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Working within the theory of modified Gauss-Bonnet gravity, we show that Friedmann-Lemaı̂tre-

Robertson-Walker–like power-law solutions only exist for a very special class of fðGÞ theories.

Furthermore, we point out that any transition from decelerated to accelerated expansion must pass

through G ¼ 0, and no function fðGÞ that is differentiable at this point can admit both a decelerating

power-law solution and any accelerating solution. This strongly constrains the cosmological viability of

fðGÞ gravity, since it may not be possible to obtain an expansion history of the Universe which is

compatible with observations. We explain why the same issue does not occur in fðRÞ gravity and discuss

possible caveats for the case of fðGÞ gravity.
DOI: 10.1103/PhysRevD.79.121301 PACS numbers: 98.80.Cq

I. INTRODUCTION

One of the most remarkable developments in cosmology
over the past decade has been the confrontation of the
standard model of cosmology with observations, leading
to the conclusion that the Universe is accelerating in the
current epoch. This rather counterintuitive result has led to
one of the most challenging theoretical puzzles in 21st
century physics, namely, to provide an explanation for
this late-time cosmic acceleration. Currently the most
popular idea is that the energy density of the Universe is
at the present time dominated by some mysterious dark
component known as dark energy and there have been
many proposals offered to explain its nature. At the mo-
ment, the one which appears to fit all available observa-
tions (supernovae Ia [1], cosmic microwave background
anisotropies [2], large scale structure formation [3], baryon
oscillations [4], and weak lensing [5]), turns out to be the
so-called concordance model in which a tiny cosmological
constant is present [6] and ordinary matter is dominated by
cold dark matter (CDM). However, despite its success, the
�CDM model is affected by significant fine-tuning prob-
lems related to the vacuum energy scale, so other exotic
negative-pressure fluids, often described in terms of scalar
fields [7], have been proposed to address these issues. The
problem remains, however, that at the present time there is
no direct experimental evidence for the existence of the
scalar fields responsible for the late-time (and also the
early-time) accelerated expansion rate of the Universe
and this has led to a search for other viable theoretical
schemes, many of which are based on the idea that the
‘‘dark sector’’ originates from modifications of the gravi-
tational interaction itself.

Currently, one of the most popular alternatives to the
concordance model is based on modifications of the
Einstein-Hilbert action. Such models first became popular
in the 1980s because it was shown that they naturally admit
a phase of accelerated expansion which could be associ-

ated with an early Universe inflationary phase [8]. The fact
that the phenomenology of dark energy requires the pres-
ence of a similar phase (although only a late-time one) has
recently revived interest in these models. In particular, the
idea that dark energy may have a geometrical origin, i.e.,
that there is a connection between dark energy and a non-
standard behavior of gravitation on cosmological scales, is
currently a very active area of research. Additionally, such
modifications are appealing due to the fact that they can
evade constraints on the strength of the gravitational field
which are restricted to below solar system scales.
One of the most promising modifications to date are

those based on gravitational actions which are nonlinear
in the Ricci curvature R and/or contain terms involving
combinations of derivatives of R [9–12]. These theories
have provided a number of very interesting results on both
cosmological [13–17] and astrophysical [15,18] scales.
One of the nice features of these theories is that the field
equations can be recast in a way that the higher order
corrections are written as an energy-momentum tensor of
geometrical origin describing an ‘‘effective’’ source term
on the right-hand side of the standard Einstein field equa-
tions [13,14]. In this curvature quintessence scenario, the
cosmic acceleration can be shown to result from such a
new geometrical contribution to the cosmic energy density
budget, due to higher order corrections of the Hilbert-
Einstein Lagrangian.
More recently modifications based on a Lagrangian

density which is some general function of the Ricci scalar
and the Gauss-Bonnet term fðR;GÞ [19,20] have been
studied in the context of cosmology. In particular, a simple
extension of Einstein gravity: fðR;GÞ ¼ R=2þ fðGÞ has
been investigated by a number of authors [21–27].
Corrections of this type can be motivated from low-energy
string effective actions and compactification of other
higher dimensional theories [28]. Uddin, Lidsey, and
Tavakol [29] considered the existence and stability of
power-law scaling solutions in fðGÞ models and found
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that scaling solutions exist in the model fðGÞ ¼ �2
ffiffiffiffiffiffiffiffi
�G

p
,

where � is an arbitrary constant. Inspired by the work on
fðRÞ gravity by Carloni et al. [30] and Amendola et al.
[31], Zhou et al. [32,33] used dynamical systems tech-
niques to study the cosmology of fðGÞ models and argued
that one could find cosmologically viable trajectories that
mimic the �CDM cosmic history in the radiation and
matter dominated periods, but also have a distinctive sig-
nature at late times

In this paper, we investigate the cosmological viability
of fðGÞ models by investigating the conditions under
which one can find power-law solutions that mimic the
standard Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
expansion history of the Universe. We discover that such
solutions only exist for a very special class of fðGÞ theo-
ries. Furthermore, we show that for there to be a transition
between decelerated and accelerated expansion phases, G
must pass through zero, and there are no functions fðGÞ
that are differentiable at this point that admit both a power-
law decelerating solution and any accelerating solution.
This seriously constrains the cosmological viability of
fðGÞ gravity, since it may not be possible to find an
expansion history of the Universe compatible with
observations.

II. FIELD EQUATIONS FOR GENERAL fðGÞ
We consider the following action within the context of

four-dimensional homogeneous and isotropic spacetimes,
i.e., the FLRW universes with no spatial curvature:

A ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p ½Rþ fðGÞ þLm�; (1)

where R is the Ricci scalar f is a general differentiable (at
least C2) function of the Gauss-Bonnet term,

G ¼ R2 � 4R��R
�� þ R����R

����; (2)

andLm represents the matter contribution. As we know, in
four dimensions, the Gauss-Bonnet term is a total differ-
ential, and hence for fðGÞ ¼ G, the field equations remain
invariant. However for other functions this term has non-
trivial contributions to the field equations. For the homo-
geneous and isotropic spacetimes, the field equations are

(i) the Raychaudhuri equation

_�þ 1

3
�2 ¼ ��2

2
ð�þ 3PÞ þ 4

9
�3fGG

_G

� ðf�GfGÞ � 3

�
G _fG � 4

3
�2 €fG; (3)

where � is the volume expansion which defines a
scale factor aðtÞ along the fluid flow lines via the
standard relation � ¼ 3 _a=a, and fnG abbreviates

@nf=ð@GÞn for n ¼ 1; 2;

(ii) the Friedmann equation

�2 þ 8
3�

3fGG
_G þ 3f ¼ 3�2�þ 3GfG; (4)

(iii) the total trace of the Einstein equations

�4�2 � 6 _� ¼ 3�2ð3P� �Þ þ 12ðf� GfGÞ
þ 8

3
�3fGG

_G þ 18

�
G _fG

þ 8�2 €fG; (5)

(iv) the conservation equation for standard matter

_� ¼ ��ð�þ PÞ: (6)

For FLRW spacetimes, the Gauss-Bonnet term is given by

G ¼ 8

9
�2

�
_�þ 1

3
�2

�
¼ 24

_a2 €a

a3
: (7)

We can easily see that accelerating models have G > 0,
while decelerating models have G < 0. In particular, any
expansion history evolving from deceleration to accelera-
tion must pass through G ¼ 0. This observation will be of
importance in the following discussion.

A. Requirements for the existence of power-law
solutions

Let us now assume there exists an exact power-law
solution to the field equations; i.e., the scale factor behaves
as

aðtÞ ¼ a0t
m: (8)

From now on, we assume that m is a fixed real number. If
0<m< 1, then the required power-law solution is decel-
erating, while for m> 1 it is accelerating. Since we know
that within the standard paradigm, the expansion history of
the Universe underwent a power-law decelerating phase, it
is important to study these kinds of exact solutions in our
modified gravity models.
We further assume that matter can be described by a

barotropic perfect fluid such that P ¼ w�, with w 2
½�1; 1�. From the energy conservation equation, we obtain

�ðtÞ ¼ �0t
�3mð1þwÞ; (9)

and the Gauss-Bonnet term becomes

G ¼ 24m3ðm� 1Þt�4 � �mt
�4: (10)

The negative sign of G for all decelerating models is
reflected by �m < 0 for the power-law models with 0<
m< 1.
Using the background solutions above, we can write the

Friedmann, Raychaudhuri and trace equations in terms of
functions of time t only. We can assume with no loss of
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generality that t > 0. We then solve (10) for t and rewrite
these equations in terms ofG, fðGÞ and its derivatives. The
Friedmann equation, for example, becomes

f� fGG þ 3m2

ffiffiffiffiffiffiffi
G
�m

s
� 96fGGG2m3

�m

� K

�
G
�m

�ð3=4Þmð1þwÞ ¼ 0; (11)

whereK ¼ �0a
3ð1þwÞ
0 . Note that for the power-law solution

(8), G=�m is positive at all times by definition (10), and
therefore Eq. (11) is real-valued over the range of G.

Since we want (8) to be a solution at all times, i.e., G
spans over an entire branch of the real axis, we can inter-
pret (11) as a differential equation for the function f in G
space. This differential equation has the general solution

fðGÞ ¼ Am

ffiffiffiffi
~G

q
þ Bmw

~Gð3=4Þmð1þwÞ þ C1G

þ C2Gð1=4Þ�ðm=4Þ: (12)

We have abbreviated ~G � 24G=�m, which we repeat is
positive for the power-law solution (8), and

Am ¼ �
ffiffiffi
3

2

s
m2ðm� 1Þ
mþ 1

; (13)

Bmw ¼ �22�ð9=4Þmð1þwÞ3�ð3=4Þmð1þwÞðm� 1ÞK
4�mð19þ 15wÞ þ 3m2ð4þ 7wþ 3w2Þ : (14)

The constants C1;2 are constants of integration. Since we

know that the term linear in G does not change the field
equations, we can without any loss of generality assume
C1 ¼ 0. Furthermore, if we wish to ensure that for m ¼
2=½3ð1þ wÞ� and K ¼ 4=½3ð1þ wÞ2�, the theory reduces
to general relativity (GR), i.e., fðGÞ ¼ 0, then this con-
strains C2 ¼ 0. Hence, for an exact power-law solution to
exist, the required form of the function f becomes

fðGÞ ¼ Am

ffiffiffiffi
~G

q
þ Bmw

~Gð3=4Þmð1þwÞ: (15)

We note that the above form of f identically satisfies the
other field equations, if we similarly convert them as
differential equations in G space. The coefficients Am

and Bmw are real-valued and nonzero unless m ¼ 1, in
which case aðtÞ / t. In general, the function fðGÞ is real-
valued only if G=�m > 0, which is true by construction for
the exact power-law solution (8). Similar results were
found in [29] using a scalar-tensor approach to fðGÞ
gravity.

It is interesting to note that an exact GR-like solution

[m ¼ 2=3ð1þ wÞ] is possible with nonzero C2 for fðGÞ ¼
C2Gð1þ3wÞ=4ð1þwÞ for values of w for which fðGÞ is real-
valued.

B. Coexistence of decelerating power-law solutions and
accelerating solutions

To mimic the standard expansion history of the Universe
in fðGÞ gravity, we assume there exists an exact decelerat-
ing power-law solution, and that the Universe was well
described by this solution in the past, before coming to the
accelerated phase. As argued in the previous section, the
existence of the exact solution fixes the form of fðGÞ as in
(15), and the deceleration fixes the power m as 0<m< 1,
implying �m < 0.
Now, if any additional accelerating solution exists in the

whole solution space of the model, then G > 0 for this
solution as evident from (7). However, we can see from the
form of fðGÞ that this is not possible, as for G > 0 the
function is no longer real-valued.
This problem can be artificially remedied by including

absolute values of ~G in (15) (similarly to [32]), i.e., re-
defining

~fðGÞ ¼ Am

ffiffiffiffiffiffiffi
j~Gj

q
þ Bmwj~Gjð3=4Þmð1þwÞ: (16)

This function ~fðGÞ now seems to allow for both a decel-
erating power-law solution and accelerating solutions.

However, ~fðGÞ is not differentiable at G ¼ 0 and hence
no longer a C2 function, which is required for any
Lagrangian in the Einstein-Hilbert action. Any expansion
history evolving from deceleration to acceleration must
pass through G ¼ 0, and we can easily see that the field
equations are no longer defined at this point. Hence we can
conclude that nowell-definedC2 action in fðGÞ gravity can
allow for exact decelerating power-law solutions to coexist
with accelerating solutions.

C. Comparison to fðRÞ gravity
One important difference between fðRÞ and fðGÞ grav-

ity is that in fðGÞ gravity the energy-momentum tensor
decouples from the correction terms. In fðRÞ gravity on the
other hand, the correction term modifies the matter energy-
momentum tensor, which becomes rescaled to ~TM

ab ¼
1

f0ðRÞT
M
ab. Since in fðGÞ gravity matter decouples from the

correction terms any matter dominated era must strictly
obey the corresponding GR type power-law behavior.
However, in fðRÞ gravity a similar constraint on the form
of fðRÞ can be found by requiring the existence of exact
power-law solutions; this is currently under investigation
[34].
The analogue also breaks down in the sense that any

cosmologically viable model must make a transition from
deceleration to acceleration, and therefore go through G ¼
0 [see (7)]. This poses a problem for the simple models
including terms of the form Gn with n < 1, which are not
differentiable at G ¼ 0. The value of the Ricci scalar R, on
the other hand, does not necessarily pass through R ¼ 0,
and therefore models including terms like Rn may still be
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viable. In fact if fðRÞ;RjR!0� ¼ 0 for any fðRÞ-gravity
model, then the plane R ¼ 0 is actually an invariant sub-
manifold. This means that no solution can cross that plane
in phase space. For example, for any n < 1, Rn is not
differentiable at R ¼ 0, but any solution can only approach
this plane from either side and not reach it in finite time. In
fact, as shown in [35,36], in Rn gravity a Friedmann-like
matter dominated decelerated solution coexists with a
de Sitter-like accelerated solution. These two fixed points
can be linked without R changing sign; i.e., the field
equations are well defined and fully differentiable along
the entire orbit.

III. DISCUSSION AND CONCLUSION

The expansion history of the Universe is thought to have
undergone a phase of decelerated power-law expansion
followed by late-time acceleration. Therefore, power-law
solutions play an important role in cosmology as matter
dominated phases that later connect to an accelerating
phase.

In this work we have shown that exact power-law solu-
tions in fðGÞ gravity only exist for the very special class of
models given in (15). In particular, many of the popular
fðGÞ models, e.g., all examples considered in [37], do not
allow for any exact power-law solutions. This means that
for these models, there exists no exact matter dominated
solution, and therefore these models may not be of cosmo-
logical interest.

Furthermore, we have shown that decelerating power-
law solutions cannot coexist with any accelerating solu-
tions, since no differentiable function fðGÞ can admit both
decelerating power-law solutions and accelerating solu-
tions. The problem may be remedied by including absolute
values in (15). However, this makes fðGÞ nondifferentiable
at G ¼ 0, which is the value G takes when the scale factor

evolves from deceleration to acceleration, and therefore
cannot be ignored. This result seriously constrains the
cosmological viability of fðGÞ gravity, since it may not
be possible to obtain an expansion history similar to the
�CDM model in this context.
This issue has not been addressed in recent papers [32],

where dynamical systems methods were used to study
certain classes of fðGÞ-gravity models. It must be empha-
sized that even if equilibrium points corresponding to both
decelerating power-law and accelerating solutions are
found to coexist as in [32], there cannot exist any trajecto-
ries connecting these points, since these solutions can only
coexist for actions that are nondifferentiable at the transi-
tion from deceleration to acceleration.
One possible way around this problem stems from the

fact that our conclusions are based on the requirement that
there exists an exact power-law solution. If however the
scale factor behaves like aðtÞ / e�ttm, then at early times
aðtÞ / tm. In this case the basic assumption of our analysis
is not satisfied.
We therefore conclude that when looking for cosmolog-

ically viable solutions or fixed points in the dynamical
systems state space in fðGÞ gravity, one should not look
for exact power-law solutions, but rather exact solutions
that approximate decelerating power-law solutions at early
times. Furthermore, we must restrict ourselves to functions
fðGÞ that are at least C2 functions, and, in particular,
differentiable at G ¼ 0.
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