\sigma_c = 61.82$ mb, a = 4.300, and b = 1.756 for ⁴He(γ , p)³H, and |Q| = 20.5776 MeV, $\sigma_c = 31.38$ mb, a = 3.651, and b = 1.583 for ⁴He(γ , n)³He.

^{51.36} Inb, a = 5.051, and b = 1.565 for $\operatorname{He}(\gamma, n)$ He. ^bEquation (1) with |Q| = 19.8139 MeV, $\sigma_c = 19.5$ mb, a = 3.5, and b = 1.0 for ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$, and |Q| = 20.5776 MeV, $\sigma_c = 17.1$ mb, a = 3.5, and b = 1.0 for ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$.

The functions derived by fitting Eq. (1) to the data obtained at AIST [36] in $E_{\gamma} \leq 29.8$ MeV are modified at higher energies so that the energy-weighted integrals satisfy two sum rules; Eq. (1) with $\sigma_c = 21.0$ mb, a = 1.68, and b = 1.88 for ${}^{4}\text{He}(\gamma, p){}^{3}\text{H}$, and $\sigma_c = 16.8$ mb, a = 1.41, and b = 1.73 for ${}^{4}\text{He}(\gamma, n){}^{3}\text{He}$ (for $E_{\gamma} \leq 29.8$ MeV) and $\sigma(E_{\gamma}) = 2.65 \text{ mb}(E_{\gamma}/29.8 \text{ MeV})^{-5/2}$ (for $E_{\gamma} > 29.8$ MeV).

^dValue derived from $\sigma_0 = 59.7(1 + \kappa)$ with $\kappa \approx 1$ [51–54].

models of our recommended fit, i.e., Eqs. (2) and (3), the fit with all data adopted in this study, and the standard fit [11] lead to values smaller than the sum rules, i.e., $\sigma_0 = 59.7(1 + \kappa)$ MeV mb with $\kappa \approx 1$ for the TRK sum rule and $\sigma_B = 2.60 \pm 0.01$ mb for the bremsstrahlung sum rule. We expect that the model using Eqs. (2) and (3) is closer to the lower limit of true cross sections in consideration of two sum rules.

In addition to the three models in the second, third, and fourth columns in Table I mentioned above, we make another new fitting function of the cross sections so that the energy-weighted integrals satisfy the two sum rules: As for low-energy cross sections at $E_{\gamma} \leq 30$ MeV, we fit the experimental data [36] measured by using quasimonochromatic laser-Compton photon beams at AIST. At higher energy $E_{\gamma} \gtrsim 30$ MeV, we assume a simple energy dependence $\sigma(E_{\gamma}) = \sigma_C(E_{\gamma}/29.8 \text{ MeV})^{-N/2}$. Resultant parameters are $\sigma_c = 2.65$ mb and N = 5. In this new model where we require the sum rules, the constructed cross sections are typically ≥ 2 times larger than our recommended ones at 50 MeV $\leq E_{\gamma} \leq 135$ MeV, where the upper limit is the meson mass. Both the TRK sum rule and bremsstrahlung sum rule do not apply to such high energies $E_{\gamma} \gtrsim 135$ MeV because new degrees of freedom of mesons as well as nucleons play an important role, and the above two sum rules break down. We can expect that the constructed cross sections, which satisfy the sum rules are, close to the upper limits to the realistic cross sections.

We compare the primordial abundance calculated with new cross sections, which satisfy the sum rules and that of our recommended cross sections. In Fig. 7 thick solid and dashed lines correspond to the results with our recommended and new cross sections of ⁴He photodisintegration, respectively. The dark and light gray regions above the solid and dashed contour lines and below the nucleosynthesis plus CMB constraints are the allowed region, where the abundant ⁶Li is produced. The ⁶Li production occurs more efficiently in the case with larger cross sections than with smaller ones. This is because the ⁴He destruction is more effective for larger cross sections at higher energies so that the more abundant energetic mass 3 nuclides that synthesize ⁶Li are produced. For this reason the ⁶Li abundance produced by using the large ⁴He-photodisintegration cross sections, which satisfy the sum rules, are presumed to be a maximum yield from the viewpoint of nuclear structure physics. The allowed region of the properties of relic *X* particle in the (τ_X , ζ_X) plane, therefore, should not move even below the light gray region in Fig. 7, and we expect that the reality is located between the dark and light gray regions.

However, it has been known that σ_0 highly depends on various effects of residual interactions among nucleons such as the meson-exchange currents [55], the tensor correlations [51,52], the short-range interactions [53], and so on. In the case of ⁴He, the calculated values of σ_0 , which were integrated out up to $E_{\gamma} \sim 135$ MeV, have uncertainty

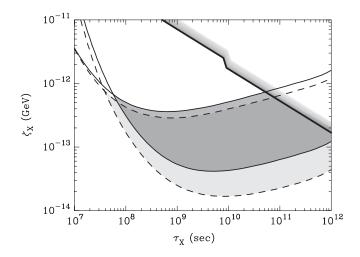


FIG. 7. Contours in the (τ_X, ζ_X) plane corresponding to the adopted constraints for the primordial abundances in the calculation with our recommended cross sections of ⁴He photodisintegration (thick lines) and those satisfying sum rules (dashed lines). The adopted abundance constraints on light elements are the same as those in Fig. 4. The dark (for our recommended cross sections) and light (for larger ones) gray regions above the solid and dashed contour lines, respectively, and below the nucleosynthesis plus CMB constraints are the allowed region where abundant ⁶Li is produced.

of more than $\pm 10\%$, depending on the nucleon-nucleon potentials and the nuclear models for the ground state of ⁴He [53,54,56,57]. In summary, both the existing experimental data and the theoretical calculations for the ⁴He photodisintegration cross section in the energy range up to ~135 MeV contain large uncertainties, and therefore a precise measurement of the ⁴He photodisintegration cross section at $E_{\gamma} \geq 30$ MeV is highly desirable. Comprehensive theoretical study of the nuclear structure and reactions of ⁴He are also necessary in order to clarify many unresolved nuclear effects and also refine the applicability of an empirical formula such as Eq. (1). These nuclear physics studies would be important to constrain the lifetime and the abundance of long-lived relic X particle more precisely.

IV. SUMMARY AND OUTLOOK

A recent measurement of ⁴He photodisintegration reactions, ⁴He(γ , p)³H and ⁴He(γ , n)³He with laser-Compton photons shows lower cross sections at low energies than those estimated by other previous experiments. We studied the sensitivity of nonthermal BBN of all light elements D, T, ³He, ⁴He, ⁶Li, ⁷Li, and ⁷Be to the photodisintegration cross section of ⁴He.

The change of cross sections of ⁴He photodisintegration has an influence on the nonthermal yields of light elements, D, ³He, and ⁴He, which are related to the photodisintegration cross sections at low energy (~ 30 MeV). The upper limit of allowed regions of the *X*-abundance parameter ζ_X for these light nuclei shifts upward by ~300 - 30% for $\tau_X = 10^6 - 10^{10}$ s for this change of the cross sections. This arises from the upshift of ³He abundance contour (See Fig. 4). On the other hand, the nonthermal ⁶Li production is not very sensitive to the change of cross sections at low energy, since the nonthermal secondary synthesis of ⁶Li needs energetic photons of $E_{\gamma} \gtrsim 50$ MeV.

The nonthermal nucleosynthesis triggered by the radiative particle decay is one of candidates of the production mechanism of ⁶Li observed in MPHSs. In the interesting parameter region of $10^8 \text{ s} \leq \tau_X \leq 10^{12} \text{ s}$ and $5 \times 10^{-14} \text{ GeV} \leq \zeta_X \leq 5 \times 10^{-13} \text{ GeV}$, which satisfies the ⁶Li production above the abundance level observed in MPHSs, the lowering of the photodisintegration cross sections at low energy $E_{\gamma} \leq 30 \text{ MeV}$ as measured in the recent experiment using laser-Compton photons leads to ~10% reduction of resulting ³He abundance, whereas the ⁶Li abundance does not change for the change of the cross sections of ⁴He(γ , p)³H and ⁴He(γ , n)³He.

Let us briefly discuss other impacts of such a precise cross section measurement. Clarifying the effects of photodisintegrations of ⁴He will affect more strongly the ν process in core-collapse supernova (SN) explosions through the neutrino-nucleus interactions specifically of $\nu + {}^{4}$ He. The weak transition rates for 4 He(ν, ν'), ${}^{4}\text{He}(\nu_{e}, e^{-})$, and ${}^{4}\text{He}(\bar{\nu}_{e}, e^{+})$ are determined similarly to the giant electric dipole resonance observed in the photodisintegrations with the help of theoretical calculation [58]. In fact, several experiments of measuring the ⁴He photodisintegration cross sections [36] were carried out for this purpose. The precise knowledge of the ${}^{4}\text{He}(\nu, \nu' p)$, $(\nu, \nu' n), (\nu_e, e^- p), \text{ and } (\bar{\nu}_e, e^+ n) \text{ cross sections is required}$ to determine the unknown parameters for neutrino oscillations through the Mikheyev-Smirnov-Wolfenstein effect on the ⁷Li and ¹¹B production triggered by the ν + ⁴He reactions [59,60]. The energy range $E_{\nu} = 10-25$ MeV is very important for the ν -process nucleosynthesis in SNe. The mean neutrino energy of SN neutrinos is presumed to be about 10-25 MeV in numerical simulations of the neutrino transfer in core-collapse SNe, and the threshold energies for all neutrino-induced spallation reactions of ⁴He are ~ 20 MeV. Therefore, the difference between the newly measured [36] and previous ⁴He photodisintegration cross sections at 20 MeV $\leq E_{\gamma} \leq$ 30 MeV could be critical. As a result, the absolute yields of ⁷Li and ¹¹B produced in the ν process in core-collapse SNe would be different from one another, depending on the assumed ν -process reaction rates as demonstrated theoretically [58,61], although the ratio of ${}^{7}\text{Li}/{}^{11}\text{B}$ does not change largely.

Another recent focus of photodisintegration of ⁴He is on the mechanism of the core-collapse SNe. Most SN simulations still do not succeed in the SN explosion in spite of detailed numerical studies of the neutrino transfer calculations inside the core. Haxton [62] proposed that the neutrino-induced excitations of ⁴He and heavier nuclei could deposit extra energy to the ejected materials and revive the shockwave, which motivated a recent theoretical study on the role of ⁴He spallation reactions in the corecollapse SNe [63]. His theoretical suggestion also motivated recent experimental studies of photodisintegrations of ⁴He [36] in order to estimate the neutrino-induced reaction cross sections for ⁴He(ν , ν'), ⁴He(ν_e , e^-), and ⁴He($\bar{\nu}_e$, e^+).

As such, it is important and even critical to study the ${}^{4}\text{He}(\gamma, p)$ and ${}^{4}\text{He}(\gamma, n)$ reactions precisely for the discussions of the problem of SN-neutrino oscillation and SN explosion as well as the cosmological discussion concerning the BBN with a radiative decay of long-lived relic particles.

ACKNOWLEDGMENTS

This work has been supported in part by the Mitsubishi Foundation, the Grant-in-Aid for Scientific Research under Contract Nos. 17540275 and 20244035 of the Ministry of Education, Science, Sports and Culture of Japan, and the JSPS Core-to-Core Program, International Research Network for Exotic Femto Systems (EFES). M. K. acknowledges the support by JSPS Grant-in-Aid under Contract No. 18.11384.

- D. N. Spergel *et al.* (WMAP Collaboration), Astrophys. J. Suppl. Ser. **148**, 175 (2003).
- [2] D. N. Spergel *et al.* (WMAP Collaboration), Astrophys. J. Suppl. Ser. **170**, 377 (2007).
- [3] S. G. Ryan, T. C. Beers, K. A. Olive, B. D. Fields, and J. E. Norris, Astrophys. J. 530, L57 (2000).
- [4] J. Melendez and I. Ramirez, Astrophys. J. 615, L33 (2004).
- [5] M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas, and V. V. Smith, Astrophys. J. 644, 229 (2006).
- [6] S. Inoue, W. Aoki, T. K. Suzuki, S. Kawanomoto, A. E. García-Pérez, S. G. Ryan, and M. Chiba, IAU Symposium / Symp-Int.Astron.Union 228, 59 (2005).
- [7] R. Cayrel et al., Astron. Astrophys. 473, L37 (2007).
- [8] K. Jedamzik, Phys. Rev. D 74, 103509 (2006).
- [9] K. Jedamzik, Phys. Rev. Lett. 84, 3248 (2000).
- [10] M. Kawasaki, K. Kohri, and T. Moroi, Phys. Rev. D 63, 103502 (2001).
- [11] R. H. Cyburt, J. Ellis, B. D. Fields, and K. A. Olive, Phys. Rev. D 67, 103521 (2003).
- [12] M. Kusakabe, T. Kajino, and G. J. Mathews, Phys. Rev. D 74, 023526 (2006).
- [13] K. Jedamzik, Phys. Rev. D 70, 063524 (2004).
- [14] K. Jedamzik, Phys. Rev. D 70, 083510 (2004).
- [15] M. Kawasaki, K. Kohri, and T. Moroi, Phys. Rev. D 71, 083502 (2005).
- [16] D. Cumberbatch, K. Ichikawa, M. Kawasaki, K. Kohri, J. Silk, and G. D. Starkman, Phys. Rev. D 76, 123005 (2007).
- [17] In a parameter region of $\tau_X \sim 3 \times 10^6$ s and $\zeta_X \sim 10^{-9}$ GeV, ⁶Li and ⁷Li problems seem to be fixed [11,12,18], where the ⁷Li abundance decreases because of ⁷Be destruction by a primary ⁷Be(γ , ³He)⁴He reaction. It is, however, found that in this parameter region where ⁷Li abundance decreases by photodissociation to the level of the ⁷Li plateau, either the D abundance was too low or the number ratio ³He/D was too large. This is absolutely excluded in light of standard stellar evolution and chemical evolution [18].
- [18] J. R. Ellis, K. A. Olive, and E. Vangioni, Phys. Lett. B 619, 30 (2005).
- [19] O. Richard, G. Michaud, and J. Richer, Astrophys. J. 619, 538 (2005).
- [20] D. L. Lambert, AIP Conf. Proc. 743, 206 (2004).
- [21] M. Pospelov, Phys. Rev. Lett. 98, 231301 (2007).
- [22] K. Hamaguchi et al., Phys. Lett. B 650, 268 (2007).
- [23] R. H. Cyburt *et al.*, J. Cosmol. Astropart. Phys. 11 (2006) 014.
- [24] K. Kohri and F. Takayama, Phys. Rev. D 76, 063507 (2007).
- [25] C. Bird, K. Koopmans, and M. Pospelov, Phys. Rev. D 78, 083010 (2008).
- [26] M. Kusakabe, T. Kajino, R. N. Boyd, T. Yoshida, and G. J. Mathews, Phys. Rev. D 76, 121302(R) (2007).
- [27] M. Kusakabe, T. Kajino, R. N. Boyd, T. Yoshida, and G. J. Mathews, Astrophys. J. 680, 846 (2008).
- [28] M. Kawasaki, K. Kohri, and T. Moroi, Phys. Lett. B 649, 436 (2007).
- [29] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D 78, 065011 (2008).

- [30] T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, and M. Yamanaka, Phys. Rev. D 76, 125023 (2007).
- [31] T. Jittoh, K. Kohri, M. Koike, J. Sato, T. Shimomura, and M. Yamanaka, Phys. Rev. D 78, 055007 (2008).
- [32] K. Jedamzik, Phys. Rev. D 77, 063524 (2008).
- [33] K. Jedamzik, J. Cosmol. Astropart. Phys. 03 (2008) 008.
- [34] M. Pospelov, arXiv:0712.0647.
- [35] M. Pospelov, J. Pradler, and F.D. Steffen, J. Cosmol. Astropart. Phys. 11 (2008) 020.
- [36] T. Shima et al., Phys. Rev. C 72, 044004 (2005).
- [37] S. Nakayama et al., Phys. Rev. C 76, 021305(R) (2007).
- [38] T. Yamagata et al., Phys. Rev. C 74, 014309 (2006).
- [39] T. Kii, T. Shima, T. Baba, and Y. Nagai, Nucl. Instrum. Methods Phys. Res., Sect. A 552, 329 (2005).
- [40] T. Shima et al. (unpublished).
- [41] A.N. Gorbunov, Phys. Lett. 27B, 436 (1968).
- [42] Yu. M. Arkatov et al., Sov. J. Nucl. Phys. 19, 598 (1974).
- [43] C. K. Malcom, D. V. Webb, Y. M. Shin, and D. M. Skopik, Phys. Lett. 47B, 433 (1973).
- [44] M. Kawasaki and T. Moroi, Astrophys. J. 452, 506 (1995).
- [45] R. J. Protheroe, T. Stanev, and V. S. Berezinsky, Phys. Rev. D 51, 4134 (1995).
- [46] V.S. Berezinskii, S.V. Bulanov, V.A. Dogiel, V.L. Ginzburg, and V.S. Ptuskin, *Astrophysics of Cosmic Rays*, edited by V.S. Verezinskii and V.L. Ginzburg (North-Holland, New York, 1990).
- [47] T. M. Bania, R. T. Rood, and D. S. Balser, Nature (London) 415, 54 (2002).
- [48] K. Lodders, Astrophys. J. 591, 1220 (2003).
- [49] W. M. Yao *et al.* (Particle Data Group), J. Phys. G 33, 1 (2006).
- [50] E. Borie and G. A. Rinker, Phys. Rev. A 18, 324 (1978).
- [51] K. Okamoto and K. Hasegawa, Prog. Theor. Phys. 28, 137 (1962).
- [52] A. Arima, G. E. Brown, H. Hyuga, and M. Ichimura, Nucl. Phys. A205, 27 (1973).
- [53] D. Gazit, N. Barnea, S. Bacca, W. Leidemann, and G. Orlandini, Phys. Rev. C 74, 061001(R) (2006).
- [54] W. T. Weng, T. T. S. Kuo, and G. E. Brown, Phys. Lett. 46B, 329 (1973).
- [55] M. Gari and H. Hebach, Phys. Lett. 49B, 29 (1974).
- [56] M. Fink, M. Gari, and H. Hebach, Phys. Lett. 49B, 20 (1974).
- [57] I. Elminyawi and J.S. Levinger, Phys. Rev. C 28, 82 (1983).
- [58] T. Suzuki, S. Chiba, T. Yoshida, T. Kajino, and T. Otsuka, Phys. Rev. C 74, 034307 (2006).
- [59] T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura, and D.H. Hartmann, Phys. Rev. Lett. 96, 091101 (2006).
- [60] T. Yoshida, T. Kajino, H. Yokomakura, K. Kimura, A. Takamura, and D. H. Hartmann, Astrophys. J. 649, 319 (2006).
- [61] T. Yoshida et al., Astrophys. J. 686, 448 (2008).
- [62] W.C. Haxton, Phys. Rev. Lett. 60, 1999 (1988).
- [63] N. Ohnishi, K. Kotake, and S. Yamada, Astrophys. J. 641, 1018 (2006).
- [64] B. Nilsson et al., Phys. Rev. C 75, 014007 (2007).