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The string inspired tachyon field can serve as a candidate of dark energy. Its equation of state parameter

w varies from 0 to �1. In the case of tachyon field potential Vð�Þ ! 0 slower (faster) than 1=�2 at

infinity, dark energy (dark matter) is a late time attractor. We investigate the tachyon dark energy models

under the assumption that w is close to�1. We find that all the models exhibit unique behavior around the

present epoch which is exactly the same as that of the thawing quintessence.
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I. INTRODUCTION

One of the most challenging problems of modern cos-
mology is associated with late time acceleration of the
Universe which is supported by observations of comple-
mentary nature. According to the standard lore, an exotic
perfect barotropic fluid with large negative pressure
dubbed dark energy can account for a repulsive effect
causing acceleration [1–3]. The simplest example of dark
energy is provided by the cosmological constant �. The
model is consistent with observation but is plagued with
difficult theoretical issues. The field theoretic understand-
ing of � is far from being satisfactory and its small
numerical values give rise to problems of fine-tuning and
coincidence. A variety of scalar field models including
quintessence, tachyons, phantoms, and K-essence has
been investigated in recent years to address the problem
[2,4,5]. These models have some advantage over the cos-
mological constant: (i) They can mimic the cosmological
constant at the present epoch and can give rise to other
observed values of the equation of state parameter w
(recent data indicate that w lies in a narrow strip around
w ¼ w� ¼ �1 and is consistent with being below this
value). (ii) They can alleviate the fine-tuning and coinci-
dence problems.

The scalar field model, which is the simplest general-
ization of the cosmological constant, is one with a linear
potential [6]. This model starts with a cosmological
constant-like behavior where the scalar field is frozen
initially due to Hubble damping. Later on, it starts rolling,
but because the potential has no minimum, it leads to a
collapsing universe in the future. Hence the universe in this
model, has a finite history.

The more complicated scalar field models can broadly
be classified into two categories. Models in which the
scalar field mimics the background (radiation/matter)
being subdominant for most of the evolution history.
Only at late times it becomes dominant and accounts for
the late time acceleration. Such a solution is referred to as

tracker. In this case wð�Þ ’ wb (wb ¼ 0; 1=3) before the
transition from a matterlike regime or scaling regime to
accelerated expansion. Tracker models are independent of
initial conditions used for field evolution but do require the
tuning of the slope of the scalar field potential. During the
scaling regime the field energy density is of the same order
of magnitude as the background energy density.
In the second class of models, trackers are absent. Hence

at early times, the field gets locked (wð�Þ ¼ �1) due to
large Hubble damping and waits for the matter energy
density to become comparable to field energy density
which is made to happen at late times. The field then begins
to evolve toward larger values of wð�Þ starting from
wð�Þ ¼ �1. In this case, for a viable cosmic evolution,
one chooses �� � �� during the locking regime which

requires the tuning of initial conditions of the field. The
two classes of scalar fields are called freezing and thawing
models.
In the case of a standard scalar field (quintessence), there

is a variety of models which possess tracker solutions. In
the case of a tachyon field [7,8] (motivated by string
theory), there exists no solution which can mimic a scaling
matter/radiation regime [9–17]. These models necessarily
belong to the class of thawing models. Tachyon models do
admit scaling solution in the presence of a hypothetical
barotropic fluid with negative equation of state. Tachyon
fields can be classified by the asymptotic behavior of their
potentials for large values of the field: (i) Vð�Þ ! 0 faster
than 1=�2 for� ! 1. In this case dark matterlike solution
is a late time attractor. Dark energy may arise in this case as
a transient phenomenon. (ii) Vð�Þ ! 0 slower than 1=�2

for � ! 1; these models give rise to dark energy as late
time attractor. The two classes are separated by Vð�Þ �
1=�2 which is a scaling potential with wð�Þ ¼ const.
Since observationally, the equation of state parameter of

dark energy is very close to 1, we can use this information
to simplify the dynamics. In the case of thawing quintes-
sence and phantom field, it allows one to obtain a generic
expression for w which represents the entire class of quin-
tessence and phantom models [18,19]. In this paper we
apply the same technique to a tachyon field which belongs
to the class of thawing models. With the current state of
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observation, we address the issue of distinguishing the
tachyon dark energy from the case of quintessence.

II. DYNAMICS OF TACHYON FIELD

In what follows we shall be interested in the cosmologi-
cal dynamics of the tachyon field which is specified by the
Dirac-Born-Infeld (DBI) type of action given by

S ¼
Z

�Vð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �@��@��

q ffiffiffiffiffiffiffi�g
p

d4x; (1)

where on phenomenological grounds, we shall consider a
wider class of potentials satisfying the restriction that
Vð�Þ ! 0 as � ! 1. The parameter � ¼ �1 where the
plus sign corresponds to the normal tachyon field which is
nonphantom whereas, with minus sign, one can model
phantom type tachyon fields phenomenologically. In
Friedman-Robertson-Walker background, the pressure
and energy density of � are given by

p� ¼ �Vð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � _�2

q
; (2)

�� ¼ Vð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� � _�2

q : (3)

The equation of motion which follows from (1) is

€�þ 3H _�ð1� � _�2Þ þ �
V 0

V
ð1� � _�2Þ ¼ 0; (4)

where H is the Hubble parameter

H2 ¼ �� þ �b

3
: (5)

The evolution equation can be cast in the following au-
tonomous form for convenient use:

x0 ¼ �ð1� �x2Þð3x� ffiffiffi
3

p
��yÞ (6)

y0 ¼ y

2

�
� ffiffiffi

3
p

�xy� 3ð�b � �x2Þy2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x2

p þ 3�b

�
(7)

�0 ¼ � ffiffiffi
3

p
�2xy

�
�� 3

2

�
(8)

with

x ¼ _�; y ¼
ffiffiffiffiffiffiffiffiffiffiffi
Vð�Þp
ffiffiffi
3

p
H

;

� ¼ � V�

V3=2
; � ¼ V

V��

V2
�

;

(9)

where the prime denotes the derivative with respect to
lnðaÞ. Here �b is defined as pb ¼ ð�b � 1Þ�b for the
background field. In our subsequent calculations, we shall

assume a nonrelativistic matter for our background field for
which �b ¼ 1.
An important remark on the autonomous system is in

order. Let us consider the inverse power law type potential
Vð�Þ ¼ V0�

n ðn < 0Þ. Equation (9) tells us that �> 3=2 if
n <�2 allowing � to increase monotonously for large

values of the field. In this case _� ! 1 or w ! 0 where
as w approaches the de Sitter limit for n >�2 (�< 3=2).
These two classes of tachyon potentials are separated by
the inverse square potential with constant � (� ¼ 3=2)
which provides the analog of scaling potential in the case
of a tachyon. However, there is a major difference that in
the present case, the field can only mimic a hypothetical
fluid with negative equation of state leading to accelerated
expansion. Unfortunately, the mass scale in the potential
turns out be larger than the Planck mass. The class of
potentials designated by �2< n< 0 is free from this
problem and gives rise to dark energy as a late time
attractor of dynamics. In the analysis to follow, it will be
convenient to use the following quantities:

�� ¼ y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x2

p ; �� ¼ �ð1þ wÞ ¼ �2 _�2; (10)

where w ¼ p�

��
is the equation of state for the tachyon field.

One can now express the autonomous equations through
them:

�0
� ¼ �6��ð1� ���Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3����

q
�ð1� ���Þ5=4

(11)

�0
� ¼ 3��ð1� ���Þð1���Þ (12)

�0 ¼ ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3����

q
�2ð1� ���Þ1=4

�
�� 3

2

�
: (13)

The first two equations can be combined into one by a
change of variable from a ! ��

d��

d��
¼ �0

�

�0
�

¼ �2��ð1� ���Þ
��ð1���Þð1� ���Þ

þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3����

q
�ð1� ���Þ5=4

3��ð1���Þð1� ���Þ : (14)

A. Late time evolution

From Eq. (14), one can see that for nonphantom and
phantom cases, i.e. � ¼ �1, the equation is completely
different and hence one expects to have different evolu-
tions for ��ð��Þ for nonphantom and phantom cases.
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But we are interested in the investigations of cosmologi-
cal dynamics around the present epoch where �� � 1.

Secondly, in our case wð�Þ improves slightly beginning
from the locking regime, thereby, telling us that the slope
of the potential does not change appreciably. This implies
that the potential is very flat around the present epoch such
that

1

V

�
V;�

V

�
2 � 1;

V��

V2
� 1: (15)

In the case of a field domination regime, the two conditions
in Eq. (15) define the slow-roll parameters which allows

one to neglect the €� term in the equation of motion for �.
In the present context, unlike the case of inflation, the
evolution of the field begins in the matter dominated
regime and, even today, the contribution of matter is not
negligible. The traditional slow-roll parameters cannot be
connected to the conditions on the slope and the curvature
of the potential which essentially requires that Hubble
expansion is determined by the field energy density alone.
Thus the slow-roll parameters are not that useful in the case
of late time acceleration, though Eq. (15) can still be
helpful. In view of the aforesaid, we can drop all the terms
of order higher than �� in Eq. (14) and assume that the

slope of the potential is constant � ¼ �0. These follow
from the two slow-roll conditions (15) as we shall show
later. The evolution equation then simplifies to

d��

d��
¼ �2��

��ð1���Þ þ
2�0ffiffiffi
3

p �1=2
�

ð1���Þ
ffiffiffiffiffiffiffiffi
��

q : (16)

Let us note that Eq. (16) is the same as its counterpart in
case of quintessence though the full Eq. (14) is different.
The difference between tachyon and quintessence dynam-
ics is represented by terms of higher order than ��. Thus if

we restrict our investigation of dark energy dynamics very
close to cosmological constant behavior, we cannot distin-
guish tachyon dark energy from quintessence. Also
Eq. (16) is independent of �. Hence (1þ w) for the non-
phantom case and �ð1þ wÞ for the phantom case have
identical evolution around the cosmological constant.

Equation (16) can be transformed into a linear differen-
tial equation with the change of variable s2 ¼ ��, and we

have boundary condition �� ¼ 0 at�� ¼ 0. The resulting

solution expressed in terms of wð�Þ

1þ w ¼ �
�2
0

3

�
1ffiffiffiffiffiffiffiffi
��

q �
�
1

��

� 1

�
tanh�1

ffiffiffiffiffiffiffiffi
��

q �
2

¼ �
�2
0

3

�
1ffiffiffiffiffiffiffiffi
��

q � 1

2

�
1

��

� 1

�
ln

�1þ ffiffiffiffiffiffiffiffi
��

q

1�
ffiffiffiffiffiffiffiffi
��

q
��

2
:

(17)

Under the approximation �� � 1 which is justified

about the present epoch, all the tachyon models follow a
general track irrespective of the particular field potential.
One can see from (17) that 1þ w�Oð�2Þ. Hence the first
slow-roll condition (� � 1) ensures that 1þ w � 1. We
can quantify our second assumption that the slope of the
potential does not change appreciably during the evolution
as �0=� � 1. Noting that �� �2 and also � � 1, one can
then use Eq. (13) to write

V00

V2
� 3

2

V 02

V3
� 1; (18)

together with the first slow-roll condition, this ensures that
the second slow-roll condition is satisfied. We also show in
Fig. 1 the actual behavior of � for different potentials for
the nonphantom case. This also shows � is constant during
the entire evolution for all practical purposes. One also
arrives at the same behavior for the phantom case. In
Figs. 2 and 3 we show our analytical approximation for
wð��Þ in comparison with the numerical solutions of the

exact equations for different potentials with different initial
values for � for nonphantom and phantom cases. They
show that our approximation works reasonably well as
long as �0 is small, i.e. as long as the slow-roll conditions
are satisfied.
Next, we can use Eq. (12) to solve for ��ðaÞ to deter-

mine wðaÞ. Assuming �� � 1, this gives
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FIG. 1 (color online). Behavior of � as a function of scale
factor for different potentials. We have chosen the initial value of
�i ¼ 0:5. The dotted, dashed, and dot-dashed curves correspond
to Vð�Þ ¼ ��1, ��2, and ��3 respectively.
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FIG. 3 (color online). Plot of dark energy equation of state
parameter w versus �� for 0 � �� � 0:7 in the case of differ-

ent values of �0 for the phantom case, i.e. � ¼ �1. The curves
are for the potentials Vð�Þ ¼ ��3 (dot-dashed curve), Vð�Þ ¼
��2 (dashed curve), and Vð�Þ ¼ ��1 (dotted curve). The black
solid line is for our analytical approximation (17). The sets (a),
(b) and (c) are for �0 ¼ 1, 2=3, and 1=2 respectively.
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FIG. 2 (color online). Plot of dark energy equation of state
parameter w versus �� for 0 � �� � 0:7 in the case of differ-

ent values of �0 for the nonphantom case, i.e. � ¼ 1. The curves
are for the potentials Vð�Þ ¼ ��3 (dot-dashed curve), Vð�Þ ¼
��2 (dashed curve), and Vð�Þ ¼ ��1 (dotted curve). The black
solid line is for our analytical approximation (17). The sets (a),
(b), and (c) are for �0 ¼ 1, 2=3, and 1=2 respectively.
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FIG. 4 (color online). Plot of dark energy equation of state
parameter w versus a in the case of different values of �0 for the
nonphantom case, i.e. � ¼ 1. The curves are for the potentials
Vð�Þ ¼ ��3 (dot-dashed curve), Vð�Þ ¼ ��2 (dashed curve),
and Vð�Þ ¼ ��1 (dotted curve). The black solid line is for our
analytical approximation (17) together with (20). The sets (a),
(b), and (c) are for �0 ¼ 1, 2=3, and 1=2 respectively.
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FIG. 5 (color online). Plot of dark energy equation of state
parameter w versus a in the case of different values of �0 for
phantom case, i.e. � ¼ �1. The curves are for the potentials
Vð�Þ ¼ ��3 (dot-dashed curve), Vð�Þ ¼ ��2 (dashed curve),
and Vð�Þ ¼ ��1 (dotted curve). The black solid line is for our
analytical approximation (17) together with (20). The sets (a),
(b), and (c) are for �0 ¼ 1, 2=3, and 1=2 respectively.
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�� ¼ ½1þ ð��1
�0 � 1Þa�3��1; (19)

where ��0 is the present-day value of ��. Equations (17)

and (19) give the complete behavior for the equation of
state wðaÞ for tachyon fields with potentials satisfying the
slow-roll conditions (15). One can also express the parame-
ter �0 in terms of the present-day value w0 of the equation
of state which is quite straightforward. This behaviors are
shown in Figs. 4 and 5 for nonphantom and phantom cases.

Similar to the case of thawing quintessence, nonphan-
tom tachyon models are restricted to a part of the w0-w
plane. To specify the limits, let us define a parameter X

X ¼ �
€�

H _�w
¼ � w0

2wð1þ wÞ ! w0 ¼ �2Xwð1þ wÞ:

Since the Hubble parameter is determined by the matter
dominated regime in the beginning of evolution, we find
that X ¼ �3=2w � 3=2 as w � �1 which leads to the
upper limit, w0 < 3ð1þ wÞ. The lower bound on w0 is
estimated numerically (demanding that at present �� �
0:8) as w0 >�0:8ð1þ wÞ giving rise to the permissible
region of w0-w plane

� 0:8ð1þ wÞ<w0 < 3ð1þ wÞ: (20)

In Fig. 6 we have shown this permissible region together
with the actual behavior for different potentials.

III. OBSERVATIONAL CONSTRAINT

The solution given by Eqs. (17) and (19) for the equation
of state parameter w versus the scale factor a for tachyon
field under slow-roll conditions is exactly similar to that for
a canonical scalar field as obtained earlier in [18,19]. They
have also constrained the two parameters w0 and ��0 of

the model using the SNLS (Supernova Legacy Survey)
[20] and Baryon Acoustic Oscillation (BAO) data [21].
At present, we have the Union08 compilation of the super-
nova type Ia data which contains around 307 data points
[22]. This is world’s published first heterogeneous super-
nova data set containing a large sample of data from SNLS,
the Essence survey, high redshift supernova data from the
Hubble Space telescope, as well as several small data sets.
We use this data set together with the BAO data from SDSS
(Sloan Digital Sky Survey) [21]. The 1� and 2� contour
intervals for our model have been shown in Fig. 7. From the
figure, it is clear that one cannot distinguish the cosmo-
logical constant with a thawing dark energy model with
present data although the phantom dark energy models are
preferred.

IV. CONCLUSIONS

In this paper we have examined the DBI system with a
phenomenologically motivated class of runaway poten-
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FIG. 6 (color online). The graph shows w-w0 phase space
occupied by the fields. The upper bound and the lower bound
correspond to 3ð1þ wÞ and �0:8ð1þ wÞ respectively. The
curves are for the potentials Vð�Þ ¼ ��3 (dot-dashed curve),
Vð�Þ ¼ ��2 (short dashed curve), Vð�Þ ¼ ��1 (dotted curve),
Vð�Þ ¼ ��0:2 (thick curve), and Vð�Þ ¼ ��0:1 (long dashed
curve). The two thin lines represent the upper and lower bound
for the thawing models. The corresponding bounds are also
specified.
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FIG. 7 (color online). Constraints in w0-��0 parameter space
using Union08 compilations of SN data and BAO data. Black
lines (larger contours) are for SN data only while red lines
(smaller contours) are for SNþ BAO data. Solid lines are for
1� contour intervals while dashed lines are for 2� contour
intervals.
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tials. In general, the tachyon dynamics crucially depends
upon the asymptotic behavior of the potential Vð�Þ at large
values of �. The inverse square potential gives rise to
constant equation of state which is determined by the slope
of the potential w ¼ �1þ �2=2. We analyzed the class of
tachyon potentials with dark energy and dark matter as late
time attractors. Models in which Vð�Þ decrease faster than
��2 can give rise to transient dark energy near the top of
the potential and then mimic dark matter as a late time
attractor. Since �� for the tachyon field scales slower than

matter, its energy density for a viable cosmic evolution
should be fixed around �� at earlier epochs allowing the
field to freeze due to large Hubble damping. Thus all three
classes of tachyon models belong to the thawing type. The
data available at present allow one to carry out investiga-
tions around the present epoch with �� � 1. As soon as

�� becomes comparable to matter density, the field begins

to evolve. The equation of state improves slightly starting
from wð�Þ ¼ �1. Hence, the slope of the potential does
not change appreciably, which we confirmed numerically.
In the limit of small adiabatic index of � assuming � to be
constant, we have shown that the resulting evolution equa-
tions are the same as in the case of quintessence, which can
be solved analytically. Our simulation shows that the ap-
proximation is very close to the numerical results for � < 1
around the present epoch. Deviations are possible in the far

future. We therefore conclude that tachyon dynamics is
difficult to distinguish from quintessence at least in the
near future. We also extended our analysis to the case of the
phantom tachyon. Again in the region of interest, we find
that the phantom tachyon model is difficult to distinguish
from the ordinary phantom field. We also constrained the
parameters w0 and ��0 for our model using the latest

supernovae data along with baryon acoustic oscillation
BAO data. Our analysis shows some preference for phan-
tom energy.
The fact that all the scalar field dark energy models have

a unique equation of state as long as they are in the slow-
roll regime makes a strong case for the wðaÞ given by
Eqs. (17) and (19). It does not matter whether the scalar
field has a canonical or noncanonical kinetic term. It is also
the same for nonphantom or phantom scalar fields. We
hope that this equation of state behavior for the dark energy
will be considered seriously while fitting with the obser-
vational data coming from future experiments.
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