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The structural properties of geodesic currents in an ambient Kerr background are studied from an

analytical point of view. The geodesics in this congruence may correspond to charged particles that carry

energy and angular momentum from the black hole through the Blandford-Znajek mechanism. It is shown

that the resulting magnetosphere naturally satisfies the Znajek regularity condition. Particular attention is

paid here to the energy extracted by matter currents rather than by electromagnetic Poynting fluxes. This

analytic study is motivated by the mathematical structure behind the Blandford-Znajek process, and may

only have limited applications to the astrophysics of supermassive black holes.
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I. INTRODUCTION

Nearly 30 years ago, Blandford and Znajek [1]
described a method by which a black hole could release
its rotational energy into the magnetosphere via electro-
magnetic processes. They argued for the existence of a
force-free magnetosphere, wherein outflowing currents
and electromagnetic energy fluxes could in principle carry
energy and angular momentum away from the black hole.
Subsequently, a considerable amount of research has been
done in trying to understand the nature of the solutions
provided by a force-free electrodynamics in the vicinity of
a rotating black hole (e.g., [2–6]). Such solutions are ex-
tremely important from an astrophysical point of view, as
they would be leading candidates for the explanation of jets
emanating from black holes. Owing to the complexity of
the problem, recent efforts have been primarily numerical
in nature (e.g., [7,8]).

After obtaining an approximate solution to the Blanford-
Znajek mechanism of energy extraction from rotating
black holes that generalizes the original perturbative split
monopole solution [9], we were recently successful [10] in
providing a class of exact analytic solutions to the equa-
tions of force-free electrodynamics in Kerr geometry.
Although finite everywhere in the magnetosphere, these
solutions were not, however, physically realistic, but pro-
vide a basis for further analytic study. For the case of
stationary, axisymmetric, force-free electrodynamics in a
Kerr background, we [10] showed that the exact solution
permitted an electromagnetic current 4-vector of the form

I� ¼ � 2

a2
ffiffiffiffiffiffiffi�g

p d

d�

�
�

cos�

sin4�

�
l�: (1)

Here, a is the angular momentum per unit mass of the
black hole, g is the usual determinant of the Kerr spacetime
metric g��, and � is an arbitrary function of �. Also l� is

the infalling principle null geodesic tangent vector of the
Kerr geometry, given explicitly in Boyer-Lindquist coor-
dinates ft; r; �; ’g by

l� ¼
�
r2 þ a2

�
;�1; 0;

a

�

�
: (2)

Here, � ¼ r2 þ a2 � 2Mr, where M is the mass of the
black hole. Since the geodesic in Eq. (2) is infalling, it is
not possible to extract energy from the hole. More impor-
tantly, the current flows along null geodesics. While we
expect the currents to flow through geodesics under force-
free conditions, the fact that the geodesics are null is a less
desirable feature.
In this paper, we study the general structural properties

of geodesic currents of particles with mass when the mag-
netosphere is force-free. Instead of working with the co-
variant formalism, we will write all equations of
electrodynamics in an intuitive 3þ 1 formalism [6].
After a brief introduction to the 3þ 1 formalism in
Sec. II, we describe the relevant equations of a force-
free, axisymmetric, stationary magnetosphere of a Kerr
black hole in Sec. III. The structural properties of geodesic
currents are described in Sec. IV, where we demonstrate
that the Znajek regularity condition is satisfied. Energy and
angular momentum extraction through particle currents in
the force-free magnetosphere are considered in Sec. V, and
we show in Sec. VI that a naked singularity cannot result
from this process. We conclude in Sec. VII.

II. 3þ 1 ELECTRODYNAMICS IN KERR
GEOMETRY: A PRIMER

In the 3þ 1 formalism of electrodynamics, we rewrite
the covariant Maxwell equations in terms of 3-vectors E,
B, D, and H. While these quantities may lose meaning
under arbitrary coordinate transformations, in a particular
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frame we have the advantage of working with the four
familiar equations of electrodynamics. Much of the back-
ground and details presented in this section can be found in
[6,9].

The 3-vectors are defined on spacelike slices of space-
time. We shall foliate the Kerr spacetime by a collection of
absolute space described by surfaces of constant time t in
the Boyer-Lindquist coordinates ft; r; �; ’g of the Kerr
geometry. Here, the metric takes the form

ds2 ¼ ð�2 � �2Þdt2 þ 2�’d’dtþ �rrdr
2 þ ���d�

2

þ �’’d’
2: (3)

The metric coefficients are given by

�2 � �2 ¼ gtt ¼ �1þ 2Mr

�2
;

�’ � gt’ ¼ �2Mrasin2�

�2
;

�rr ¼ �2

�
;

��� ¼ �2; and �’’ ¼ �2sin2�

�2
;

(4)

where

�2 ¼ r2 þ a2cos2�;

� ¼ r2 � 2Mrþ a2 and

�2 ¼ ðr2 þ a2Þ2 � �a2sin2�:

(5)

Additionally

�2 ¼ �2�

�2
;

�2 ¼ �2
’

�’’

; and
ffiffiffiffiffiffiffi�g

p ¼ �
ffiffiffiffi
�

p ¼ �2 sin�:

(6)

Parameters M and a are the mass and angular momentum
per unit mass, respectively, of the Kerr black hole. The
three-dimensional space for some fixed value of t is en-
dowed with the metric

ds2sp ¼ �rrdr
2 þ ���d�

2 þ �’’d’
2: (7)

Since the spacetime is stationary, the value of t for the
absolute space will not matter in our discussion. The co-
variant Maxwell’s equations are

r?
�F

�� ¼ 0; and r�F
�� ¼ I�: (8)

Here F�� is the Maxwell stress tensor, and I� is the four
vector of the electric current. In order to rewrite the co-
variant equations of electrodynamics in a familiar
Maxwell-type form, three vectors D andH in our absolute
space are defined by

D i ¼ �Fti; and Hi ¼ 1
2�eijkF

jk: (9)

Here, eijk is the completely antisymmetric Levi-Civita

pseudotensor of the absolute space such that er�’ ¼ ffiffiffiffi
�

p
,

where, � is the determinant of ds2sp. In addition, we define

the shift 3-vector as

� ¼ ð0; 0; �’Þ: (10)

The constitutive equations relating the electromagnetic
field vectors, E and B, and their duals, D and H, for
regions of zero electric and magnetic susceptibilities are

E ¼ �Dþ �� B; and H ¼ �B� ��D; (11)

where the curl is defined by the equation

ðA� BÞi ¼ eijkAjBk:

With these definitions, Maxwell’s equations become

�r �B ¼ 0; and @tBþ �r� E ¼ 0 (12)

for the homogenous part and

�r �D ¼ �c; and � @tDþ �r�H ¼ J (13)

for the inhomogeneous part. Here,

�c ¼ �It; Jk ¼ �Ik; (14)

are the charge and current densities, respectively, �r is the
covariant derivative induced by the spatial metric �ij on

our absolute space, and � is the function that appears in
Eq. (6).

III. STATIONARY, AXISYMMETRIC,
FORCE-FREE ELECTRODYNAMICS

In the Blanford-Znajek mechanism, the magnetosphere
is assumed to be force-free. In addition, Blandford and
Znajek impose, for simplicity, the inherent symmetry of
the geometry of the rotating black hole onto the currents
and fields, namely, stationarity and axisymmetry. Con-
sequently the Lorentz force on the currents in the magne-
tosphere is trivial, so that

F��I
� ¼ 0: (15)

In our 3þ 1 language, the above condition takes the form

E � J ¼ 0; (16)

and

�cEþ J� B ¼ 0: (17)

The consequences of Eqs. (16) and (17) along with the
requirements of stationarity and axisymmetry will be sum-
marized below. The interested reader is referred to [9] for
further details. The poloidal and toroidal components (AP

andAT , respectively) of a vector field are defined such that
A ¼ AP þAT , where AP ¼ Ar@r þA�@� and AT ¼
A’@’. Since the magnetosphere is stationary and axisym-

metric,
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E T ¼ 0: (18)

This is true because stationarity implies that E is the
gradient of a scalar, and for axisymmetric fields, all ’
derivatives vanish. From Eq. (17) we have that

E � B ¼ 0: (19)

Equations (18) and (19) imply that there exists a vector
! ¼ �@’ such that

E ¼ �!� B: (20)

Here, � is a function dependent on r and �. Since B is
divergence free,

B ¼ �r�A; (21)

where A is the 3-vector potential associated with B.
Therefore,

B P ¼ 1ffiffiffiffi
�

p ðA’;�@r �A’;r@�Þ; (22)

since A’ is independent of t and ’. Surfaces of constant

A’ are called equipotential surfaces. Here A’ is the toroi-

dal component of the 3-vector potential A. Functions that
are constant on equipotential surfaces are called equipo-
tential surface functions, i.e., a function f is an equipoten-
tial surface function if

B Pf ¼ 0 ¼ A’;�@rf�A’;r@�f: (23)

It can be shown that � and H’ are equipotential surface

functions, and consequently from Eq. (20) we get

E P ¼ �d
Z

�dA’: (24)

Since � is an equipotential surface function, it is strictly a
function of A’, and hence the above integral is well

defined. The constitutive Eqs. (11) give

D ¼ DP ¼ � 1

�
ð�þ �’ÞdA’; (25)

and

H P ¼ ð�2 � �2 � �’�ÞBP

�
: (26)

The electric charge density is determined by the divergence
of DP:

� ffiffiffiffi
�

p
�c ¼ @r

�
1

�
ffiffiffiffi
�

p ð�’’�þ �’Þ���A’;r

�

þ @�

�
1

�
ffiffiffiffi
�

p ð�’’�þ �’Þ�rrA’;�

�
: (27)

The toroidal current vector can be obtained by computing
the ’ component of the curl in Eq. (13):

� ffiffiffiffi
�

p
J’ ¼ Hr;� �H�;r

¼ @r

�
1

�
ffiffiffiffi
�

p ð�2 � �2 � �’�Þ���A’;r

�

þ @�

�
1

�
ffiffiffiffi
�

p ð�2 � �2 � �’�Þ�rrA’;�

�
:

(28)

The poloidal current is completely determined by H’ and

is given by
ffiffiffiffi
�

p
Jp ¼ H’;�@r �H’;r@�: (29)

Finally,

B ’ ¼ H’=�:

Since H’ is an equipotential surface function, from

Eq. (29) we have that

J P ¼ 1ffiffiffiffi
�

p dH’

dA’

ðA’;�@r �A’;r@�Þ ¼
dH’

dA’

BP; (30)

i.e., the currents flow along equipotential surfaces. The
only remaining requirement in the explicit formulas given
above for the fields and current stems from Eq. (17), and
can be written in the form

1

2

dH2
’

dA’

¼ ��ð�c��’’ � J’Þ: (31)

Since the left-hand side of the equation above is an equi-
potential surface function, we must pick an equipotential
surface function � such that the right-hand side of the
equation is an equipotential surface function as well.
Additionally, for the fields and currents to remain well
defined at the event horizon of the Kerr black hole, given
by

r ¼ rþ � Mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � a2

p
;

we must have that

H ’ jrþ¼
sin2�

�
Brð2Mr�� aÞ jrþ (32)

in Boyer-Lindquist coordinates. This is the Znajek regu-
larity condition derived in [11]. In the above equation, all
quantities are to be evaluated at the event horizon.
The poloidal component of the Poynting vector for the

electromagnetic field is given by

S P ¼ ðE�HÞP:
Consequently, the rate of extraction of energy from the
black hole is given by

dEem

dt
¼ �

Z
r2¼1

�H’B
r ffiffiffiffi

�
p

d�d’: (33)

In a similar manner, using the fact that @’ is a Killing
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vector field of the geometry, we get the following expres-
sion for the rate of extraction of angular momentum from
the black hole:

dLem

dt
¼ �

Z
r2¼1

H’B
r ffiffiffiffi

�
p

d�d’: (34)

Under this circumstance, the mass and angular momentum
of the black hole decreases at a rate given by

�M

�t
¼ �dEem

dt
; and

�J

�t
¼ �dLem

dt
: (35)

IV. GEODESIC CURRENTS

In general relativity, force-free dynamics of particles are
associated with the geodesics of the curved spacetime. In
the case of the Blandford-Znajek mechanism, vacuum is
broken down by a sparking mechanism that results in a
cascade of charges. Here we assume that the resulting
current vector outside the event horizon can be written in
the form

I� ¼ Fðr; �Þu�; (36)

where u� is a timelike geodesic tangent vector of the Kerr
geometry. The form given in Eq. (36) has a limited range of
applicability, and is not considered to be the most general
form of the current vector. This form is motivated by
Eq. (1). Equation (36) embodies what we mean by geode-
sic currents in the title of this section. The function F
relates the 4-velocity of the charged particle at a point to
electromagnetic current density at that point. The proper-
ties of u� are well understood (for example see [12,13]). In
particular, u� can be written in the form

u� ¼
�
_t;

ffiffiffiffi
R

p
�2

;

ffiffiffiffiffi
�

p
�2

; _’

�
: (37)

Here, _t, _’,
ffiffiffiffi
R

p
and

ffiffiffiffiffi
�

p
are functions of r and �. Also, inffiffiffiffi

R
p

and
ffiffiffiffiffi
�

p
we have not yet committed to the ‘‘þ’’ root.

The notion of time (dot) derivative is not relevant to our
analysis; the notation has been simply borrowed from the
existing literature on Kerr geodesics. The explicit forms of
the geodesic functions are

_t ¼ �2E � 2aMrL
�2�

; (38)

and

_’ ¼ 2aMrEsin2�þ ð�2 � 2MrÞL
�2�sin2�

: (39)

The functions R and � are given by

R ¼ C2 þ �ðq2r2 �KÞ (40)

and

� ¼ Kþ q2a2cos2�� D2

sin2�
; (41)

where

C ¼ ðr2 þ a2ÞE � aL and D ¼ L� aEsin2�: (42)

In the study of Kerr geodesics, E, L, and K are simply
constants for a given geodesic, and

q2 ¼ 1; 0;�1

for spacelike, null, and timelike geodesics, respectively.
The terms E andL can be related to the energy and angular
momentum of the particle that flows along the geodesic.
Explicitly,

E ¼ �gðK; uÞ ¼ �ðgtt _tþ gt’ _’Þ (43)

and

L ¼ gðm; uÞ ¼ ðgt’ _tþ �’’ _’Þ: (44)

Here K ¼ @t and m ¼ @’. K is the famous Carter’s con-

stant [14]. In our case, since the currents flow along equi-
potential surfaces, E, L, and K become equipotential
surface functions, which are now subject to the condition

ffiffiffiffi
R

p
f;r þ

ffiffiffiffiffi
�

p
f;� ¼ 0; (45)

for any equipotential surface function f. Also, since we are
only interested in particles with mass, wewill set q2 ¼ �1.
Conservation of electric charge is implied by the equation
r�I

� ¼ 0, i.e.,

@r

�
F

ffiffiffiffi
R

p
�2

ffiffiffiffiffiffiffi�g
p �

þ @�

�
F

ffiffiffiffiffi
�

p
�2

ffiffiffiffiffiffiffi�g
p �

¼ 0: (46)

This is actually an equation for F.
In writing Eq. (36), we have assumed the explicit form

of the charge density and the 3-vector current density. In
the remainder of this section, we will construct a formula
for H’ and show that it satisfies the Znajek regularity

condition, Eq. (32). But first we present a few
preliminaries.
From Eq. (14) we see that

�c ¼ �F _t; J’ ¼ �F _’;

and

J P ¼ �F

ffiffiffiffi
R

p
�2

@r þ �F

ffiffiffiffiffi
�

p
�2

@�: (47)

Consequently, Eq. (31) can be written as

� 1

2

dH2
’

dA’

¼ �sin2�Fð _t�� _’Þ: (48)

In the theorem that follows, we obtain an explicit expres-
sion for H’.
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Theorem 1. In force-free, stationary, axisymmetric elec-
trodynamics in a Kerr background when the electromag-
netic current vector takes the form given by Eq. (36),

H ’ ¼ �sin�ð _t�� _’Þffiffiffiffiffi
�

p A’;r: (49)

Proof: From Eqs. (29) and (47) we get that

H ’;r ¼ �F sin�
ffiffiffiffiffi
�

p
: (50)

But note also that

�H’H’;r ¼ � 1

2

dH2
’

dA’

A’;r:

Substituting Eqs. (48) and (50) into the above equation, we
get the necessary result. h

Since A’ is an equipotential surface function, H’ can

also be written in the form

H ’ ¼ ��sin�ð _t�� _’Þffiffiffiffi
R

p A’;�: (51)

Corollary 1.H’ as given by Eq. (49) and/or Eq. (51) will

be an equipotential surface function if and only if

R@r

�
	ffiffiffiffi
R

p
�
þ�@�

�
	ffiffiffiffiffi
�

p
�
¼ 0; (52)

where

	 ¼ �sin�ð _t�� _’Þ:
Proof: From Eqs. (49) and (51),

H ’ ¼ 	ffiffiffiffiffi
�

p A’;r ¼ � 	ffiffiffiffi
R

p A’;�;

and since H’ is to be an equipotential surface function
ffiffiffiffi
R

p
H’;r þ

ffiffiffiffiffi
�

p
H’;� ¼ 0:

Since A’ is an equipotential function, the above two

equations immediately imply Eq. (52). h
One of the main advantages, and justification for

Eq. (36) is that the expression for H’ as derived above

naturally satisfies the Znajek regularity condition.
Theorem 2. The form of H’ as given in Eq. (51) [or

equivalently in Eq. (49)] satisfies the Znajek regularity
condition, Eq. (32), when

ffiffiffiffi
R

p jrþ ¼ �C:

Note, the only choices for
ffiffiffiffi
R

p jrþ are �C. The physical

consequence of this choice will be made clear in
theorem (4).

Proof: From Eq. (22),

A’;�ffiffiffiffi
�

p ¼ Br:

Also,

H ’ ¼ ��sin�ð _t�� _’Þffiffiffiffi
R

p A’;�

¼ �sin2�

�
ffiffiffiffi
R

p �2�ð _t�� _’ÞBr:

We choose the square root such thatffiffiffiffi
R

p j�¼0 ¼ �Cj�¼0:

Here, C is the function defined in Eq. (42). Also,

�2� _tj�¼0 ¼ ðr2þ þ a2Þ2E � 2aMrþL ¼ 2MrþCj�¼0;

and

�2� _’j�¼0 ¼ aCj�¼0:

Putting all the above equations together, we get that

H ’jrþ ¼ sin2�

�ð� ffiffiffiffi
R

p Þ ð2MrþC�� aCÞBrjrþ

¼ sin2�

�
ð2Mrþ�� aÞBrjrþ ; (53)

which is the required Znajek regularity condition. h

V. THE EXTRACTION OF ENERGYAND
ANGULAR MOMENTUM VIA PARTICLE JETS

In Sec. III, the terms representing the extraction of
energy and angular momentum (Eqs. (33) and (34)) were
derived from the conserved quantities of the electromag-
netic stress tensor. In this section, we will do the same for
the matter fields. This will be useful for calculating the
energy released via matter jets (from possibly supermas-
sive black holes). Separate conservation of field and parti-
cle energy and angular momentum stems from the fact that
we are only considering a force-free magnetosphere. In
particular, the total energy-momentum tensor of magneto-
hydrodynamics can be written in the form:

T�� ¼ T
��
em þ T

��
matter:

Since this must be divergence free, we must have that

r�T
�� ¼ r�T

��
em þr�T

��
matter ¼ 0:

But, from Eq. (15) we see that

r�T
��
em ¼ 0:

Consequently, we must have that

r�T
��
matter ¼ 0;

as mentioned above. When the magnetosphere is filled
with a geodesic congruence, we can take the matter
energy-momentum tensor as

T��
matter ¼ ðm=eÞFðr; �Þu�u�; (54)

where e and m are the electric charge and mass of the
particle species, respectively, and F and u� are as given in
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Eq. (36). For then,

r�T
��
matter ¼ ðm=eÞr�ðFu�Þu� þ ðm=eÞFu�r�u

� ¼ 0:

In the equation above, the first term on the left-hand side
vanishes due to the continuity equation for the electromag-
netic current density, and the second term is trivial because
of the geodesic equation. If the charge of the currents
carrying particles are position dependent, we must either
take the derivative of the e=m term in the above equation,
or consider the regions of different values for e=m sepa-
rately. Implicit in the form of the current vector congruence
Eq. (36), and more so in the matter energy-momentum
tensor Eq. (54), is our simplifying assumption about the
nature of these geodesic currents. Such expressions may
only be realized when any fixed point in the magnetosphere
contains only one type of charge moving in one fixed
direction. However, different points in our absolute space
may have different species of charges moving in unrelated
direction.

A. Matter energy flux

Since K is a Killing vector field of the Kerr geometry,

r�ðT�
� matterK

�Þ ¼ 0;

i.e.,

1

�
ffiffiffiffi
�

p @tð� ffiffiffiffi
�

p
Tt
t matterÞ þ 1

�
ffiffiffiffi
�

p @ið� ffiffiffiffi
�

p
Ti
t matterÞ ¼ 0:

Let

e ¼ ��Tt
t matter (55)

be the energy density of the matter fields, and

S i ¼ ��Ti
t matter (56)

be the matter energy density flux. Therefore,

d

dt

Z
V
edV ¼ �

Z
V
r � SdV ¼ �

Z
@V

S � ndA: (57)

Here, V is a 3-dimensional manifold in our absolute space,
@V is the boundary of V, and n is the unit outward pointing
normal on @V as per the divergence theorem. Con-
sequently, the rate of matter extraction of energy from
the black hole is given by

dEm

dt
¼

Z
r2¼1

Sr ffiffiffiffi
�

p
d�d’: (58)

Clearly,

S r ¼ ��
m

e
F

ffiffiffiffi
R

p
�2

ðgtt _tþ gt’ _’Þ: (59)

But

� ðgtt _tþ gt’ _’Þ
is nothing more than the poloidal function E, therefore,

dEm

dt
¼ m

e

Z
r2¼1

F
ffiffiffiffi
R

p
E sin�d�d’: (60)

B. Matter angular momentum flux

Using the Killing vector field m � @’, we can deduce a

similar expression for the rate of extraction of angular
momentum from the black hole via particle jets. Setting

l ¼ �Tt
’ matter (61)

as the angular momentum density of the matter fields, and

L i ¼ �Ti
’ matter (62)

as the matter angular momentum density flux, we see that
the rate of extraction of angular momentum from the black
hole via particle jets is given by

dLm

dt
¼ m

e

Z
r2¼1

F
ffiffiffiffi
R

p
L sin�d�d’: (63)

VI. THE AREATHEOREM AND THE
BLANDFORD-ZNAJEK MECHANISM

In [1], it was shown that for electromagnetic extraction
of energy from the horizon of the black hole, the rate of
energy extraction was related to the rate of angular mo-
mentum extraction by the expression

dEem

dt
� �H

dLem

dt
: (64)

Here,

�H ¼ a

r2þ þ a2
(65)

is the angular velocity of the event horizon. A black hole
that is adiabatically evolving along a Kerr sequence such
that its rate of energy and angular momentum extraction
satisfies

dE

dt
� �H

dL

dt
(66)

cannot lead to the formation of a naked singularity [15].
This can be easily seen as follows. The irreducible mass
Mirr of a Kerr Black hole is given by

M2
irr ¼ 1

2½M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M4 � J2

p
�; (67)

where J ¼ aM is the angular momentum of the black hole.
Under extraction rates subject to Eq. (66), the mass and the
angular momentum of the Black hole decreases to

M ! Mþ �M and J ! J þ �J; (68)

where �M and �J satisfy

�M � �H�J: (69)
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We now state the following calculation due to
Christodoulou [15] without proof.

Theorem 3. When energy and angular momentum is
extracted from a Kerr black hole so that Eq. (69) [or
equivalently Eq. (66)] is satisfied, we have that �M2

irr � 0.
The area of the event horizon is given by

A ¼
Z
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g��g’’

p
d�d’ ¼ 16
M2

irr: (70)

Since the area of the event horizon is proportional to M2
irr,

from the theorem above, we see that it is nondecreasing,
and so, we have the following corollary.

Corollary 2. A black hole that is adiabatically evolving
along a Kerr sequence such that its rate of energy and
angular momentum extraction satisfies Eq. (66) always
contains an event horizon that cloaks the physical singu-
larity of the Kerr geometry.

Of course, when all the angular momentum is extracted,
the Kerr black hole reduces to the Schwarzschild solution,
and here too we do not have a naked singularity. A dy-
namically evolving black hole, in general, need not follow
a Kerr sequence. In this case, the powerful area theorem of
Stephan Hawking [16] requires that the area of the event
horizon continues to be nondecreasing.

We conclude our analysis of the geodesics currents in
the force-free magnetosphere of the Kerr geometry by
showing that the matter energy and angular momentum
extraction rates are subject to the same inequality as their
electromagnetic counterparts [Eq. (66)], and hence we are
in no danger of violating the Penrose conjecture.

Theorem 4. When the currents in a force-free magneto-
sphere are given by Eq. (36), the extraction of energy from
the matter fields will not lead to the formation of a naked
singularity.

Proof: At the horizon, if charge are to flow out to the
magnetosphere, from theorem (2) we need that

ffiffiffiffi
R

p jrþ ¼ �C> 0:

This is possible only when the geodesics are such that

E � �HL; (71)

and consequently from Eqs. (60) and (63)

dEm

dt
� �H

dLm

dt
: (72)

If extraction of energy happens outside the event horizon
(but within the ergosphere), and charges actually fall in-
ward at the event horizon, a similar argument still leads to
the above equation. Therefore, corollary (2) implies the
necessary result. h

VII. CONCLUSIONS

The mechanism to form jets from black holes is a major
unsolved problems in astrophysics, and its explanation is
important for our understanding of nonthermal radiation
form solar-mass black holes in the Milky Way, newly born
black holes associated with gamma-ray bursts, and super-
massive black holes at the centers of distant galaxies. One
possibility is that black holes with radio-emitting jets are
distinguished from radio-quiet black holes by extracting
rotational energy from the black hole through the
Blandford-Znajek process. Matter currents can also carry
energy and angular momentum, and represent a plausible
alternative to electromagnetic Poynting flux for extracting
the black hole’s rotational energy.
The astrophysical implications of our analytic study

maybe limited, and is used mostly as a motivational tool.
In this paper, we have used the 3þ 1 formulation of
general relativity to analyze currents that flow in the
force-free magnetosphere near a Kerr black hole. We
have rewritten the constraint equation for a force-free
magnetosphere, Eq. (31), to apply to particles that follow
timelike geodesics, yielding Eq. (48). The toroidal mag-
netic susceptibility,H’, from which the poloidal current is

derived, is shown to satisfy the Znajek regularity condition.
Expressions for energy and angular momentum flux asso-
ciated with the matter currents were obtained. We show
that extraction of energy and angular momentum cannot
lead to the formation of a naked singularity. In future work,
trajectories of particles in the black hole magnetosphere
will be derived, and will be compared with observations of
jets from black holes.
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