Variants of the dark left-right gauge model: Neutrinos and scotinos

Ernest Ma

Department of Physics and Astronomy, University of California, Riverside, California 92521, USA (Received 11 April 2009; published 25 June 2009)

In the recently proposed dark left-right gauge model (DLRM) of particle interactions, the usual lefthanded lepton doublet $(\nu, e)_L$ transforming under $SU(2)_L$ is accompanied by the *unusual* right-handed fermion doublet $(n, e)_R$ transforming under $SU(2)_R$, where n_R is *not* the Dirac mass partner of ν_L . In this scenario, whereas ν_L is certainly a neutrino, n_R should be considered a *scotino*, i.e. a dark-matter fermion. Variants of this basic idea are discussed, including its minimal *scotogenic* realization.

DOI: 10.1103/PhysRevD.79.117701

PACS numbers: 12.60.Cn, 95.35.+d

I. INTRODUCTION

The gauge group $SU(3)_C \times SU(2)_L \times U(1)_V$ of the standard model (SM) of particle interactions treats left-handed and right-handed fermions differently, with the electric charge given by $Q = T_{3L} + Y$. To restore left-right symmetry, it is often proposed that the extension $SU(3)_C \times$ $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ be considered, where Q = $T_{3L} + T_{3R} + (B - L)/2$. In that case, the fermion content of the SM gains one extra particle, i.e. ν_R in the righthanded lepton doublet $(\nu, l)_R$. Connecting this with the usual left-handed lepton doublet $(\nu, l)_L$ through a Higgs bidoublet, ν_R pairs with ν_L to obtain a Dirac mass, just as l_R does with l_L . Assuming $SU(2)_R \times U(1)_{B-L}$ is broken to $U(1)_{Y}$ through a Higgs triplet transforming as (1, 1, 3, 1), ν_R gets a large Majorana mass, thereby inducing a small seesaw mass for ν_L . The above is a well-known scenario for what the addition of ν_R would do for understanding the existence of tiny neutrino masses. For a more general discussion of the $SU(2)_R$ breaking scale, see Ref. [1].

Suppose the mass connection between ν_R and ν_L is severed without affecting l_R and l_L , then ν_L and ν_R can be different particles, with their own interactions. Whereas ν_L is clearly still the well-known neutrino, ν_R may become something else entirely. As shown in Ref. [2], it may in fact be a *scotino*, i.e. a dark-matter fermion, and to avoid confusion, it is renamed n_R . This is accomplished in a nonsupersymmetric $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)$ model with the imposition of a global U(1) symmetry *S*, such that the breaking of $SU(2)_R \times S$ will leave the generalized lepton number $L = S - T_{3R}$ unbroken. It is called the dark left-right model (DLRM), to distinguish it from the alternative left-right model (ALRM) proposed 22 years ago [3,4] which has the same crucial property that n_R is *not* the mass partner of ν_L .

II. FERMION CONTENT

The fermion structure of the DLRM under $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1) \times S$ is given by [2]

$$\psi_L = {\binom{\nu}{e}}_L \sim (1, 2, 1, -1/2; 1),$$

$$\psi_R = {\binom{n}{e}}_R \sim (1, 1, 2, -1/2; 1/2),$$
(1)

$$Q_L = \begin{pmatrix} u \\ d \end{pmatrix}_L \sim (3, 2, 1, 1/6; 0),$$

$$d_R \sim (3, 1, 1, -1/3; 0),$$
(2)

$$Q_R = {\binom{u}{h}}_R \sim (3, 1, 2, 1/6; 1/2),$$

$$h_L \sim (3, 1, 1, -1/3; 1),$$
(3)

where *h* is a new heavy quark of charge -1/3. The above fermionic content was first studied in Ref. [5] and also in Ref. [6], without the identification of n_R as a scotino.

To allow e_L to pair with e_R to form a Dirac fermion, the Higgs bidoublet

$$\Phi = \begin{pmatrix} \phi_1^0 & \phi_2^+ \\ \phi_1^- & \phi_2^0 \end{pmatrix} \sim (1, 2, 2, 0; 1/2)$$
(4)

is added so that m_e is obtained from $v_2 = \langle \phi_2^0 \rangle$. At the same time, v_L is connected to n_R through ϕ_1^0 . However, $\langle \phi_1^0 \rangle = 0$ will be maintained because ϕ_1^0 has $S - T_{3R} = 1$, whereas that of ϕ_2^0 is zero. As shown in Ref. [2], the spontaneous breaking of $SU(2)_R \times S$ leaves the residual symmetry $L = S - T_{3R}$ unbroken, where L is the conventional lepton number assigned to v and e. Here n has L = $S - T_{3R} = 0$, whereas W_R^{\pm} has $L = S - T_{3R} = \mp 1$, and it does not mix with W_L^{\pm} , in contrast to the case of the conventional left-right model, where such mixing is unavoidable. Further, the bidoublet

$$\tilde{\Phi} = \sigma_2 \Phi^* \sigma_2 = \begin{pmatrix} \bar{\phi}_2^0 & -\phi_1^+ \\ -\phi_2^- & \bar{\phi}_1^0 \end{pmatrix} \sim (1, 2, 2, 0; -1/2)$$
(5)

is prevented by S from coupling ψ_L to ψ_R , thereby ensuring the absence of tree-level flavor-changing neutral currents, which was not possible in the conventional nonsupersymmetric left-right model.

In the quark sector, Q_L couples to Q_R through Φ , but not Φ . Hence m_u is obtained from v_2 , and there is no mixing between d and h. The former has L = 0, but the latter has $L = S - T_{3R} = 1$. For d_L to pair with d_R , and h_R to pair with h_L , the Higgs doublets

$$\Phi_{L} = \begin{pmatrix} \phi_{L}^{+} \\ \phi_{L}^{0} \end{pmatrix} \sim (1, 2, 1, 1/2; 0),$$

$$\Phi_{R} = \begin{pmatrix} \phi_{R}^{+} \\ \phi_{R}^{0} \end{pmatrix} \sim (1, 1, 2, 1/2; -1/2)$$
(6)

are needed. Note that $v_4 = \langle \phi_R^0 \rangle$ will break $SU(2)_R \times U(1)$ to $U(1)_Y$ as desired, and the leptoquark *h* gets a heavy mass of order v_4 .

III. EXOTIC VARIANTS

The fermion sector may be more exotic. For example, Eq. (1) may be replaced by

$$\psi_L = \binom{\nu}{e}_L \sim (1, 2, 1, -1/2; 1),$$

$$e_R \sim (1, 1, 1, -1; 1),$$
(7)

$$\psi_R = \binom{n}{E}_R \sim (1, 1, 2, -1/2; -1/2),$$

$$E_L \sim (1, 1, 1, -1; 0).$$
(8)

In this case, *E* has L = 0, *n* has L = -1, m_e comes from $v_3 = \langle \phi_L^0 \rangle$, m_E from v_4 , and neither Φ nor $\tilde{\Phi}$ couples to $\bar{\psi}_L \psi_R$.

As another example, Eqs. (2) and (3) may be replaced by

$$Q_L = {\binom{u}{d}}_L \sim (3, 2, 1, 1/6; 0), \qquad u_R \sim (3, 1, 1, 2/3; 0),$$
(9)

$$Q_R = \begin{pmatrix} f \\ d \end{pmatrix}_L \sim (3, 1, 2, 1/6; -1/2),$$

$$f_L \sim (3, 1, 1, 2/3; -1).$$
(10)

In this case, f is an exotic quark of charge 2/3 and L = -1. Here, Q_L couples to Q_R through Φ , but not $\tilde{\Phi}$, m_d comes from v_2 , m_u from v_3 , and m_f from v_4 .

IV. MASSES FOR ν_L AND n_R

With the above Higgs content, ν_L and n_R remain massless. Consider now the various ways that they acquire masses:

- (1) In the DLRM [2], Higgs triplets under $SU(2)_L$ and $SU(2)_R$ are used separately for ν_L and n_R masses.
- (2) In Ref. [5], they are massless.

- (3) In Ref. [6], they acquire radiative masses separately from the addition of two charged scalar singlets.
- (4) In the ALRM [3], the usual lepton doublet is actually part of a bidoublet:

$$\begin{pmatrix} \nu_e & E^c \\ e & N_E^c \end{pmatrix}_L \sim (1, 2, 2, 0),$$
 (11)

which means that ν_e and *e* have $SU(2)_R$ interactions. In the original proposal, ν_L and n_R are massless, but they can acquire seesaw masses separately through the many other fields available in the 27 representation of E_6 , as explained in Ref. [7]. One of the three n_R copies in this supersymmetric model pairs with the neutral gaugino from the breaking of $SU(2)_R \times U(1) \rightarrow U(1)_Y$ to form a Dirac fermion. The other two are light and considered as sterile neutrinos which mix with ν_L through the soft term $\nu_e N_E^c - eE^c$ which breaks *R* parity.

- (5) A simple variation of the DLRM also allows neutrino masses to be radiatively generated by dark matter (i.e. *scotogenic*) in one loop [8–23]. Instead of Δ_L, a scalar singlet χ ~ (1, 1, 1, 0; −1) is added, then the trilinear scalar term Tr(ΦΦ[†])χ is allowed. Using the soft term χ² to break L to (−)^L, a scotogenic neutrino mass is obtained as shown in Fig. 1. It is also possible to do this in two loops [24,25] and three loops [26–28].
- (6) Since the scotogenic mechanism of Fig. 1 does not care how n_R acquires a Majorana mass, it may be accomplished with three neutral singlet fermions n_L with S = 0 instead of the Higgs triplet Δ_R. Now the Yukawa coupling n

 _L(n_Rφⁿ_R e_Rφ⁺_R) is allowed, as well as a Majorana mass for n_L. Hence n_R gets an induced Majorana mass which is essential for Fig. 1. Note that n_L does not couple to (ν_Lφ⁰_L e_Lφ⁺_L) because of S.

In this minimal variant, the Z' mass comes entirely from the Φ_R doublet as in the ALRM, hence the prediction

$$M_{W_R}^2 = \frac{(1-2x)}{(1-x)} M_{Z'}^2 + \frac{x^2}{(1-x)^2} M_{W_L}^2, \qquad (12)$$

where $x \equiv \sin^2 \theta_W$ and zero Z - Z' mixing has been as-

FIG. 1. One-loop scotogenic neutrino mass.

sumed [4], i.e. $v_2^2/(v_2^2 + v_3^2) = x/(1 - x)$. Currently, the experimental bound on $M_{Z'}$ is 850 GeV [2].

The diagram of Fig. 1 is exactly calculable [8]. The $\bar{n}_R \nu_L \bar{\phi}_1^0$ coupling is given by $(m_\alpha/\nu_2)U_{\alpha i}$, where $\alpha = e$, μ , τ and i = 1 to 6 refer to the mass eigenstates of the 6 × 6 (n_R, n_L) mass matrix

$$\mathcal{M}_n = \begin{pmatrix} 0 & m_D \\ m_D & m_n \end{pmatrix}. \tag{13}$$

In the bases $(\text{Re}\phi_1^0, \text{Re}\chi)$, $(\text{Im}\phi_1^0, \text{Im}\chi)$, the respective mass-squared matrices are

$$\begin{pmatrix} m_{\phi}^2 & \mu v_2 \\ \mu v_2 & m_{\chi}^2 + \mu_{\chi}^2 \end{pmatrix}, \qquad \begin{pmatrix} m_{\phi}^2 & -\mu v_2 \\ -\mu v_2 & m_{\chi}^2 - \mu_{\chi}^2 \end{pmatrix}.$$
(14)

Let their mass eigenstates and mixing angles be $(m_{R1}^2, m_{R2}^2, \theta_R)$ and $(m_{I1}^2, m_{I2}^2, \theta_I)$, then

$$(\mathcal{M}_{\nu})_{\alpha\beta} = \sum_{i} \frac{m_{\alpha}m_{\beta}U_{\alpha_{i}}U_{\beta i}M_{i}}{16\pi^{2}v_{2}^{2}} \bigg[\cos^{2}\theta_{R}\frac{m_{R1}^{2}}{m_{R1}^{2}-M_{i}^{2}}\ln\frac{m_{R1}^{2}}{M_{i}^{2}} - \cos^{2}\theta_{I}\frac{m_{I1}^{2}}{m_{I1}^{2}-M_{i}^{2}}\ln\frac{m_{I1}^{2}}{M_{i}^{2}} + \sin^{2}\theta_{R}\frac{m_{R2}^{2}}{m_{R2}^{2}-M_{i}^{2}} \\ \times \ln\frac{m_{R2}^{2}}{M_{i}^{2}} - \sin^{2}\theta_{I}\frac{m_{I2}^{2}}{m_{I2}^{2}-M_{i}^{2}}\ln\frac{m_{I2}^{2}}{M_{i}^{2}}\bigg].$$
(15)

In the limit $\mu_{\chi}^2 = 0$, \mathcal{M}_{ν} vanishes because $m_{R1} = m_{I1}$, $m_{R2} = m_{I2}$, and $\theta_R = -\theta_I$. In the limit $\mu = 0$, \mathcal{M}_{ν} also vanishes because $m_{R1} = m_{I1}$ and $\theta_R = \theta_I = 0$. Furthermore, if $m_n = 0$ in Eq. (13), \mathcal{M}_{ν} is again zero because *n* is a Dirac particle. This latter is an example of the inverse seesaw mechanism [29–33]. Hence neutrino masses are suppressed in this scenario by three possible limits, and the scale of $SU(2)_R$ breaking (associated with the masses of the dark-matter particles of Fig. 1) may well be as low as 1 TeV, as advocated.

V. CONCLUSION

The neutral component *n* of the $SU(2)_R$ doublet $(n, e)_R$ is proposed as a dark-matter fermion (scotino). Variants of this basic idea, the dark left-right gauge model, are discussed. A minimal version is considered, where neutrino masses are radiatively generated by dark matter (scotogenic) and naturally suppressed, allowing the $SU(2)_R$ breaking scale to be as low as 1 TeV.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG03-94ER40837.

- [1] E. Ma, Phys. Rev. D 69, 011301(R) (2004).
- [2] S. Khalil, H.-S. Lee, and E. Ma, Phys. Rev. D 79, 041701
 (R) (2009).
- [3] E. Ma, Phys. Rev. D 36, 274 (1987).
- [4] K. S. Babu, X.-G. He, and E. Ma, Phys. Rev. D 36, 878 (1987).
- [5] P. Ramond and D. B. Reiss, Phys. Lett. B 80, 87 (1978).
- [6] K.S. Babu and V.S. Mathur, Phys. Rev. D **38**, 3550 (1988).
- [7] E. Ma, Phys. Rev. D 62, 093022 (2000).
- [8] E. Ma, Phys. Rev. D 73, 077301 (2006).
- [9] E. Ma, Mod. Phys. Lett. A **21**, 1777 (2006).
- [10] E. Ma, Annales de la Fondation Louis de Broglie 31, 85 (2006).
- [11] J. Kubo, E. Ma, and D. Suematsu, Phys. Lett. B 642, 18 (2006).
- [12] J. Kubo and D. Suematsu, Phys. Lett. B 643, 336 (2006).
- [13] Y. Kajiyama, J. Kubo, and H. Okada, Phys. Rev. D 75, 033001 (2007).
- [14] T. Hambye, K. Kannike, E. Ma, and M. Raidal, Phys. Rev. D 75, 095003 (2007).
- [15] K. S. Babu and E. Ma, Int. J. Mod. Phys. A 23, 1813 (2008).
- [16] E. Ma, Phys. Lett. B 659, 885 (2008).
- [17] E. Ma, Phys. Lett. B 661, 273 (2008).

- [18] E. Ma, Mod. Phys. Lett. A 23, 647 (2008).
- [19] E. Ma, Mod. Phys. Lett. A 23, 721 (2008).
- [20] D. Aristizabal Serra, J. Kubo, D. Restrepo, D. Suematsu, and O. Zapata, Phys. Rev. D 79, 101301 (2009).
- [21] E. Ma and D. Suematsu, Mod. Phys. Lett. A 24, 583 (2009).
- [22] E. Ma, Phys. Lett. B 671, 366 (2009).
- [23] D. Suematsu, T. Toma, and T. Yoshida, Phys. Rev. D 79, 093004 (2009).
- [24] E. Ma and U. Sarkar, Phys. Lett. B 653, 288 (2007).
- [25] E. Ma, Phys. Lett. B 662, 49 (2008).
- [26] L. M. Krauss, S. Nasri, and M. Trodden, Phys. Rev. D 67, 085002 (2003).
- [27] K. Cheung and O. Seto, Phys. Rev. D 69, 113009 (2004).
- [28] M. Aoki, S. Kanemura, and O. Seto, Phys. Rev. Lett. 102, 051805 (2009).
- [29] D. Wyler and L. Wolfenstein, Nucl. Phys. B218, 205 (1983).
- [30] R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D 34, 1642 (1986).
- [31] E. Ma, Phys. Lett. B 191, 287 (1987).
- [32] F. Deppisch and J. W. F. Valle, Phys. Rev. D 72, 036001 (2005).
- [33] S. K. Kang and C. S. Kim, Phys. Lett. B 646, 248 (2007).