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We aim to offer a kind of unifying view on two popular topics in the studies of nonperturbative aspects

of Yang-Mills theories in the Landau gauge: the so-called Gribov-Zwanziger approach and the Kugo-

Ojima confinement criterion. Borrowing results from statistical thermodynamics, we show that imposing

the Kugo-Ojima confinement criterion as a boundary condition leads to a modified yet renormalizable

partition function. We verify that the resulting partition function is equivalent with the one obtained by

Gribov and Zwanziger, which restricts the domain of integration in the path integral within the first Gribov

horizon. The construction of an action implementing a boundary condition allows one to discuss the

symmetries of the system in the presence of the boundary. In particular, the conventional Becchi-Rouet-

Stora-Tyutin symmetry is softly broken.
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I. INTRODUCTION

The Gribov-Zwanziger (GZ) approach focuses on the
issue of gauge copies in the Landau gauge. Gribov sig-
nalled in his seminal work [1] that the Landau gauge
condition, @�A� ¼ 0 is ambiguous: there exist gauge

equivalent configurations A0
�, which also obey @�A

0
� ¼

0. Examples of gauge copies are provided by the zero
modes of the Faddeev-Popov (FP) operator, which enters
the quantization formula of Yang-Mills theories. Indeed,
given an infinitesimal gauge transformation connecting A�

with A0
�, i.e. A

a0
� ¼ Aa

� �Dab
� !b, it is clear that @�A

0
� ¼

@�A� ¼ 0 is fulfilled when Mab!b ¼ 0, with Mab ¼
�@�D

ab
� ¼ �@�ð@��ab þ gfacbAc

�Þ being the FP opera-

tor. We recall that the FP action in the Landau gauge for a
d-dimensional Euclidean gauge theory, with d � 4, reads

SFP ¼ SYM þ
Z

ddxðba@�Aa
� þ �ca@�D

ab
� cbÞ; (1)

with SYM ¼ 1
4

R
ddxFa

��F
a
�� the classical Yang-Mills ac-

tion. Expression (1) enjoys the well-known Becchi-Rouet-
Stora-Tyutin (BRST) symmetry, generated by the nilpotent
operator s, s2 ¼ 0, i.e.

sAa
�¼�Dab

� cb;sca¼ 1
2gf

abccbcc;s �ca¼ba;sba¼0: (2)

For the partition function, we can write

Z¼
Z
d�FP¼

Z
d�e�SFP ¼

Z
dAdetMab�ð@AÞe�SYM : (3)

We introduced the notational shorthand � denoting all the
fields present in the action, with d�FP the usual FP
measure.

Gribov proposed to restrict the domain of integration to
the subspace �, where the Hermitian operator Mab is
positive definite. More precisely, we define the Gribov
region as � � fAa

�; @�A
a
� ¼ 0;Mab > 0g. We recognize

that configurations Aa
� 2 � are relative minima of the

functional
R
ddxðAu

�Þ2, u 2 SUðNÞ. The boundary @� of

� is called the (first) Gribov horizon. It was shown with
increasing rigor that� is convex, bounded in all directions
in field space, and that every gauge field has at least one
gauge equivalent representant in � (see [2,3] and refer-
ences therein). The inverse of the FP operator, or equiv-
alently the ghost propagator with external gauge field
Gabðk; AÞ can be used to implement the restriction to �,
as done semiclassically by Gribov. Following [1], we can
write

Gabðk; AÞ ¼ �ab

k2
1

1þ �ðk; AÞ ¼ ðM�1Þabðk; AÞ: (4)

At lowest order, it can be shown that 1þ �ðk; AÞ is a
decreasing function of k [1], hence one can impose

1þ �ð0; AÞ � 0: (5)

Condition (5), known as the Gribov no-pole condition,
implies that the ghost propagator Gabðk; AÞ has no poles
at finite nonvanishing k. Moreover, positivity of Gabðk; AÞ
ensures that the Gribov horizon @� is not crossed. As done
by Gribov [1], the no-pole condition can be embodied into
the partition function using a � function1

Z0 ¼
Z

d��ð1þ �ð0; AÞÞe�SFP : (6)

Later on, Zwanziger [2] was able to implement the no-pole
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1Condition (5) can be implemented by inserting a step function
factor �ð1þ �ðk; AÞÞ. However, in the thermodynamic limit, the
� function can be can be replaced by a � function, see [1,2,4].
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condition to all orders. Relying on the equivalence between
the microcanonical and the canonical Boltzmann ensemble
(see also Sec. II), he was able to show that the partition
function (6) has to be replaced by

Z00 ¼
Z

dA�ð@�A�Þ detMabe�SYMþ�4
R

ddxhðxÞ; (7)

where the Zwanziger horizon function readsZ
ddxhðx; AÞ ¼ g2

Z
ddxddyfabcAb

�ðxÞðM�1Þadðx; yÞ
� fdecAe

�ðyÞ: (8)

The mass parameter � is determined by a gap equation,
commonly called the horizon condition

hhðxÞi ¼ dðN2 � 1Þ; (9)

where hhi is calculated with Z00, i.e. with the measure

d�FPe
�4
R

ddxhðxÞ. The factor dðN2 � 1Þ in the right-hand
side was obtained [2] by determining the lowest eigenvalue
of the FP operator. Working out the condition (9) at lowest
order reproduces the Gribov result [1]. The action corre-
sponding to the partition function (7) contains the nonlocal
horizon term (8). To arrive at a workable quantummodel, it
was shown [3] that (7) can be put in an equivalent local
form by introducing a set of complex conjugate commut-
ing variables ð’ac

� ; �’ac
� Þ, and anticommuting ones

ð!ac
� ; �!ac

� Þ, so that we finally obtain the Gribov-

Zwanziger action

SGZ ¼ SFP þ
Z

ddxð �’ac
� @�D

ab
� ’ac

� � �!ac
� @�D

ab
� !ac

�

� gð@� �!ac
� ÞfabmðD�cÞb’mc

�

� �2gfabcAa
�ð’bc

� þ �’bc
� Þ þ dðN2 � 1Þ�4Þ: (10)

The horizon condition (9) is translated as @�
@� ¼ 0, with �ð�Þ

the effective action, defined as e�� ¼ R
d�e�SGZ . This can

be easily checked, given that we take � � 0. The mass
parameter � turns out to be proportional to �MS, and as

such it can give rise to nonperturbative corrections. This is
not unexpected, as the restriction to the region � is a
highly nontrivial operation, which goes beyond perturba-
tion theory. At the perturbative level, the ghost propagator
stays positive. We are thus far from the horizon and nothing
happens. It is only at lower momenta, where normal per-
turbation theory starts to fail, that the fields begin to feel
the restriction to �. Having brought the action in standard
local form, we have all the usual concepts and machinery
of local quantum field theory to our disposal. A first
important property of (10) is its renormalizability to all
orders of perturbation theory. Hence, the restriction to �
makes perfect sense at the quantum level, and finite results
are found, consistent with the renormalization group [3,5].
We stress here that the action (10), with the horizon con-
dition (9) implemented, is nothing else than the correct
extension to all orders of the usual Yang-Mills action,
supplemented with the Landau gauge fixing, in the pres-

ence of a nontrivial boundary condition, being the no-pole
condition (5). In this fashion, it is assured that we have
taken care of a certain amount of gauge copies, including
those related to the zero modes of Mab. Notice that this
does not mean that the Gribov issue has been completely
solved. It is known that � still contains copies, related to
the fact that

R
ddxðAu

�Þ2 can have many relative minima

starting from the same A�. A further restriction is needed,

keeping only gauge configurations that are absolute min-
ima of

R
ddxðAu

�Þ2; the latter define the fundamental modu-

lar region (FMR) �.
Evidently, the extra fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ can influ-

ence the dynamics of the theory in a nontrivial fashion [6].
These fields arise as a consequence of the presence of the
Gribov horizon. As such, they can give rise to additional
nonperturbative effects. For example, in [7], we have pro-
vided evidence of the existence of a dimension-2 conden-
sate h �’ac

� ’ac
� � �!ac

� !ac
� i in d ¼ 4. A posteriori, this is not

that surprising, given that the restriction to � introduces
the mass scale � into the theory, and that the horizon
condition (9) can be re-expressed at the local level
as hgfabcAa

�ð’ac
� þ �’ac

� Þi ¼ �2�2dðN2 � 1Þ, i.e. a

dimension-2 condensate for d ¼ 4. Nontrivial condensates
are an important source of nonperturbative effects in gauge
theories, hence the general interest in their study. In par-
ticular, dimension-2 condensates attracted a lot of attention
in recent years, see e.g. [5,8] and references therein. In the
current case, the operator ð �’ac

� ’ac
� � �!ac

� !ac
� Þ can be

added to the theory in a way that preserves renormaliz-
ability [7], which is already a remarkable feature, indica-
tive of its possible relevance. We studied the effects of this
condensate using variational perturbation theory, and
found that the gluon propagator2 does not vanish at zero
momentum (Dð0Þ � 0), that the ghost propagator behaves
like � 1

k2
at small momenta, and that there is a violation of

positivity in the gluon propagator [7]. Any of these findings
is in good agreement with all most recent lattice data,
obtained at previously unseen large volumes [9,10]. Also
certain results based on Schwinger-Dyson (SD) and/or
functional renormalization group (FRG) equations are con-
sistent with these data, see e.g. [11,12]. Without taking into
account the effects related to h �’ac

� ’ac
� � �!ac

� !ac
� i, the GZ

action (10) also leads to the positivity violation of the gluon
propagator, however with Dð0Þ ¼ 0, and an infrared en-
hanced ghost. These latter two results are no longer sup-
ported by lattice data. Hence, it seems crucial to take into
account additional nonperturbative effects related to the
restriction to the region � (i.e. the boundary condition) to
allow for consistency between the analytical GZ results
and most recent lattice predictions. The interpretation of
the analytical results of [6,7] and the lattice results of [9]
was challenged in papers like [10,11,13]. It was argued that

2The Landau gluon propagator can be parametrized in terms
of the form factor Dðk2Þ as hAa

�ðkÞAb
�ð�kÞi ¼ �abð��� �k�k�

k2
ÞDðk2Þ.
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the ghost propagator must be infrared enhanced to ensure
confinement, whereby only colorless states are physical.
These statements are based on the Kugo-Ojima (KO)
analysis of gauge theories [14,15]. This analysis relies on
the operator formalism, and it has been shown that, given a
globally well-defined BRST charge QB, the color charge
Qa is a BRST exact variation, Qa ¼ QBð. . .Þ, if the gluon
propagator contains no massless poles. The color charge
Qa is then well defined only if the KO confinement crite-
rion holds

uð0Þ ¼ �1; (11)

with uðk2Þ defined through the following Green function:Z
ddxeikxhDad

� cdðxÞD�be �ceð0ÞiFP

¼ �ab

�
P��ðkÞuðk2Þ �

k�k�

k2

�
(12)

in Minkowski space. h. . .iFP stands for the expectation
value taken with the FP action (3), while P��ðkÞ ¼ g�� �
k�k�=k

2 for the transverse projector. Using the nilpotent

BRST chargeQB, one can invoke its cohomology to define
the physical subspace, and by means of Qa ¼ QBð. . .Þ,
conclude that physical states cannot carry color. A few
comments are in order. First of all, in the KO framework
[14,15], the existence of a globally well-defined BRST
charge is assumed. Thus, the issue of the (non)existence
of a nonperturbatively valid BRST symmetry is not explic-
itly faced. Secondly, the link between the BRST chargeQB

and global color chargeQa is made using the action (1), i.e.
by employing the usual FP gauge fixed action. As such, the
Gribov problem is simply not addressed. It is worth notic-
ing that Kugo and Ojima did not impose the criterion (11),
but they derived it as a condition to be checked/calculated.
Though, nowadays, in functional formalisms as in [11], the
criterion is used as input. Kugo showed in [14] that, in the
Landau gauge, one can rewrite the ghost propagator

GabðkÞ ¼ �ab

k2
1

1þ uðk2Þ þ k2vðk2Þ ; (13)

meaning that the criterion (11) is equivalent to an infrared
enhanced ghost. The ghost enhancement is then imposed as
a boundary condition in order to favor the so-called scaling
type solution of the SD and/or FRG equations [11]. Let us
already draw attention to the close similarity existing
between the no-pole condition (5) and the criterion (11).
Imposing3 �ð0Þ ¼ �1 exactly corresponds to uð0Þ ¼ �1.

II. uð0Þ ¼ �1 AS A BOUNDARY CONDITION

We want to show that the constraint uð0Þ ¼ �1 can be
implemented directly into the theory, by appropriately
modifying the measure one starts from. We shall see that
the resulting action will be exactly the same as the GZ
action. This has several interesting consequences which we

will discuss in Sec. III. We shall first give an overview of
some results from thermodynamics we intend to employ.

A. Microcanonical ensemble and equivalence with the
canonical Boltzmann ensemble in the thermodynamic

limit

We consider a discrete system, whose Hamiltonian is
Hðq; pÞ, with 3N degrees of freedom. The averages in the
microcanonical ensemble are constructed out of

�ðEÞ ¼
Z
H¼E

d� ¼
Z

d��ðE�HÞ;
where d� ¼ d3Nqd3Np represents the classical phase
space and E stands for the constant energy of the system.
Averages in the microcanonical ensemble are defined by

hOiMicr ¼
R

H¼E
d�OR

H¼E
d�

. In order to establish the equivalence

between the microcanonical and the (Boltzmann) canoni-
cal ensemble we rewrite the quantity �ðEÞ in the following
form:

�ðEÞ ¼
Z

d��ðE�HÞ ¼
Z

d�
Z i1þ"

�i1þ"

d�

2�i
e�ðE�HÞ

¼
Z d�

2�i
fð�Þ ¼

Z d�

2�i
e�!ð�Þ; (14)

fð�Þ ¼
Z

d�eð�ðE�HÞÞ; !ð�Þ ¼ � logfð�Þ: (15)

It can be shown that, in the thermodynamic limit, N, V !
1, with N=V fixed, the saddle point approximation be-
comes exact. We refer to [4] for an overview of the proof.
So,

�ðEÞ ¼ 1

2�i
fð�?Þ; with !0ð�?Þ ¼ f0ð�?Þ

fð�?Þ ¼ 0: (16)

From Eq. (16) it follows that

E ¼ hHiBoltz ¼
R
d�He��?HR
d�e��?H

: (17)

This gap equation determines the critical parameter �?.

Analogously, it can also be shown that [4] hOiMicr ¼

hOiBoltz ¼
R

d�Oe��?HR
d�e��?H

for the average of any quantity

Oðq; pÞ.

B. Imposing the KO criterion yields the GZ framework

Starting from (12) and performing Lorentz and color
contractions and taking the p ! 0 limit, we can write

� ðVTÞ�1
Z

ddy
Z

ddxhDad
� ðxÞDae

� ðyÞðM�1Þdeðx; yÞiFP
¼ ðN2 � 1Þððd� 1Þuð0Þ � 1Þ; (18)

after passing to Euclidean space, as in any functional
or lattice approach. VT denotes the spacetime volume.
The identification between h. . . cdðxÞ �ceðyÞiFP and
h. . . ðM�1Þdeðx; yÞiFP can be easily proven using the path

3�ð0Þ is related to �ð0; AÞ by making the gauge field dynami-
cal and performing the corresponding path integration.
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integral (3). After discarding terms that are total deriva-
tives, one easily sees that the quantity in the left-hand side
of (18) is, up to the sign, the Zwanziger horizon function
hðxÞ. More precisely, we have

ð18Þ ¼
Z ddy

VT
ddxhgfakdAk

�ðxÞðM�1Þedðx; yÞgfameAm
�ðyÞiFP

¼ �ðVTÞ�1
Z

ddxhhðxÞiFP ¼ �hhiFP: (19)

We observe that the KO condition cannot be realized with
the standard FP measure d�FP, otherwise we would have

hhðxÞiFP ¼ dðN2 � 1Þ; (20)

which would contradict Zwanziger’s result (9), obtained by
restricting the path integral to the Gribov region �. We
now implement the KO criterion uð0Þ ¼ �1 as a boundary
condition, amounting to start from the modified measure

d�FP ! d�0 � d�FP�

�
VTdðN2 � 1Þ �

Z
ddxhðxÞ

�
;

which clearly implements hhðxÞi ¼ dðN2 � 1Þ, or equiva-
lently uð0Þ ¼ �1. We are led to the partition functionZ

d�0

¼
Z
d�FP�

�
VTdðN2�1Þ�

Z
ddxhðxÞ

�

¼
Z
dA�ð@AÞdetMe�SYM�

�
VTdðN2�1Þ�

Z
ddxhðxÞ

�

¼
Z
d��

�
VTdðN2�1Þ�

Z
ddxhðxÞ

�
e�SFP : (21)

Expression (21) defines a microcanonical ensemble. Since
we are working in a continuum field theory, we are working
in the thermodynamic limit, hence we have an equivalence
with a Boltzmann canonical ensemble as outlined in the
previous section. Using analogous arguments as there, we
arrive atZ

d�0 ¼
Z

d�FPe
�4
R

ddxhðxÞ �
Z

d�FPe
�SH ; (22)

where the mass parameter � follows from the gap equation

dðN2 � 1Þ ¼ hhðxÞiBoltz ¼
R
d�FPe

�SHhðxÞR
d�FPe

�SH
; (23)

which is the analogue of (17). We conclude that we can
consistently encode the boundary condition (11) at the
level of the action, which turns out to be identical to the
GZ action, Eq. (7). Of course, we can localize it into the
form (10), with corresponding local formulation of the gap
equation.

III. DISCUSSION

Naively, one might already expect that the introduction
of a nontrivial boundary condition can seriously influence
the dynamics of the theory. One of our main points is to
stress that one should introduce the boundary condition
into the theory from the beginning, to fully grasp all its

nontrivial aspects. Having at our disposal an action auto-
matically implementing the boundary condition, we can
study an important aspect: the symmetries of the theory in
the presence of the boundary. In principle, imposing a
boundary could jeopardize certain symmetries of the origi-
nal action. We have already shown in [7] that placing a
boundary in field space at the first Gribov horizon breaks
the conventional BRST symmetry, as sSGZ ¼
g�2

R
ddxfabcðAa

�!
bc
� � ðDam

� cmÞð �’bc
� þ ’bc

� ÞÞ � 0. We

notice that the BRST generator (2) has a natural extension
to the extra fields ð �’ac

� ; ’ac
� ; �!ac

� ;!ac
� Þ, forming 2 pairs of

BRST doublets, s’ac
� ¼ !ac

� , s!ac
� ¼ 0, !ac

� ¼ ’ac
� ,

s’ac
� ¼ 0. In the absence of the GZ restriction or equiv-

alently of the KO criterion, i.e. when � � 0, we are then
assured that these fields are trivial in the BRST cohomol-
ogy, thus completely decoupling from the physical sub-
space [16]. Let us come to another important statement. If
Gribov copies are taken into account à la GZ, which is
equivalent to imposing the KO criterion as we have verified
in the previous section, the precise meaning of the KO
confinement criterion becomes unclear. Since the BRST
symmetry is broken, one can no longer simply use it to
define the physical subspace. It is sometimes mentioned in
the literature that there might be a nonperturbative, glob-
ally well-defined BRST charge Q0

B, and it is this Q
0
B KO is

referring to [11,13]. We cannot exclude this possibility, but
this is a highly nontrivial statement and, obviously, it asks
for a proof. At present, we are unaware of any such proof.
Even if the charge Q0

B would be known, the KO analysis
would need to be reworked from the start, as it explicitly
relies on the FP action (1) and conventional BRST sym-
metry (2). Simply stating that Q0

B must exist in order to
define the physical subspace analogously to what is done at
the perturbative level, does, in our opinion, not solve the
problem. Also, the relation between a new BRST charge
Q0

B and the global color charge would need to be re-
established, if any relation exists to begin with. One can
speculate that it might be possible to modify s into s�, such

that lim�!0s� ¼ s and s�SGZ ¼ 0. However, such a pos-

sibility can be easily disproved. Indeed, as � has mass
dimension 1, and by keeping in mind that the BRST
generator s does not affect the dimension of the fields,4 it
is impossible to introduce extra �-dependent terms in the
BRST transformation of the fields while preserving local-
ity, Lorentz covariance, and global SUðNÞ structure. Let us
briefly return to the functional SD (FRG) approaches. Now
that a renormalizable action has been constructed, which
implements the desired boundary condition explicitly, one
can write down the corresponding SD (FRG) equations and
try to solve them, given that the gap Eq. (23) must be
solved simultaneously. We expect that different kinds of
solutions, similar to those found in [11], will emerge. A
way to distinguish between them could be based on select-

4The usual canonical dimensions are assigned to the fields
[16].
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ing the most stable solution, i.e. the one with the lowest
corresponding vacuum energy. We notice that there is still
a lot of information available about the action (10), e.g.
nonrenormalization properties typical of the Landau
gauge, a renormalizable softly broken Slavnov-Taylor
identity, etc. [7]. We conclude that in the current spirit of
using the KO condition (11) as in [11,13], there is no clear
connection between the KO criterion uð0Þ ¼ �1 and the
highly nontrivial issue of confinement. All that one can say
is that there is a violation of positivity in the gluon propa-
gator, which is indicative of confinement, but certainly not
proof of it. Also, in the light of our previous results, we
disagree with the statement made in [10,11,13] about the
fact that the SD(FRG) solution with an infrared enhanced
ghost propagator would refer to the absolute Landau
gauge, i.e. to the restriction to the FMR �.
Unfortunately, at present, a way to implement the restric-
tion to the FMR � remains completely unknown.
Moreover, we remind that the recent lattice data have given
quite clear evidence about the fact that the ghost propaga-
tor is not enhanced in the infrared, within the current
accuracy of implementing the Landau gauge as the mini-
mum of the functional

R
ddxðAu

�Þ2, u 2 SUðNÞ [9]. Even if
in the future more powerful algorithms would bring the
simulations closer to the FMR�, the ghost propagator will
not get more enhanced than before, on the contrary [17].
Moreover, we have shown in this paper that the KO bound-
ary condition is equivalent with the GZ framework, which
explicitly refers to the restriction to the Gribov region �.
This is irrespective of the fact that the ghost is enhanced or
not, implementing KO breaks the conventional BRST
symmetry, and refers to �, not to �. We wish to underline
that implementing the boundary as in Eqs. (22) and (23)
will not necessarily give rise to an infrared enhanced ghost.
Additional nontrivial quantum effects can combine with
the boundary effect, we refer for instance to the effects of
the operator �’ac

� ’ac
� � �!ac

� !ac
� in the case under study. We

can make the analogy with spontaneous symmetry break-

ing: although the starting action in that case enjoys a
certain symmetry, nonperturbative quantum effects can
induce a shift from the symmetric, but unstable, vacuum,5

causing qualitative and quantitative effects in the theory.
In conclusion, we hope that this paper has clarified the

relation between the KO and GZ framework. Our main
result is expressed by Eqs. (22) and (23), which show that
the KO and GZ frameworks are equivalent, provided the
KO boundary condition is properly taken into account from
the beginning. The conventional BRSToperator (2) suffers
from a soft breaking, which relies precisely on the imple-
mentation of the boundary condition. Some ingredients in
certain formalisms, which we have tried to outline, have
thus to be considered as assumptions rather than as proofs.
In particular, the precise relation between implementing
the KO criterion and confinement remains to be clarified.
One of the challenges lying ahead is how to define what the
relevant physical operators are in the KOGZ framework, if
there is no (local) nilpotent BRST symmetry generator
found.

ACKNOWLEDGMENTS

D. Dudal and N. Vandersickel are supported by the
Research-Foundation Flanders (FWO Vlaanderen). S. P.
Sorella is supported by the FAPERJ, under the program
Cientista do Nosso Estado, under Contract No. E-26/
100.615/2007. The Conselho Nacional de
Desenvolvimento Cientı́fico e Tecnológico (CNPq-
Brazil), the Faperj, Fundação de Amparo à Pesquisa do
Estado do Rio de Janeiro, the SR2-UERJ and the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES) are gratefully acknowledged for finan-
cial support.

[1] V. N. Gribov, Nucl. Phys. B139, 1 (1978).
[2] D. Zwanziger, Nucl. Phys. B323, 513 (1989).
[3] D. Zwanziger, Nucl. Phys. B399, 477 (1993).
[4] A. Münster, Statistical Thermodynamics (Springer-Verlag

Academic Press, Berlin-Heidelberg, 1969), Vol. 1.
[5] D. Dudal et al., Phys. Rev. D 72, 014016 (2005).
[6] D. Dudal et al., Phys. Rev. D 77, 071501 (2008).
[7] D. Dudal et al.Phys. Rev. D 78, 065047 (2008).
[8] M.N. Chernodub and E.M. Ilgenfritz, Phys. Rev. D 78,

034036 (2008).
[9] A. Cucchieri and T. Mendes, Proc. Sci., LATTICE (2007)

297; I. L. Bogolubsky et al., Proc. Sci., LATTICE (2007)
290; A. Cucchieri and T. Mendes, Phys. Rev. Lett. 100,
241601 (2008); Phys. Rev. D 78, 094503 (2008); V. G.

Bornyakov et al., Phys. Rev. D 79, 074504 (2009); I. L.
Bogolubsky et al., Phys. Lett. B 676, 69 (2009).

[10] A. Maas, Phys. Rev. D 79, 014505 (2009).
[11] C. S. Fischer et al., arXiv:0810.1987.
[12] A. C. Aguilar et al.Phys. Rev. D 78, 025010 (2008); Ph.

Boucaud et al., J. High Energy Phys. 06 (2008) 099.
[13] A. Sternbeck and L. von Smekal, arXiv:0811.4300.
[14] T. Kugo, arXiv:hep-th/9511033.
[15] T. Kugo and I. Ojima, Prog. Theor. Phys. Suppl. 66, 1

(1979).
[16] O. Piguet and S. P. Sorella, Lect. Notes Phys. M 28, 1

(1995).
[17] A. Cucchieri, Nucl. Phys. B508, 353 (1997).

5We refer to condensates which are dynamically favored by
lowering the vacuum energy.

GRIBOV NO-POLE CONDITION, ZWANZIGER HORIZON . . . PHYSICAL REVIEW D 79, 121701(R) (2009)

RAPID COMMUNICATIONS

121701-5


