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We correct a mistake in the literature regarding the additive lattice spacing corrections to the mixed

valence-sea meson mass and discuss the consequences for mixed action extrapolation formulas.
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I. MIXED VALENCE-SEA MESONS

In the literature, it is well known that in mixed action
theories with exactly chiral (modulo mass terms) valence
quarks there is one additional operator in the Symanzik
expansion at order a2 which arises from the breaking of the
valence-sea symmetry [1,2]. At the level of the chiral
Lagrangian, this operator takes the form1

LMix ¼ �a2CMix strðT3�T3�
yÞ

¼ �4a2CMix strðP S�P S�
yÞ; (1)

with

T3 ¼ P S � P V; (2)

where P S and P V are sea and valence (ghost) projectors,
respectively. However, it is also often asserted that this is
the only lattice-spacing dependent operator which contrib-
utes to the mass of a mixed valence-sea meson at this order
[2,3,5–9]. In this paper, we point out that this assertion is
not correct, and discuss the consequences. Before proceed-
ing, we first revisit the proof of Ref. [3], that the mixed
potential term, when restricted to one-loop contributions,
functions identically to a mixed valence-sea meson mass
operator. The key observation here is that there can only be
one sea quark in the loop, as is clear from the quark-flow
picture for such loop contributions.

This implies that if we expand out � ¼ expð2i�=fÞ in
terms of �, we will only use those terms in the expansion
of Eq. (1) in which two of the indices on (two separate) �
fields correspond to sea quarks, with the rest of the indices

corresponding to valence quarks. Because of the P S pro-
jectors in Eq. (1), such terms only arise when we set either
� or �y equal to one. Applying this rule immediately
reduces Eq. (1) to (for a somewhat more explicit argument,
see Ref. [3])

� a2CMix strðT3�T3�
yÞj2�vs

ð2N�2Þ�vv

¼ �4a2CMix str½P Sð�þ�yÞ�; (3)

where the notation indicates that we restrict the term of
order�2N in the expansion of the operator on the left-hand
side to have only two � fields with one sea-quark index
each, whereas all the other indices are valence.
If LMix were the only order a2 term in the chiral

Lagrangian, the mixed meson mass would be given by

m2
vs ¼ B0ðmQv

þmQs
Þ þ a2�Mix; (4)

with

a2�Mix ¼ 16a2CMix

f2
: (5)

We may now compare the right-hand side of Eq. (3)
with the leading quark mass operator, LmQ

¼
�ðf2B0=4Þ str½mQð�þ �yÞ�, with the same flavor projec-

tion. It follows that the effects of this operator act at one-
loop simply to shift the mixed valence-sea meson masses
in all vertices and propagators. It is important to note that
the replacement (3) only works for the goal of calculating
one-loop corrections to valence quantities; LMix does not
contribute to the leading-order mass of a meson made out
of sea quarks only, and the one-loop correction from LMix

to, for instance, the mixed valence-sea meson mass breaks
this rule [10].

A. Wilson sea fermions

First consider a theory with chirally symmetric valence
fermions and OðaÞ improved Wilson sea fermions. For an
OðaÞ improved sea action, the leading terms in the lattice-

1For all nonexplained notation, we refer to Ref. [3]. Further,
the unitarity violations present in mixed action theories are the
same, in spirit at least, as those found in partially quenched
theories. In partially quenched theories, unitarity is recovered in
the limit the sea and valence quarks are degenerate. For mixed
action theories, one must also take the continuum limit to
recover unitarity. For a recent review of partially quenched
theories, we refer the reader to Ref. [4].
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spacing dependent potential are (â � 2W0a)
2

Lsea ¼ �â2V sea; with

V sea ¼ W 0
6½strðP S�þ P S�

yÞ�2
þW 0

7½strðP S�� P S�
yÞ�2

þW 0
8 strðP S�P S�þ P S�

yP S�
yÞ; (6)

where again P S is the sea projector. Now the same argu-
ment used above leads to the rule that either� or�y has to
be replaced by one, in all possible ways (two for each term,
because all terms in V sea are quadratic in � and/or �y).
This brings V sea into the form

â2V seaj2�vs

ð2N�2Þ�vv
¼ ð4Nsâ

2W 0
6 þ 2â2W 0

8Þstr½P Sð�þ �yÞ�:
(7)

One immediately sees that, with this particular projection,
the chiral structure of this operator is again identical to the
mixed operator, Eq. (3), and therefore it will also act at
one-loop as a mixed valence-sea meson mass shift in all
vertices and propagators (in addition to shifting the sea-sea
meson masses). Thus, we now get another contribution to
the mixed meson mass:

m2
vs ¼ B0ðmQv

þmQs
Þ þ a2�Mix þ a2�0

Mix; (8)

where3

a2�0
Mix ¼

8â2ð2NsW
0
6 þW 0

8Þ
f2

: (9)

We emphasize that the equality (7) only holds under the
specific projection indicated in that equation. For example,
to leading order, the pure sea meson mass follows by direct
calculation from Eq. (6), and is given by

m2
ss ¼ 2B0mQs

þ a2�Sea; with

�Sea ¼ 32â2

f2
ðW 0

8 þ NsW
0
6Þ:

(10)

The W 0
7 operator does not contribute to the meson masses

at this order, but it does give rise to a lattice-spacing
dependent hairpin interaction [11]. However, as discussed
in Ref. [11], this new hairpin interaction has the same
structure as the hairpins arising from the sea-valence quark
mass difference. Consequently, the effects of this new
hairpin can be completely absorbed as a shift of the partial
quenching parameters, �2

PQ ¼ m2
ss �m2

vv. This is crucial

to the arguments in Refs. [3,9] regarding the universal

nature of mixed action effective field theories with chirally
symmetric valence fermions. With this shift, the partial
quenching parameter becomes [3,11]

�2
PQ ! m2

ss �m2
vv þ â2�ssNs; with �ss ¼ 32W 0

7

f2
:

(11)

One should caution, however, that a determination of �ss

will be difficult as it is a discretization correction to the
mass of the �0.

B. Staggered sea fermions

A similar analysis applies to the case that we choose the
sea quarks to be staggered. The sea potential for staggered
fermions is [2,12,13]4

L sea ¼ �a2US � a2U0
S; (12)

with

US ¼ C1 strð�̂5P S��̂5P S�
yÞ

þ C3

2

X

�

strð�̂�P S��̂�P S�þ H:c:Þ

þ C4

2

X

�

strð�̂�5P S��̂5�P S�þ H:c:Þ

þ C6

X

�<�

strð�̂��P S��̂��P S�
yÞ;

U0
S ¼

C2V

4

X

�

½strð�̂�P S�Þ strð�̂�P S�Þ þ H:c:�

þ C2A

4

X

�

½strð�̂�5P S�Þ strð�̂5�P S�Þ þ H:c:�

þ C5V

2

X

�

strð�̂�P S�Þ strð�̂�P S�
yÞ

þ C5A

2

X

�

strð�̂�5P S�Þ strð�̂5�P S�
yÞ:

(13)

Applying the same argument as before, we find that now

a2US þ a2U0
Sj2�vs

ð2N�2Þ�vv
¼ a2ðC1 þ 4C3 þ 4C4 þ 6C6Þ

� str½P Sð�þ�yÞ�: (14)

Again, with this restriction, these operators have the same
chiral structure as the mixed term, Eq. (3), and therefore we
find again a mixed meson mass of the form (8), but now
with

2For notation, see Ref. [1].
3In the case of a twisted-mass sea, a2�0

Mix ! a2�0
Mixcos

2!,
vanishing at maximal twist. See Eq. (A.12) of Ref. [3]. 4For notation, see Ref. [2].
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a2�0
Mix ¼

4a2ðC1 þ 4C3 þ 4C4 þ 6C6Þ
f2

¼ 1

8
a2�2

A þ 3

16
a2�2

T þ
1

8
a2�2

V þ 1

32
a2�2

I ; (15)

where the latter expression is in terms of the taste splittings
of Ref. [14]. Note that theUð1Þ� symmetry of the staggered
lattice action prohibits a W 0

7-like term.

C. Generic sea fermions

One might ask how general reductions of the type (7)
and (14) are, i.e., whether a similar argument would apply
for any kind of sea quarks. Whether this is the case or not
depends on whether the sea sector has enough symmetry.

In general, order a2 corrections of the type ofLsea come
from four-fermion operators in the Symanzik effective
action. Following the general steps of the analysis of
Refs. [1,2], such operators translate into chiral perturbation
theory operators which are bilinear in � and �y. After our
reduction rule, in which one of the � or �y gets replaced
by one, these operators then all have to take the form
str½P SðX�þ �yXyÞ�, in which X is some flavor matrix.
In the Wilson and staggered cases, we have that X ¼ 1, but
if the sea sector has less symmetry, a nontrivial X may be
possible. An example is provided by Dirac-Kähler fermi-
ons [15], which essentially are staggered fermions without
shift symmetry [16]. If one does not impose shift symme-
try, many more four-fermion operators are possible in the
Symanzik theory [12], leading to chiral perturbation theory
operators of the form strðY1PS�Y2PS�

yÞ or
strðY1PS�Y2PS�þ H:c:Þ with Y1 � Y2, unlike Eq. (13),
leading to X � 1. However, the same lack of symmetry
also leads to additive, taste-breaking quark mass renormal-
ization [17], making these fermions less attractive for
applications to lattice QCD.

We can understand this point somewhat more generally
by considering the hierarchy of symmetry violations that
occur in the sea. In the continuum theory, flavor symmetry
SUðNsÞ is broken by quark mass differences. In the lattice
theory, SUðNsÞ is broken to some group G0 by lattice
spacing artifacts; this group G0 may be further broken to
some group G by quark mass differences. Physically, the
nicest case occurs whenG0 � G, and the action ofG0 is via
an Ns-dimensional irreducible representation. In this case,
even on the lattice, there is a notion of a flavor symmetry
acting on all the sea quarks; in addition, it is easy to see that
with these assumptions the flavor matrix X we encountered
above must be proportional to the identity as we will now
show.

Our assumption is that there is some symmetry G0 of the
theory which is only broken by quark mass differences.
Now, at order a2, we have encountered the operator O ¼
str½P SðX�þ �yXyÞ�, describing lattice spacing effects; as
such, O is invariant under the larger group G0. Suppose
U 2 G0 and consider rotating � ! Uy�U. Since this is a

symmetry of O, we find that UXUy ¼ X for all U 2 G0.
By Schur’s lemma, it follows that X is proportional to the
identity matrix. Note that this argument does not apply to
Dirac-Kähler fermions, because the lack of shift symmetry
at the lattice level leads to loop corrections which violate
mass degeneracy [17]. Staggered fermions do fit in, be-
cause for Nf staggered fermions, ignoring quark masses,

there is an SUðNfÞ � �4 symmetry, which acts irreducibly

on the sea quarks. Here �4 is the 32-element finite group

generated by the matrices ��; the �̂� in Eq. (13) above are

equal to 1� ��, with 1 the Nf � Nf unit matrix.

D. Consequences for mixed action extrapolation
formulas

The consequences of these previously neglected effects
are in fact very mild. In Ref. [3], it was demonstrated that
the mixed potential operator, when projected onto two
valence-sea mesons and 2N � 2 valence-valence mesons,
has the chiral structure of Eq. (3), and consequently acts
exactly like a mass term for the mixed mesons in all
vertices and propagators through one-loop order. Here we
have shown that the sea potential under the same projection
also has the same chiral structure as the mixed potential,
Eqs. (7) and (14) for the case of Wilson and staggered sea
actions, respectively. Consequently, these operators, at the
one-loop level, will also act just like mixed meson mass
operators in all vertices and propagators. Importantly, the
arguments of Refs. [3,9] regarding the universal nature of
the mixed action chiral extrapolation formulas, and the
vanishing of lattice-spacing dependent counterterms with
the use of on-shell renormalization still hold.
Practically, the mixed meson mass renormalization, cal-

culated in Refs. [10,18] for the specific mixed action of
domain-wall [19–21] valence fermions and the asqtad
improved [22,23] MILC staggered sea fermions [24], was
not of the parameter a2�Mix, but rather

m2
vs � 1

2
m2

vv � 1

2
m2

ss ¼ a2�Mix þ 1

8
a2�2

A þ 3

16
a2�2

T

þ 1

8
a2�2

V þ 1

32
a2�2

I : (16)

Here m2
ss ¼ 2B0mQs

is the mass-squared of the exact stag-

gered Goldstone boson, made out of sea quarks only. Using
the known values of the staggered meson mass splittings
[14], and the calculated value of the mass splitting on the
coarse (a� 0:125 fm) ensemble [10,18], one finds

a2�Mix � ð160 MeVÞ2: (17)

However, the total mixed meson mass shift is still given by
the numerical shifts calculated in Refs. [10,18], which is
what is practically important for accounting for discretiza-
tion effects in mixed action chiral extrapolations.
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