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Based upon the rate equations for the photon distribution function obtained in the previous paper, we

study the formal solutions in three different representation forms for the Sunyaev-Zeldovich effect. By

expanding the formal solution in the operator representation in powers of both the derivative operator and

electron velocity, we derive a formal solution that is equivalent to the Fokker-Planck expansion

approximation. We extend the present formalism to the kinematical Sunyaev-Zeldovich effect. The

properties of the frequency redistribution functions are studied. We find that the kinematical Sunyaev-

Zeldovich effect is described by the redistribution function related to the electron pressure. We also solve

the rate equations numerically. We obtain the exact numerical solutions, which include the full-order

terms in powers of the optical depth.
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I. INTRODUCTION

The Sunyaev-Zeldovich (SZ) effect [1–4], which arises
from the Compton scattering of the cosmic microwave
background (CMB) photons by hot electrons in clusters
of galaxies (CG), provides a useful method for studies of
cosmology. For the reviews, for example, see Birkinshaw
[5] and Carlstrom, Holder, and Reese [6]. The original SZ
formula has been derived from the Kompaneets equation
[7] in the nonrelativistic approximation. However, recent
x-ray observations (for example, Tucker et al. [8] and Allen
et al. [9]) have revealed the existence of high-temperature
CG such as kBTe ’ 20 keV. Wright [10] and Rephaeli and
his collaborator [11,12] have done pioneering work includ-
ing the relativistic corrections to the SZ effect for the CG.

In the last ten years remarkable progress has been made
in theoretical studies of the relativistic corrections to the
SZ effects for the CG. Stebbins [13] generalized the
Kompaneets equation. Challinor and Lasenby [14] and
Itoh, Kohyama, and Nozawa [15] have adopted a relativ-
istically covariant formalism to describe the Compton
scattering process and have obtained higher-order relativ-
istic corrections to the thermal SZ effect in the form of
the Fokker-Planck approximation. Nozawa, Itoh, and
Kohyama [16] have extended their method to the case
where the CG is moving with a peculiar velocity with
respect to the CMB and have obtained the relativistic
corrections to the kinematical SZ effect. Their results
were confirmed by Challinor and Lasenby [17] and also
by Sazonov and Sunyaev [18,19]. Itoh, Nozawa, and
Kohyama [20] have also applied the covariant formalism
to the polarization SZ effect [3,4]. Itoh and his collabora-
tors (including the present authors) have done extensive

studies on the SZ effects, which include the double scat-
tering effect [21], the effect of the motion of the observer
[22], high precision analytic fitting formulae to the direct
numerical integrations [23,24] and high precision calcula-
tions [25,26]. The importance of the relativistic corrections
is also exemplified through the possibility of directly
measuring the cluster temperature using purely the SZ
effect [27].
On the other hand, the SZ effect in the CG has been

studied also for the nonthermal distributions by several
groups [28–30]. The nonthermal distribution functions,
for example, the power-law distributions, have a long tail
in high electron energy regions. Therefore the relativistic
corrections for the SZ effect could be more important than
the thermal distribution.
The relativistic SZ effect has been studied in several

different approaches. Wright [10] and Rephaeli [11] calcu-
lated the photon frequency redistribution function in the
electron rest frame using the scattering probability derived
by Chandrasekhar [31], which is called Wright’s method in
the present paper. Another approach is the relativistic
generalization of the Kompaneets equation [7], where the
relativistically covariant Boltzmann collisional equation is
solved for the photon distribution function. This approach
was used by Challinor and Lasenby [14] and Itoh,
Kohyama, and Nozawa [15], which is called the covariant
formalism in the present paper. Although the two are very
different approaches, the obtained results for the SZ effect
agreed extremely well. This has been a long-standing
puzzle in the field of the relativistic study of the SZ effect
for the last ten years.
Very recently, Shimon and Rephaeli [32], Boehm and

J. Lavalle [33] and Nozawa and Kohyama [34] (denoted
NK hereafter) discussed the equivalence between different
approaches. In particular, NK showed that Wright’s*snozawa@josai.ac.jp
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method and the covariant formalism were indeed mathe-
matically equivalent in the approximation of the Thomson
limit, which is fully valid for the CMB photon energies.
This explained the reason why the two different ap-
proaches produced same results for the SZ effect even in
the relativistic energies for electrons. Thus, NK clarified
the situation of the long-standing puzzle.

The third method for the study of the SZ effect is the
direct numerical integration of the rate equation of the
photon spectral distortion function. The first-order calcu-
lation in powers of the optical depth � was done by Itoh,
Kohyama, and Nozawa [15] for � � 1. The exact calcu-
lation which includes the full-order terms in powers of �
was done by Dolgov et al. [35] for � � 1. The rate
equation in the present formalism is expressed in the
form that is suitable to the direct numerical calculation.
In the present paper, we solve the rate equations numeri-
cally, and show the exact numerical solutions.

In the present paper, we explore the formal solutions for
the rate equations in the following representation forms:
the multiple scattering representation [34], operator repre-
sentation [36], and Fourier transform representation [37].
In particular, we show that these representation forms are
identical. With the operator representation form, we derive
a formal solution that is equivalent to the formal solution
obtained by the Fokker-Planck expansion approximation.

The present paper is organized as follows. Starting from
the rate equations derived in the NK paper, we derive in
Sec. II the formal solutions of the rate equations for the SZ
effect. In Sec. III, the present formalism is extended to the
case which includes the peculiar velocity of the CG. In
Sec. IV, we solve the rate equations numerically, and obtain
exact numerical solutions for the thermal SZ effect and
kinematical SZ effect. The numerical solutions for the
nonthermal electron distributions are also presented in
Sec. IV. Finally, concluding remarks are given in Sec. V.

II. FORMAL SOLUTIONS FOR THE THERMAL
SUNYAEV-ZELDOVICH EFFECT

A. Rate equations

In the NK paper, it was shown that the covariant formal-
ism [15] and Wright’s method [10] were mathematically
equivalent in the approximation �!=m � 1 which is fully

valid for the CMB photon energies !, where � ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, �, and m are the velocity and rest mass of

the electron, respectively. The two formalisms were con-
nected to each other by the Lorentz transformations for the
zenith angles. Readers may be referred to the NK paper
[34] for the details. In the present paper, we use the
expression in Wright’s method for the photon frequency
redistribution function, which was derived in the NK paper.

In the present section, we consider the case that both the
CG and observer are fixed to the CMB frame. As a refer-
ence system, we choose the system that is fixed to the

CMB. (Three frames are identical in the present case.)
Throughout this paper, we use the natural unit @ ¼ c ¼
1, unless otherwise stated explicitly.
The rate equations for the photon distribution function

nðxÞ and the spectral intensity function IðxÞwere derived in
the NK paper, where x ¼ !=kBTCMB is the photon energy
in units of the thermal energy of the CMB. We recall the
results here to make the present paper more self-contained.
They are given as follows [34]:

@nðxÞ
@�

¼
Z 1

�1
dsP1ðsÞ½nðesxÞ � nðxÞ�; (1)

@IðxÞ
@�

¼
Z 1

�1
dsP1ðsÞ½Iðe�sxÞ � IðxÞ�; (2)

d� ¼ ne�Tdt; (3)

where IðxÞ ¼ I0x
3nðxÞ, I0 ¼ ðkBTCMBÞ3=2�2, ne is the

electron number density, �T is the Thomson scattering
cross section. In Eqs. (1) and (2), P1ðsÞ is the redistribution
function for photon of a frequency shift s, which is defined
by es ¼ x0=x,

P1ðsÞ ¼
Z 1

�min

d��2�5 ~peðEÞPðs; �Þ; (4)

Pðs; �Þ ¼ es

2��4

Z �2ðsÞ

�1ðsÞ
d�0

1

ð1� ��0Þ2
fð�0; �

0
0Þ; (5)

fð�0; �
0
0Þ ¼

3

8

�
1þ�2

0�
02
0 þ 1

2
ð1��2

0Þð1��02
0 Þ
�
; (6)

where ~peðEÞ � m3peðEÞ is the electron distribution func-
tion of a momentum p which is normalized byR1
0 dpp2peðEÞ ¼ 1. The total probability is

Z 1

�1
dsP1ðsÞ ¼ 1: (7)

Variables appearing in Eqs. (4)–(6) are summarized as
follows:

�min ¼ ð1� e�jsjÞ=ð1þ e�jsjÞ; (8)

�0
0 ¼ ½1� esð1� ��0Þ�=�; (9)

�1ðsÞ ¼
��1 for s � 0
½1� e�sð1þ �Þ�=� for s > 0

; (10)

�2ðsÞ ¼
� ½1� e�sð1� �Þ�=� for s < 0
1 for s � 0

: (11)

It should be noted that the following useful relations

Pðs; �Þe�3s ¼ Pð�s; �Þ; P1ðsÞe�3s ¼ P1ð�sÞ (12)

were used in deriving Eq. (2).

SATOSHI NOZAWA, YASUHARU KOHYAMA, AND NAOKI ITOH PHYSICAL REVIEW D 79, 123007 (2009)

123007-2



B. Formal solutions

In the present section, we explore the formal solutions of
the rate equations of Eqs. (1) and (2) in the following
representation forms: the multiple scattering representa-
tion, operator representation, and Fourier transform
representation. In particular, we show that these represen-
tation forms are identical.

First, it is familiar to express the formal solutions in the
multiple scattering representation. They are given, for
example, in the NK paper [34] as follows:

nðxÞ ¼
Z 1

�1
dsPðsÞn0ðesxÞ; (13)

IðxÞ ¼
Z 1

�1
dsPðsÞI0ðe�sxÞ; (14)

where n0ðxÞ and I0ðxÞ are the initial functions at � ¼ 0. In
Eqs. (13) and (14), PðsÞ is expressed by

PðsÞ ¼ e��
X1
j¼0

�j

j!
PjðsÞ; (15)

P0ðsÞ ¼ �ðsÞ; (16)

PjðsÞ ¼
Z 1

�1
ds1P1ðs1Þ � � �

Z 1

�1
dsj�1P1ðsj�1Þ

	 P1

�
s� Xj�1

i¼1

si

�
; (17)

where PjðsÞ is the redistribution function for the multiple

scattering of the j-th order.
Next, let us derive the formal solutions in the operator

representation. This method has an advantage that not only
the solution can be expressed in a concise form but also it is
useful to study relations between different methods. We
write the following useful operator identity introduced by
Bernstein and Dodelson [36]:

e�DfðxÞe��D ¼ fðe�xÞ; (18)

D � x
@

@x
; (19)

where � is a number and fðxÞ is an arbitrary function of x.
Note that the e��D factor goes to 1 since the derivative has
nothing to act on. It is important to understand the physical
meaning of the operator D. Inserting � ¼ s and fðxÞ ¼ x
into Eq. (18), one finds

esDxe�sD ¼ esx ¼ x0; (20)

where the definition of s (es ¼ x0=x) was used. Therefore,
the operator D is nothing but the shift operator for x in the
present (Wright’s) formalism.

Introducing an operator Oð
DÞ by

O ð
DÞ �
Z 1

�1
dsP1ðsÞe
sD � 1; (21)

and inserting into Eqs. (1) and (2), one obtains

@nðxÞ
@�

¼ OðDÞnðxÞ; (22)

@IðxÞ
@�

¼ Oð�DÞIðxÞ; (23)

where Eqs. (7) and (18) were used in the derivation. Thus,
the following formal solutions in the operator representa-
tion are obtained:

nðxÞ ¼ e�OðDÞn0ðxÞ; (24)

IðxÞ ¼ e�Oð�DÞI0ðxÞ: (25)

It should be noted that Eqs. (22) and (23) require the
following condition for OðDÞ:

x3OðDÞ ¼ Oð�DÞx3: (26)

In the present case, Eq. (26) is guaranteed to be valid by
Eq. (12).
We now show that Eqs. (24) and (25) are identical to

Eqs. (13) and (14), respectively. Let us start with Eq. (24)
as follows:

nðxÞ ¼ exp

�
�

�Z 1

�1
dsP1ðsÞesD � 1

��
n0ðxÞ;

¼ e��
X1
j¼0

�j

j!

�Z 1

�1
dsP1ðsÞesD

�
j
n0ðxÞ: (27)

Applying the identity of Eq. (18), the j-th order term (j �
1) can be rewritten as
�Z 1

�1
dsP1ðsÞesD

�
j
n0ðxÞ

¼
Z 1

�1
ds1P1ðs1Þ � � �

Z 1

�1
dsjP1ðsjÞn0ðes1þ���þsjxÞ;

¼
Z 1

�1
ds1P1ðs1Þ � � �

Z 1

�1
dsP1

�
s� Xj�1

i¼1

si

�
n0ðesxÞ;

¼
Z 1

�1
dsPjðsÞn0ðesxÞ: (28)

Inserting Eq. (28) into Eq. (27), one finally obtains
Eq. (13). Thus, it has been shown that Eq. (24) is identical
to Eq. (13). The equivalence between Eqs. (14) and (25)
can be also shown in a similar manner.
Let us now derive the third formal solutions for the rate

equations. The Fourier transform representation was intro-
duced by Taylor and Wright [37], where the redistribution
function was derived in their Eq. (28). Consider the Fourier
transform for PðsÞ of Eq. (15) as follows:
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�PðkÞ �
Z 1

�1
dsPðsÞe�iks;

¼ e��
X1
j¼0

�j

j!

Z 1

�1
dsPjðsÞe�iks: (29)

Using Eq. (17), the j-th order term in Eq. (29) is written by

Z 1

�1
dsPjðsÞe�iks

¼
Z 1

�1
ds1P1ðs1Þ � � �

Z 1

�1
dsjP1ðsjÞe�ikðs1þ���þsjÞ;

¼
�Z 1

�1
dsP1ðsÞe�iks

�
j
: (30)

Inserting Eq. (30) into Eq. (29), one finally obtains the
Fourier transform

�PðkÞ ¼ e�½ �P1ðkÞ�1�; (31)

�P 1ðkÞ �
Z 1

�1
dsP1ðsÞe�iks: (32)

The inverse Fourier transform for �PðkÞ is

PðsÞ ¼ 1

2�

Z 1

�1
dke�½ �P1ðkÞ�1�eiks: (33)

Inserting Eq. (33) into Eq. (13), one obtains

nðxÞ ¼ 1

2�

Z 1

�1
dke�½ �P1ðkÞ�1� Z 1

�1
dseiksn0ðesxÞ;

¼
Z 1

�1
dke�½ �P1ðkÞ�1��ðk� iDÞn0ðxÞ;

¼ e�½ �P1ðiDÞ�1�n0ðxÞ; (34)

where the operator identity of Eq. (18) was used in the
derivation. Thus, the formal solution for nðxÞ in the Fourier
transform representation has been obtained. Similarly, the
formal solution for IðxÞ is also obtained as follows:

IðxÞ ¼ e�½ �P1ð�iDÞ�1�I0ðxÞ: (35)

Here, we show that Eqs. (34) and (35) are identical to
Eqs. (24) and (25), respectively. In deriving Eq. (34), we
found that �ðk� iDÞ was valid. By putting

kD � iD; (36)

and inserting into Eq. (21), one obtains

Oð
DÞ ¼
Z 1

�1
dsP1ðsÞe�ikDs � 1;

¼ �P1ð
kDÞ � 1;

¼ �P1ð
iDÞ � 1; (37)

where Eq. (32) was used in the derivation. Inserting
Eq. (37) into Eqs. (24) and (25), one finally obtains
Eqs. (34) and (35). Thus, the equivalence between the
operator representation and Fourier transform representa-

tion has been shown. Hence, the three representation forms
are identical.

C. Fokker-Planck expansion approximation

Using the operator representation method, we explore
the relation of the formal solutions between the Fokker-
Planck expansion approximation and the present method.
For simplicity, we restrict ourselves to the SZ effect in the
present paper, however, the extension to the kinematical
SZ effect is straightforward.
In Itoh, Kohyama, and Nozawa [15] (denoted by IKN

hereafter), the rate equation for the photon distribution
function was expressed by their Eqs. (2.10)–(2.21) in the
Fokker-Planck expansion approximation. Keeping the
leading-order terms, the rate equation is reexpressed as
follows:

@nðxÞ
@�

¼
�
x
@

@x
I1 þ x2

@2

@x2
I2 þ x3

@3

@x3
I3 þ x4

@4

@x4
I4

þ x5
@5

@x5
I5 þ x6

@6

@x6
I6 þ x7

@7

@x7
I7

þ x8
@8

@x8
I8 þ x9

@9

@x9
I9 þ x10

@10

@x10
I10

�
nðxÞ; (38)

where I1; I2; . . . I10 are defined by Eqs. (2.12)–(2.21) of the
IKN paper. The explicit forms are

I1 ¼ 4	e þ 10	2e þ 15

2
	3e � 15

2
	4e þ 135

32
	5e; (39)

I2 ¼ 	e þ 47

2
	2e þ 1023

8
	3e þ 2505

8
	4e þ 30375

128
	5e; (40)

I3 ¼ 42

5
	2e þ 868

5
	3e þ 7098

5
	4e þ 62391

10
	5e; (41)

I4 ¼ 7

10
	2e þ 329

5
	3e þ 14253

10
	4e þ 614727

40
	5e; (42)

I5 ¼ 44

5
	3e þ 18594

35
	4e þ 124389

10
	5e; (43)

I6 ¼ 11

30
	3e þ 12059

140
	4e þ 355703

80
	5e; (44)

I7 ¼ 128

21
	4e þ 16568

21
	5e; (45)

I8 ¼ 16

105
	4e þ 7516

105
	5e; (46)

I9 ¼ 22

7
	5e; (47)

I10 ¼ 11

210
	5e; (48)
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where x ¼ !=kBTCMB and 	e ¼ kBTe=mc2. It should be
noted as follows: In Eqs. (2.12)–(2.21) of the IKN paper,
terms not appearing in Eqs. (39)–(48) are OðTCMB=TeÞ �
1, therefore, they are safely neglected.

We now rewrite the rate equation of Eq. (38) in terms of
the operatorD defined by Eq. (19). One obtains as follows:

@nðxÞ
@�

¼ OIKNðDÞnðxÞ; (49)

O IKNðDÞ ¼ X5
n¼1

On	
n
e; (50)

where

O 1 ¼ 3DþD2; (51)

O 2 ¼ � 9

10
Dþ 6D2 þ 21

5
D3 þ 7

10
D4; (52)

O3 ¼ � 31

40
D� 1039

120
D2 þ 43

10
D3 þ 269

30
D4 þ 33

10
D5

þ 11

30
D6; (53)

O4 ¼ 69

56
Dþ 575

56
D2 � 2959

140
D3 � 5993

420
D4 þ 1011

140
D5

þ 605

84
D6 þ 64

35
D7 þ 16

105
D8; (54)

O 5 ¼ 4371

896
D� 81707

4480
D2 þ 30339

560
D3 þ 4551

560
D4

� 3273

80
D5 � 3443

240
D6 þ 199

35
D7 þ 421

105
D8

þ 11

14
D9 þ 11

210
D10: (55)

Thus, the formal solution in the Fokker-Planck expansion
approximation is obtained by

nIKNðxÞ ¼ e�OIKNðDÞn0ðxÞ; (56)

where n0ðxÞ is the initial solution at � ¼ 0.
On the other hand, the formal solution in the operator

representation was given by

nðxÞ ¼ e�OðDÞn0ðxÞ; (57)

O ðDÞ ¼
Z 1

�1
dsP1ðsÞesD � 1: (58)

By expanding esD in Eq. (58), one obtains the following:

OðDÞ ¼ X1
n¼1

Dn

n!

Z 1

�1
dsP1ðsÞsn;

� X1
n¼1

dnD
n; (59)

where

dn ¼ 1

n!

Z 1

�1
dsP1ðsÞsn;

¼ 1

n!

Z 1

0
d~p~p2 ~peð�Þ

Z þ1

�1
d�0

Z þ1

�1
d�0

0

	 1

2�4

1

ð1� ��0Þ3
fð�0; �

0
0Þ
�
log

1� ��0
0

1� ��0

�
n
: (60)

In deriving Eq. (60), the definition of P1ðsÞ and es ¼ ð1�
��0

0Þ=ð1� ��0Þ were used. Our task is to calculate

Eq. (60) for n ¼ 1 to 10, and compare with Eq. (50). The
calculation is performed by expanding all functions in
Eq. (60) in powers of � and keeping up to Oð�10Þ terms.
In the calculation, we used the symbolic manipulation
program MATHEMATICA. Then, the integration of Eq. (60)
was also done analytically. The result is expressed by the
power-series of 	e. Finally, one has

O ðDÞ ¼ OIKNðDÞ þOð	6eÞ: (61)

Thus, we have obtained a formal solution that is equivalent
to the solution in the Fokker-Planck expansion approxima-
tion. Similarly, the formal solution for the spectral intensity
function in the Fokker-Planck expansion approximation is

IIKNðxÞ ¼ e�OIKNð�DÞI0ðxÞ; (62)

where I0ðxÞ is the initial solution at � ¼ 0. It should be
noted that the operator OIKNðDÞ satisfies the condition of
Eq. (26).

III. FORMAL SOLUTIONS FOR THE
KINEMATICAL SUNYAEV-ZELDOVICH EFFECT

A. Rate equations

Let us now consider the case that the CG is moving with

a peculiar velocity ~�c ( ¼ ~vc=c) with respect to the CMB.
As a reference system, we choose the system that is fixed to
the CMB. The z axis is fixed to a line connecting the
observer and the center of mass of the CG. (We assume
that the observer is fixed to the CMB frame.) In the present
paper we choose the positive direction of the z axis as the
direction of the propagation of a photon from the observer
to the cluster.
The rate equations for the photon distribution function

nðxÞ and the spectral intensity function IðxÞwere derived in
the NK paper [34], where x ¼ !=kBTCMB. We recall the
results here to make the present paper more self-contained.
They are given as follows:

@nðxÞ
@�

¼
Z 1

�1
dsP1ðs; �c;zÞ½nðesxÞ � nðxÞ�; (63)

@IðxÞ
@�

¼
Z 1

�1
dsP1ðs; �c;zÞ½e�3sIðesxÞ � IðxÞ�; (64)

STUDY ON THE SOLUTIONS OF THE SUNYAEV- . . . PHYSICAL REVIEW D 79, 123007 (2009)

123007-5



d� ¼ ne�Tdt; (65)

P1ðs; �c;zÞ ¼ P1ðsÞ þ �c;zP1;KðsÞ; (66)

where �c;z is the peculiar velocity of the CG parallel to the

observer. It should be noted that Oð�2
c;zÞ and higher-order

contributions were neglected in deriving Eq. (66), because
�c;z � 1 is satisfied for most of the CG. The typical value

is �c;z ¼ 1=300 for vc ¼ 1000 km=s. In Eq. (66), P1ðsÞ is
the redistribution function defined by Eq. (4).

Similarly, in Eq. (66) P1;KðsÞ is the redistribution func-

tion for the photon of a frequency shift s in the case of the
nonzero peculiar velocity of the CG,

P1;KðsÞ ¼
Z 1

�min

d��2�5 ~peðEÞPKðs; �Þ; (67)

PKðs; �Þ ¼ es

2��4

�
�

	e

�Z �2ðsÞ

�1ðsÞ
d�0ð��0 � �2Þ

	 1

ð1� ��0Þ3
fð�0; �

0
0Þ; (68)

where fð�0; �
0
0Þ is given by Eq. (6), and variables appear-

ing in Eqs. (67) and (68) are given by Eqs. (8)–(11). It
should be noted that Eq. (68) was derived for electrons in
thermal equilibrium at a temperature Te. The distribution
function for an electron of a velocity � is given by

~p eðEÞ ¼ 1

	eK2ð1=	eÞ e
��=	e ; (69)

where 	e ¼ kBTe=mc2 and K2ðzÞ is the modified Bessel
function of the second kind. For the power-law distribu-
tions, �=	e in Eq. (68) should be replaced by a=�2 and a
for the p-power distribution ~peðEÞ / p�a and the E-power
distribution ~peðEÞ / E�a, respectively.

B. Properties of P1ðsÞ and P1;KðsÞ
In the present subsection, we study the properties of the

redistribution functions P1ðsÞ and P1;KðsÞ. It is familiar that

P1ðsÞ satisfies Eq. (7). We show that P1;KðsÞ also satisfies

Z 1

�1
dsP1;KðsÞ ¼ 1; (70)

if electrons are in a thermal equilibrium state. Integrating
Eq. (67) over s, one obtains the following:

Z 1

�1
dsP1;KðsÞ ¼

Z 1

0
d~p~p2 ~peðEÞ

�
�

	e

�
1

2�4

	
Z þ1

�1
d�0

��0 � �2

ð1� ��0Þ4

	
Z þ1

�1
d�0

0fð�0; �
0
0Þ; (71)

where ~p � p=m. In deriving Eq. (71), the integral varia-
bles � and s were replaced by ~p and �0

0, respectively.

Equation (71) is further simplified by inserting Equa-
tion (69) and using the following relations:

Z þ1

�1
d�0

0fð�0; �
0
0Þ ¼ 1; (72)

1

2�4

Z þ1

�1
d�0

��0 � �2

ð1� ��0Þ4
¼ 1

3
�2: (73)

One has

Z 1

�1
dsP1;KðsÞ ¼

Z 1

0
d~p~p2 ~peðEÞ13�

2

�
�

	e

�
;

¼ 1

	eK2ð1=	eÞ
Z 1

0
d~p~p3 1

3	e
fð�	eÞe� ~E=	eg0;

(74)

where � ¼ ~p= ~E, � ¼ ~E, and ~E � E=m were used. In the
second line of Eq. (74), ffð~pÞg0 denotes the derivative of
fð~pÞ by ~p. Applying the partial integration to Eq. (74), one
finally obtains

Z 1

�1
dsP1;KðsÞ ¼ 1

	eK2ð1=	eÞ
�
� 1

3

�
½~p3e� ~E=	e�10

þ 1

	eK2ð1=	eÞ
Z 1

0
d~p~p2e� ~E=	e

¼ 1: (75)

Thus, Eq. (70) was shown.
It is worthwhile to mention the following: As seen from

the right-hand side of the first line of Equation (74),
Eq. (74) is proportional to the pressure of the electron
distribution, because the pressure of the electron is de-
scribed in general by

P ¼ nemc
Z 1

0
d~p~p2 ~peðEÞ 13 ~pv; (76)

where v ¼ �c. For the thermal distribution, one has
Pthermal ¼ nemc	e, which again leads to Eq. (70). For the
cases of nonthermal distributions, in general, Eq. (70) is
not satisfied. This will be discussed in Sec. IV.
More importantly, the present finding suggests that one

can interpret P1;KðsÞ as the pressure distribution function

for a frequency shift s. In the present paper, we call P1;KðsÞ
the pressure distribution function hereafter.
In Figs. 1(a) and 1(b), we plot the frequency redistrib-

ution function P1ðsÞ and the pressure distribution function
P1;KðsÞ, respectively, as a function of s. The kBTe depen-

dences are illustrated. The solid curve, dash-dotted curve,
and dotted curve correspond to kBTe ¼ 5 keV, 20 keV, and
100 keV, respectively. In Fig. 1(a), the familiar behavior of
the redistribution function P1ðsÞ is shown, where the sharp
peak at s ¼ 0 for kBTe ¼ 5 keV becomes flatter and wider
for higher electron temperatures. On the other hand,
P1;KðsÞ is shown for the first time. It is seen from

Fig. 1(b) that P1;KðsÞ is not positive definite, which is
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interpreted as the pressure distribution. It is seen that
P1;KðsÞ also has a large kBTe dependence. Two sharp peaks

of opposite signs are canceling each other for the case
kBTe ¼ 5 keV, whereas the peaks become flatter and
wider for higher electron temperatures.

C. Formal solutions

Let us now derive the formal solutions of the rate
equations of Eqs. (63) and (64) in the operator representa-
tion. First, introduce the operatorsOð�DÞ andOKðD� nÞ
by

O ð�DÞ ¼
Z 1

�1
dsP1ðsÞe�sD � 1; (77)

O KðD� nÞ ¼
Z 1

�1
dsP1;KðsÞ½esðD�nÞ � 1�; (78)

where n is an integer. Applying Eq. (77) and (78) of n ¼ 3

to the spectral intensity function IðxÞ, one obtains

O ð�DÞIðxÞ ¼
Z 1

�1
dsP1ðsÞ½Iðe�sxÞ � IðxÞ�; (79)

O KðD� 3ÞIðxÞ ¼
Z 1

�1
dsP1;KðsÞ½e�3sIðesxÞ � IðxÞ�:

(80)

Note that, in the case of the thermal distribution, Eq. (78) is
further simplified as

O KðD� nÞ ¼
Z 1

�1
dsP1;KðsÞesðD�nÞ � 1; (81)

because Eq. (70) is valid. The rate equation of Eq. (64) is
rewritten as follows:

@IðxÞ
@�

¼ ½Oð�DÞ þ �c;zOKðD� 3Þ�IðxÞ: (82)

Now we expand the solution IðxÞ in powers of �c;z as

follows:

IðxÞ ¼ ISZðxÞ þ �c;zIkSZðxÞ þOð�2
c;zÞ; (83)

where SZ and kSZ denote the SZ effect and kinematical SZ
effect of the first order in �c;z, respectively. Inserting

Eq. (83) into Eq. (82), one obtains the rate equation for
each order in �c;z,

@ISZðxÞ
@�

¼ Oð�DÞISZðxÞ; (84)

@IkSZðxÞ
@�

¼ Oð�DÞIkSZðxÞ þ gðx; �Þ; (85)

where

gðx; �Þ ¼ OKðD� 3ÞISZðxÞ;
¼ OKðD� 3Þe�Oð�DÞI0ðxÞ: (86)

Equation (84) corresponds to the rate equation for the SZ
effect, which is identical to Eq. (23). Therefore, the formal
solution is given by Eq. (25). On the other hand, Eq. (85)
corresponds to the rate equation for the kinematical SZ
effect.
Let us now solve Eq. (85) with an initial condition

IkSZðxÞ ¼ 0 at � ¼ 0. Introducing a new function uðxÞ by
IkSZðxÞ ¼ e�Oð�DÞuðxÞ; (87)

and inserting it into Eq. (85), one has the equation for uðxÞ
as follows:

@uðxÞ
@�

¼ e��Oð�DÞgðx; �Þ: (88)

The solution is

uðxÞ ¼
Z �

0
d�0e��0Oð�DÞgðx; �0Þ; (89)

FIG. 1. Plotting of P1ðsÞ and P1;KðsÞ as a function of s.
Figures 1(a) and 1(b) are P1ðsÞ and P1;KðsÞ, respectively. The
solid curve, dash-dotted curve, and dotted curve correspond to
kBTe ¼ 5 keV, 20 keV, and 100 keV, respectively.
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where the initial condition uðxÞ ¼ 0 at � ¼ 0 was used.
Thus, one has

IkSZðxÞ ¼
Z �

0
d�0eð���0ÞOð�DÞgðx; �0Þ;

¼
Z �

0
d�0eð���0ÞOð�DÞOKðD� 3Þe�0Oð�DÞI0ðxÞ:

(90)

Equation (90) is further simplified since the operators
Oð�DÞ and OKðD� 3Þ are commutable with each other.
Finally, one obtains the following formal solution for the
spectral intensity function of the kinematical SZ effect:

IkSZðxÞ ¼ �OKðD� 3Þe�Oð�DÞI0ðxÞ;
¼ �OKðD� 3ÞISZðxÞ;
¼ �gðx; �Þ: (91)

Similarly, the rate equation for the photon distribution
function nðxÞ is expressed by

@nðxÞ
@�

¼ ½OðDÞ þ �c;zOKðDÞ�nðxÞ: (92)

The initial condition is nðxÞ ¼ n0ðxÞ at � ¼ 0. Expanding
nðxÞ in powers of �c;z by

nðxÞ ¼ nSZðxÞ þ �c;znkSZðxÞ þOð�2
c;zÞ; (93)

one finally obtains the formal solutions for the SZ effect
and kinematical SZ effect as follows:

nSZðxÞ ¼ e�OðDÞn0ðxÞ; (94)

nkSZðxÞ ¼ �OKðDÞnSZðxÞ: (95)

In deriving Eqs. (94) and (95), the initial conditions
nSZðxÞ ¼ n0ðxÞ and nkSZðxÞ ¼ 0 at � ¼ 0 were used.
Before closing this section, it should be noted that
Eqs. (91) and (95) require the following relation for OK:

x3OKðDÞ ¼ OKðD� 3Þx3; (96)

which is satisfied by Eq. (78).

IV. NUMERICAL SOLUTIONS

A. Derivation of numerical solutions

In this section we show the derivation of the numerical
solutions for the rate equations of Eqs. (84) and (85). We
consider an ideal condition that the CG is infinitely large.
The rate equations are expressed as follows:

@ISZðxÞ
@�

¼
Z 1

�1
dsP1ðsÞ½ISZðe�sxÞ � ISZðxÞ�; (97)

@IkSZðxÞ
@�

¼
Z 1

�1
dsP1ðsÞ½IkSZðe�sxÞ � IkSZðxÞ� þ gðx; �Þ;

(98)

where gðx; �Þ is defined by Eq. (86). The explicit form is

gðx; �Þ ¼
Z 1

�1
dsP1;KðsÞ½e�3sISZðesxÞ � ISZðxÞ�: (99)

The initial conditions at � ¼ 0 are given by

ISZðxÞ ¼ I0ðxÞ ¼ I0
x3

ex � 1
; (100)

IkSZðxÞ ¼ 0; (101)

gðx; 0Þ ¼
Z 1

�1
dsP1;KðsÞ½e�3sI0ðesxÞ � I0ðxÞ�; (102)

where I0 ¼ ðkBTCMBÞ3=2�2.
Let us first solve Eq. (97). Introducing ~ISZðx; �Þ by

ISZðxÞ ¼ e��~ISZðx; �Þ; (103)

and inserting it into Eq. (97), one obtains the following
equation for ~ISZðx; �Þ:

@~ISZðx; �Þ
@�

¼
Z 1

�1
dsP1ðsÞ~ISZðe�sx; �Þ: (104)

Integrating Eq. (104) between � and �þ �� (�� � 1),
and applying the Runge-Kutta method of the fourth-order,
one obtains the following difference equation:

~I SZðx; �þ��Þ ¼ ~ISZðx; �Þ þ að��Þ
	

Z 1

�1
dsP1ðsÞ~ISZðe�sx; �Þ; (105)

að��Þ ¼ ��þ 1

2!
ð��Þ2 þ 1

3!
ð��Þ3 þ 1

4!
ð��Þ4: (106)

(i) Inserting � ¼ 0 into Eq. (105), one has the solution at
� ¼ ��,

~I SZðx;��Þ ¼ I0ðxÞ þ að��Þ
Z 1

�1
dsP1ðsÞI0ðe�sxÞ;

(107)

where the initial condition of Eq. (100) was used. In
Eq. (107), the right-hand side (RHS) can be calculated
with the initial function of Eq. (100). (ii) Similarly, insert-
ing � ¼ �� into Eq. (105), one obtains the solution at � ¼
2��,

~I SZðx; 2��Þ ¼ ~ISZðx;��Þ þ að��Þ
	

Z 1

�1
dsP1ðsÞ~ISZðe�sx;��Þ; (108)

where the RHS can be calculated with Eq. (107).
(iii) Repeating the same step n-times, one obtains the
solution at � ¼ n��,
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~I SZðx; n��Þ ¼ ~ISZðx; ðn� 1Þ��Þ þ að��Þ
	

Z 1

�1
dsP1ðsÞ~ISZðe�sx; ðn� 1Þ��Þ;

(109)

where the RHS can be calculated with the solution at � ¼
ðn� 1Þ��. Thus, the numerical solution ISZðxÞ at � ¼
N�� has been obtained. We call this method the full-order
numerical calculation in contrast to the first-order numeri-
cal calculation in the � expansion assuming � � 1, which
was done by Itoh, Kohyama, and Nozawa [15].

Similarly, Eq. (98) is also solved numerically.
Introducing ~IkSZðx; �Þ by

IkSZðxÞ ¼ e��~IkSZðx; �Þ; (110)

and inserting it into Eq. (98), one obtains the following
equation for ~IkSZðx; �Þ:

@~IkSZðx; �Þ
@�

¼
Z 1

�1
dsP1ðsÞ~IkSZðe�sx; �Þ þ ~gðx; �Þ;

(111)

~gðx; �Þ ¼
Z 1

�1
dsP1;KðsÞ½e�3s~ISZðesx; �Þ � ~ISZðx; �Þ�:

(112)

It should be noted that ~gðx; �Þ in Eq. (111) is a known
function, because ~ISZðx; �Þ in Eq. (112) was already ob-
tained by solving Eq. (104). Integrating Eq. (111) between
� and �þ ��ð�� � 1Þ, and applying the Runge-Kutta
method of the fourth order, one obtains the following
difference equation:

~IkSZðx;�þ��Þ ¼ ~IkSZðx;�Þþað��Þ
	

�Z 1

�1
dsP1ðsÞ~IkSZðe�sx;�Þþ ~gðx;�Þ

�
:

(113)

(i) Inserting � ¼ 0 into Eq. (113), one obtains the solu-
tion at � ¼ ��,

~I kSZðx;��Þ ¼ að��Þgðx; 0Þ; (114)

where the initial conditions of Eqs. (101) and (102) were
used. (ii) Similarly, inserting � ¼ �� into Eq. (113), one
obtains the solution at � ¼ 2��,

~IkSZðx;2��Þ ¼ ~IkSZðx;��Þþ að��Þ
	

�Z 1

�1
dsP1ðsÞ~IkSZðe�sx;��Þþ ~gðx;��Þ

�
;

(115)

where the RHS is calculated with Eq. (114). (iii) Repeating
the same step n-times, one obtains the solution at � ¼
n��,

~IkSZðx; n��Þ ¼ ~IkSZðx; ðn� 1Þ��Þ þ að��Þ
	

�Z 1

�1
dsP1ðsÞ~IkSZðe�sx; ðn� 1Þ��Þ

þ ~gðx; ðn� 1Þ��Þ
�
; (116)

where the RHS can be calculated with the solution at � ¼
ðn� 1Þ��. Thus, the full-order numerical solution IkSZðxÞ
at � ¼ n�� has been obtained. It should be noted that
IkSZðxÞ and nkSZðxÞ can be also calculated directly from
Eqs. (91) and (95), respectively.

B. Results for thermal distribution

In this section we present the results in the full-order
numerical calculations of ISZðxÞ and IkSZðxÞ for the thermal
electron distribution. First we define the spectral distortion
functions as follows:

�ISZðxÞ=ð�I0Þ ¼ ðISZðxÞ � I0ðxÞÞ=ð�I0Þ; (117)

�IkSZðxÞ=ð�I0Þ ¼ IkSZðxÞ=ð�I0Þ; (118)

where I0ðxÞ is defined by Eq. (100).
We plot the spectral distortion functions as a function of

x in Fig. 2. In Figs. 2(a) and 2(b), the kBTe dependences for
�ISZðxÞ and �IkSZðxÞ are studied for the case of � ¼ 0:01.
The solid curve, dash-dotted curve, and dotted curve cor-
respond to the full-order calculations for kBTe ¼ 5 keV,
20 keV, and 100 keV, respectively. For most of the CG,
kBTe � 20 keV is satisfied, however, high kBTe is still
needed when analyzing high-temperature clusters, for ex-
ample, Hansen, Pastor, and Semikoz [38] showed that
kBTe � 100 keV is needed in order to get 2� contraint
on the temperature. As seen from Fig. 2(a), the peaks of
�ISZðxÞ become higher and broader as kBTe grows. In
Fig. 2(a), we also plot the results of the first-order numeri-
cal calculations by Itoh, Kohyama, and Nozawa [15]. The
two curves are indistinguishable in the entire region of x.
This result guarantees that the first-order numerical calcu-
lation is valid for � � 1, which is satisfied for most of the
CG. Similarly, in Fig. 2(b) the peaks of �IkSZðxÞ become
lower and broader as kBTe grows. In Fig. 2(b), we also plot
the results of the first-order numerical calculations, where
the two curves are again indistinguishable in the entire
region of x. This result guarantees that the first-order
numerical calculation is valid for the kinematical SZ effect
of the CG which satisfies � � 1. It is needless to mention
that the signal of the kinematical SZ effect should be
multiplied by the factor �c;z.

In Figs. 3(a) and 3(b), we show the � dependence of the
spectral distortion functions as a function of x for kBTe ¼
20 keV. The solid curve, dash-dotted curve, dashed curve,
and dotted curve correspond to � ¼ 0:01, 1, 10, and 20,
respectively. For most of the CG, � � 1 is safely satisfied.
On the other hand, � � 1 cases are very important for
optically thick plasmas, for example, in the accretion disk
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of the neutron star X-ray binaries; see [39] and references
therein. It can be seen from Figs. 3(a) and 3(b) that the �
dependence of the redistribution functions is large, where
the present full-order calculations are indispensable for the
cases � > 1. It can be seen that the peaks of �ISZðxÞ and
�IkSZðxÞ become lower and extremely broader as � grows.
The full-order calculation for ISZðxÞ was also done by
Dolgov et al. [35]. The present calculation agrees with
their calculation up to x ¼ 1000.

In the present calculation, we have checked the conver-
gence of the numerical solution for the step-size ��. It has
been found that �� ¼ 10�3 or less is necessary to get a
good convergence, where the error was less than 0.05%
compared with other numerical calculations. It was shown
by Dolgov et al. [35] that the solution has to be solved up to
large values of x for the cases � � 1. This can be also seen
from Figs. 3(a) and 3(b). In order to study the convergence,
we have calculated �ISZðxÞ and �IkSZðxÞ up to x ¼ 50 000
for � ¼ 20. The obtained ratios to the peak value at x ¼
1000 and x ¼ 10 000 for �ISZðxÞ are 5.75% and 0.15%,
respectively. Similarly, the ratios to the peak value at x ¼

1000 and x ¼ 10 000 for �IkSZðxÞ are 10.3% and 0.36%,
respectively.
Here, one should mention the difference between the

present formalism and that of Dolgov et al. [35] in the limit
� ! 1. The Boltzmann equation in Dolgov et al. has, as a
stationary solution, the thermal equilibrium one of the
temperature Te. On the other hand, the rate equations of
Eqs. (1) and (2) which are derived in the approximation
ð!0 �!Þ=Te � 1 do not have the equilibrium solutions.
For the equilibrium state, for example, of kBTe � 20 keV,
the above condition is no longer valid. Thus, these equa-
tions are not applicable to the limit � ! 1. The equilib-
rium solutions are recovered in the present formalism by
replacing Eqs. (1) and (2) with new solutions nðx; 
Þ and
Iðx; 
Þ in the limit � ! 1as follows:

@nðx; 
Þ
@�

¼
Z 1

�1
dsP1ðsÞ½nðesx; 
Þe
ðes�1Þx � nðx; 
Þ�;

(119)

FIG. 3. Plotting of spectral distortion functions for kBTe ¼
20 keV. Figures 3(a) and 3(b) are �ISZðxÞ and �IkSZðxÞ, respec-
tively. The solid curve, dash-dotted curve, dashed curve, and
dotted curve correspond to � ¼ 0:01, 1, 10, and 20, respectively.

FIG. 2. Plotting of spectral distortion functions for � ¼ 0:01.
Figures 2(a) and 2(b) are �ISZðxÞ and �IkSZðxÞ, respectively. The
solid curve, dash-dotted curve, and dotted curve correspond to
kBTe ¼ 5 keV, 20 keV, and 100 keV, respectively.
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@Iðx; 
Þ
@�

¼
Z 1

�1
dsP1ðsÞ½Iðe�sx; 
Þe
ðe�s�1Þx � Iðx; 
Þ�;

(120)

where 
 � TCMB=Te. In deriving Eqs. (119) and (120),
nðx; 
Þ � 1 was assumed in the original Boltzmann equa-
tion. In the equilibrium state, this condition is justified,
because the chemical potential j�j � 1. It can be seen that
these equations take into account of the detailed balance
corrections to Eqs. (1) and (2). The stationary solutions are

nðx; 
Þ ¼ e�
xþ�; (121)

Iðx; 
Þ ¼ I0x
3nðx; 
Þ; (122)

where � ¼ ln�ð3Þ þ 3 ln
 is the chemical potential in
units of kBTe. The crossover frequency xc in this limit is
given by xc ¼ ��, where 
 ¼ 1:174	 10�8 and � ¼
�54:60 at kBTe ¼ 20 keV. Finally, we derive the formal
solutions for the improved rate equations. Introducing
nðx; 
Þ ¼ e�
x~nðxÞ and Iðx; 
Þ ¼ e�
x~IðxÞ, Eqs. (119)
and (120) are rewritten as follows:

@~nðxÞ
@�

¼
Z 1

�1
dsP1ðsÞ½~nðesxÞ � ~nðxÞ�; (123)

@~IðxÞ
@�

¼
Z 1

�1
dsP1ðsÞ½~Iðe�sxÞ � ~IðxÞ�; (124)

where ~nðxÞ and ~IðxÞ satisfy the same rate equations as
Eqs. (1) and (2), respectively. Thus, the formal solutions
are

nðx; 
Þ ¼ e�
xe�OðDÞn0ðxÞ; (125)

Iðx; 
Þ ¼ e�
xe�Oð�DÞI0ðxÞ; (126)

where n0ðxÞ and I0ðxÞ are the initial solutions at � ¼ 0.

C. Results for nonthermal distributions

In this section, we calculate the spectral distortion func-
tions for the nonthermal electron distribution functions.
The careful study of the SZ effect on the nonthermal
distributions was done, for example, by Colafrancesco
et al. [29,30]. In the present paper, we study two types of
single power-law distributions for illustrative purposes.
(i) the p-power distribution:

~p eðEÞ ¼
�
Ap ~p

�ap ; ~p1 � ~p � ~p2

0; elsewhere
; (127)

Ap ¼ ðap � 1Þ
~p
1�ap
1 � ~p

1�ap
2

; (128)

where Eq. (127) is normalized by
R1
0 d~p~p2 ~peðpÞ ¼ 1. It

should be noted that the constant ap is related to the

constant � of Colafrancesco et al. [29,30] by ap ¼ �þ
2, where we choose the reported values [29] � ¼ 2:5 and

~p2 ¼ 1000, and study the ~p1 dependence of the spectral
distortion functions. (ii) the E-power distribution:

~p eðEÞ ¼ A��
�a� ; 0 � ~p <1; (129)

A� ¼ 4ffiffiffiffi
�

p �ða�2 Þ
�ða��3

2 Þ
; (130)

where a� > 3, and Eq. (129) is also normalized byR1
0 d~p~p2 ~peðpÞ ¼ 1. In the present paper, we fix the pa-

rameter value a� ¼ 4:5 for an illustrative purpose.

Using Eqs. (127) and (129), one can calculate the nor-
malization of the pressure distribution P1;KðsÞ. One obtains
Z 1

�1
dsP1;KðsÞ ¼

�
1
3ap; p-power distribution
1; E-power distribution

; (131)

FIG. 4. Plotting of P1ðsÞ and P1;KðsÞ for the nonthermal dis-
tributions. Figures 4(a) and 4(b) are P1ðsÞ and P1;KðsÞ, respec-
tively. The solid curve, dash-dotted curve, and dashed curve
correspond to the p-power distributions for ~p1 ¼ 0:1, 0.3, and
1.0, respectively. The dotted curve is the E-power distribution. In
Fig. 4(b), the dotted curve is multiplied by a factor 10 in order to
be visible in the same figure.
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where Eq. (70) was satisfied for the E-power distribution
case.

First, in Figs. 4(a) and 4(b), we plot P1ðsÞ and P1;KðsÞ,
respectively. The solid curve, dash-dotted curve, and
dashed curve correspond to the p-power distributions for
~p1 ¼ 0:1, 0.3, and 1.0, respectively. The dotted curve is the
E-power distribution. In Fig. 4(b), the dotted curve is
multiplied by a factor 10 in order to be visible in the
same figure. It is seen from Fig. 4(a) that P1ðsÞ for ~p1 ¼
0:1 has a sharp peak at s ¼ 0 similar to the case of kBTe ¼
5 keV in Fig. 1(a), and the peak becomes flatter and wider
as ~p1 grows. Moreover, the peak position is shifting toward
the positive direction. As seen from Fig. 4(b), the structure
of P1;KðsÞ is similar to the thermal distribution case, how-

ever, the parameter dependence is quite large.
Similarly, in Figs. 5(a) and 5(b), we plot �ISZðxÞ and

�IkSZðxÞ for � ¼ 0:01, respectively. The solid curve, dash-
dotted curve, and dashed curve correspond to the p-power
distributions for ~p1 ¼ 0:1, 0.3, and 1.0, respectively. The

dotted curve is the E-power distribution. The curves have
long tails even for small � values. More importantly, it is
seen from Fig. 5(b) that �IkSZ shows a complex structure
(two peaks) in the case of the E-power distribution. It is
found that the similar structure appears for the p-power
distributions for ~p1 > 0:8. This suggests that data for the
kinematical SZ effect might give new limits to the parame-
ter values for the nonthermal distributions provided that the
separation of the main SZ effect has been carefully done,
for example, by taking into account the nonisothermal
profiles of the CG [40].

V. CONCLUDING REMARKS

Starting from the rate equations for the photon distribu-
tion function which was derived in the NK paper, we
derived the formal solutions for the SZ effect in three
different representation forms: the multiple scattering rep-
resentation, operator representation, and Fourier transform
representation. In particular, we showed that these repre-
sentation forms were identical. By expanding the formal
solution in the operator representation in powers of both
the derivative operator D and electron velocity �, we
obtained the same formal solution derived in the Fokker-
Planck expansion approximation.
We also extended the present formalism to the kinemati-

cal SZ effect. We obtained the formal solutions in the
operator representation. Analytical properties for the pho-
ton frequency redistribution functions were studied. We
found that the redistribution function which corresponds to
the kinematical SZ effect can be interpreted as the pressure
distribution of electrons.
We solved the rate equation numerically, and obtained

the exact numerical solutions for the thermal SZ effect and
kinematical SZ effect. The exact numerical solutions in-
clude the full-order terms in powers of �, where � is the
optical depth. We compared the present solutions with
other calculations such as first-order calculation in �. As
far as the clusters of galaxies are concerned (where � � 1
is satisfied), the existing calculations are accurate enough
to analyze the observational data. On the other hand, the
exact calculation which includes the full-order terms in � is
necessary for � > 1.
Finally, we calculated the spectral intensity functions for

the nonthermal electron distributions. The parameter de-
pendences were studied for the p-power distribution. It
was suggested that observation of the kinematical SZ effect
might provide new limits to the parameter values for the
nonthermal distributions.
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FIG. 5. Plotting of spectral distortion functions for the non-
thermal distributions at � ¼ 0:01. Figures 5(a) and 5(b) are
�ISZðxÞ and �IkSZðxÞ, respectively. The solid curve, dash-dotted
curve, and dashed curve correspond to the p-power distributions
for ~p1 ¼ 0:1, 0.3, and 1.0, respectively. The dotted curve is the
E-power distribution.
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