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We perform a detailed numerical investigation of the approximate moduli space metric proposed by

Diakonov and Petrov [Phys. Rev. D 76, 056001 (2007)] for a confining model of dyons. Our findings

strongly indicate that this metric is positive definite (and, therefore, a valid moduli space metric)

throughout a considerable part of configuration space only for a small number of dyons at sufficiently

low density. This poses strong limitations on results obtained by an unrestricted integration over collective

coordinates in this model. It also indicates that strong correlations between collective coordinates will be

essential for the physical content of a dyon model, which could be exhibited by a suitable simulation

algorithm.
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I. INTRODUCTION

The semiclassical approximation of path integrals
around nontrivial saddle points (originating from the
work of Callan, Dashen, and Gross [1,2] and later adapted
to finite temperature by Gross, Pisarski, and Yaffe [3]) is a
prominent but not undisputed [4–6] semianalytic approach
to calculate nonperturbative effects in quantum field theo-
ries. In gauge theories at zero temperature the correspond-
ing semiclassical topological objects used to be instantons
[7], four-dimensional self-dual lumps of action density
carrying one unit of topological charge. Their use in a
semiclassical context was opened by the seminal paper
by ’t Hooft [8], where the fluctuation determinant in the
background of such objects was computed. However, the
resulting distribution with respect to the size parameter � is
obviously unphysical for large instantons. Empirical inter-
actions [9–11] have been added to the first instanton gas
model [1,2] eventually leading to the instanton liquid
model [12], where the average size is fixed to �� ¼
1=3 fm (along with a density of n�1=4 ¼ 1 fm) to roughly
match phenomenological requirements.

In pure gauge theories at finite temperature the Polyakov
loop is the order parameter for confinement. The fact that
there is a close relation between the Polyakov loop average
and the dominating classical solutions has been fully real-
ized with the discovery of calorons with nontrivial holon-

omy by Kraan and van Baal [13] and Lee and Lu [14].
From this perspective, the previously known caloron solu-
tions due to Harrington and Shepard [15] now appear as the
limiting case of trivial holonomy.1 The eigenvalues of the
untraced asymptotic Polyakov loop—called holonomy—
are responsible for the dissociation of calorons into con-
stituents N for gauge group SUðNÞ. These are
Bogomol’nyi-Prasad-Sommerfield monopoles with elec-
tric charges equal to or opposite to their magnetic charges.
We will refer to them as dyons (for reviews cf. [17,18]).
Hence, a semiclassical model of finite temperature

gauge theory should be based on dyons. If the holonomy
is related to the order parameter, all types of dyons are of
equal mass in the confined phase but expected to split into
light and heavy ones in the deconfined phase. Dyon gauge
fields combined to form intermediate size calorons with
trivial holonomy do not generate confinement; whereas
forming similar calorons with maximally nontrivial holon-
omy creates a linearly rising potential. This has been
demonstrated numerically in [19]. The actual size distri-
bution to be used in the confinement phase, i.e. the general-
ization of the instanton distribution, was inspired by the
evaluation of the fluctuation determinant in Refs. [20,21].
The suppression of heavy dyons due to the nonvanishing
Polyakov loop above the critical temperature could be the
mechanism behind the decrease of the topological suscep-
tibility and the vanishing of the chiral condensate [22]. In
contrast to this, the chiral condensate under (unphysical)
periodic boundary conditions is nonvanishing, an effect
seen in various studies [23–27] that is likely to reflect the
presence of light dyons.
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Here we present results of a preparatory study of SU(2)
gauge theory trying to obtain numerical insight into a dyon
model recently developed by Diakonov and Petrov
[18,28,29]. In this work, the role of the moduli space
metric was emphasized and incorporated. The authors
have generalized the known form of the metric of same
kind dyons and of opposite kind dyons to a general metric
valid at large distances in the parameter space of an en-
semble of self-dual dyons. The problem of including dyons
of opposite topological charge was postponed, which
means that the model is a rather crude approximation.
The authors of [28] attempted to take the effects of a
mixture of self-dual and anti–self-dual objects into account

by multiplying some of their results by factors of 2 or
ffiffiffi
2

p
assuming negligible interactions between the two systems
of self-dual and anti–self-dual dyons.

The resulting moduli space metric determinant consists
of Coulomb-like terms and has been treated analytically by
rewriting the corresponding grand-canonical ensemble into
an equivalent quantum field theory both of bosons and
fermions, resembling Polyakov’s famous work [30] show-
ing Abelian confinement. The relations between physical
quantities such as the string tension and the critical tem-
perature obtained from this model are rather impressive,
when comparing them with lattice results. However, in
order to match phenomenological values, the model needs
to be pushed to rather high densities (i.e. short distances
between dyons), which is difficult to reconcile with the
diluteness assumption of the underlying semiclassical ap-
proach. It should be mentioned that a similar problem
afflicts the instanton liquid model as well (when choosing
size and density as quoted above).

Our final goal is to complement the analytical treatment
of the dyon model presented in Ref. [28] by numerical
simulations of the proposed moduli space metric together
with interactions stemming from the gluonic fluctuation
determinant, the Faddeev-Popov determinant, and the ac-
tion itself. The preparatory studies to be presented here will
demonstrate that the approximate moduli space metric
from [28] violates the fundamental requirement of being
positive definite in an overwhelming part of dyon configu-
ration space, when explored at densities needed to match
phenomenology. We conclude that this moduli space met-
ric can only be used in a dyon model with other
terms added or if correlations between the dyons are built
in that lead to the positivity of the metric. A suitable
simulation algorithm should guarantee that. This would
result in complicated multidyon correlations and create a
nontrivially related behavior of various observables and
correlators.

This paper is organized as follows. In Sec. II we briefly
recall the ingredients of the dyon model in the version of
Diakonov and Petrov applied to SU(2) gauge theory, which
is the starting point for our work. Section III deals with the
spectral properties of the proposed moduli space metric. In

Sec. IV we demonstrate that even a random model of
dyons, i.e. a model without moduli space metric, induces
confinement. Finally, we conclude and give a brief outlook.

II. DYON ENSEMBLES À LA DIAKONOV
AND PETROV

A. Holonomy as external parameter

We consider pure SU(2) gauge theory at finite tempera-
ture T, which, as usual, is implemented with periodic
boundary conditions in the imaginary time direction with
period � ¼ 1=T. There are four kinds of dyons, two self-
dual and two anti–self-dual. The untraced Polyakov loop at
spatial infinity, also called holonomy, is an element of the
gauge group. It can be diagonalized everywhere2 to � ¼
expð2�i!�3Þ with eigenvalues eþ2�i! and e�2�i!, where
! 2 ½0; 1=2�. Similarly to the non-Abelian adjoint Higgs
system, this gives rise to complementary dyons that have
actions proportional to 2! and 1� 2! and that become
static when well separated. They are both self-dual or
anti–self-dual depending on the sign of their topological
charge.
Following Diakonov and Petrov [28], throughout this

paper we focus on the case of maximally nontrivial hol-
onomy,! ¼ 1=4. This implies that all dyons have the same
action. The holonomy is then traceless and matches the
confinement condition hPi ¼ 0, where P ¼ Trð�Þ=2. We
adopt the same restriction to purely self-dual systems,
considering K dyons of the first kind and K dyons of the
second kind; i.e. the total number of dyons is nD ¼ 2K.
These dyons carry equal electric and magnetic charges
which can take the values �1.

B. The approximate moduli space metric of multidyon
configurations

In [28] it has been attempted to construct an approximate
multidyon moduli space metric valid for dyon separations
d � 1=�T. The starting point for this construction was the
analytically known moduli space metric of a single caloron
[31], which is a pair of different kind dyons and a corre-
sponding approximation for pairs of same kind dyons at
large distances. The integration over collective coordi-
nates, which are the dyon positions xm

i
3 with i ¼

1; . . . ; K denoting the dyon index and m ¼ 1; 2 denoting
first and second kind, respectively, is then performed with
the measure

�YK
i¼1

Y2
m¼1

d3xmi

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

q
: (1)

The approximate moduli space metric g is related to a
matrix G,

2To be more precise, it can be diagonalized everywhere except
for the loci of the Dirac strings, if the system is not neutral.

3The phases of the dyons are irrelevant in this context.
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Gm;n
i;j ¼ �m;n�i;j

�
2�þ 2

XK
k¼1

1

dm;mþ1
i;k

� 2
XK

k¼1;k�i

1

dm;m
i;k

�

þ 2
�m;nð1� �i;jÞ

dm;m
i;j

� 2
�m;nþ1

dm;mþ1
i;j

; (2)

(see Appendix A) such that the determinants are related by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðgÞ

q
¼ detðGÞ: (3)

The notation dm;n
i;j ¼ jxm

i � xn
j j is used for dyon separa-

tions, and dyon type indicesm are considered as cyclic, i.e.
for SU(2) holds ðm ¼ 3Þ � ðm ¼ 1Þ. We omit the tempera-
ture T in most equations, which means that distances are
measured in 1=T units. The temperature dependence can
easily be restored by making this explicit.

C. Parameters and their physical values

Within the model proposed in [28] the relation between
the string tension � and the critical temperature Tc of the
confinement deconfinement phase transition can be derived
analytically. It reads for SU(2) gauge theory

� ¼ ð8�TÞ1=2; Tc ¼ ð48�T=�2Þ1=4; (4)

or equivalently

Tcffiffiffiffi
�

p ¼
�
6

�2

�
1=4 ¼ 0:883: (5)

Equation (4) is given in parametric form, where � is the
three-dimensional density of dyons of each kind, i.e. � ¼
K=V3 ¼ nD=2V3 with V3 denoting the spatial volume.
Hence, �T can be interpreted as the four-dimensional
density of dyons which should actually be viewed as the
fundamental parameter of the model.

In order to fix physical units, we set the scale by choos-
ing � ¼ 1=T ¼ 1:00 fm ¼ 1=198 MeV throughout the
paper. This means we are considering a certain temperature
in the confining phase of SU(2) Yang-Mills theory. Setting
the string tension to its ‘‘physical value,’’ taken here as
�physical ¼ ð440 MeVÞ2 ¼ 4:99=fm2, Eq. (4) yields a

three-dimensional density �0 ¼ 3:10=fm3 and Tc ¼
389 MeV. The dimensionless ratio Tc=

ffiffiffiffi
�

p ¼ 0:883 differs

from that quoted in [28] by the factor 21=4, which originates

from the replacement � ! ffiffiffi
2

p
� made in [28] in order to

take the contribution of anti–self-dual dyons into account.

In general, we define �d ¼ ð1=�Þ1=3, which is proportional
to and of the same order of magnitude as the average
nearest neighbor dyon separation in three-dimensional

space at density �. In particular, �d0 ¼ ð1=�0Þ1=3 ¼
0:686 fm is, according to (4), the dyon separation repro-
ducing the physical value of the string tension for our
choice of temperature T ¼ 198 MeV.

III. SPECTRAL PROPERTIES OF THE
APPROXIMATE MULTIDYON MODULI SPACE

METRIC

We consider self-dual multidyon configurations, which
are solutions of the classical Yang-Mills equations of mo-
tion and, therefore, local minima of the action functional of
Yang-Mills theory. The corresponding surface of minimal
action can be parametrized by a set of collective coordi-
nates, the dyon positions xm

i (which have already been
introduced in Sec. II B) and phases which are unimportant
for the following. This surface is embedded in a flat
Euclidean space of infinite dimension spanned by the
gauge field degrees of freedom Aa

�ðxÞ. Consequently, the
induced moduli space metric associated with these collec-
tive coordinates must be positive definite.
The approximate multidyon moduli space metric g pro-

posed in [28] and the corresponding determinant have been
given in Eqs. (1) and (2). For the investigation of positive
definiteness one has to consider the eigenvalues of g. In
Appendix A we show that the number of negative eigen-
values of g is equal to 4 times the number of negative
eigenvalues of G. Thus it suffices to study G: if G is not
positive definite, the same holds for g, which means that it
fails to satisfy the fundamental property of positive defi-
niteness inherent to any moduli space metric. In such cases
the weight factor detðGÞ associated with the corresponding
dyon configuration cannot be interpreted in a physically
meaningful way.
Since G is only an approximation of a moduli space

metric, the existence of loci of nonpositive definiteness are
not excluded. Still, one could hope that such cases of
failure of the used approximation are restricted to a small
part of dyon configuration space, which might even vanish
in the thermodynamic limit. Our numerical investigations,
however, strongly indicate the opposite, i.e. that even at
small dyon densities the percentage of configurations with
positive definiteG tends to 0, when the size of the system is
increased. In the following we present a detailed study of
the spectrum of G, particularly its positive definiteness, for
various dyon numbers and densities.

A. Analytical considerations

We start by considering the simple case of a pair of
different kind dyons, i.e. a caloron. The moduli space
metric is exactly known [31]. At maximally nontrivial
holonomy, it is given by

Gd ¼ 2�þ 2=d �2=d
�2=d 2�þ 2=d

� �
; (6)

where d is the dyon separation. It is positive definite with
eigenvalues

�1 ¼ 2�; �2 ¼ 2�þ 4=d: (7)
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Hence, the weight factor detðGdÞ is positive for arbitrary
dyon positions.

Considering, on the other hand, a pair of same kind
dyons (using the approximate moduli space metric pro-
posed in [28]) the signs in front of the 2=d terms are
reversed,

Gs ¼ 2�� 2=d þ2=d
þ2=d 2�� 2=d

� �
; (8)

yielding eigenvalues

�1 ¼ 2�; �2 ¼ 2�� 4=d: (9)

Here the weight factor detðGsÞ is positive only for dyon
separations d > 2=� � 2=�T. For our choice of tempera-
ture, T ¼ 198 MeV, this corresponds to d > 0:635 fm,
which is of the same order of magnitude as the average
distance of same kind dyons �d0 ¼ 0:686 fm needed to
reproduce the physical value of the string tension
�physical ¼ ð440 MeVÞ2 (cf. Sec. II C). It has been argued

that at the critical d the distance ceases to be a good
collective coordinate (see [28] and references therein) as
the dyons strongly overlap.

Of course, such a pair of same kind dyons has to be
complemented by another pair of the other kind to arrive at
the neutral situation that we are going to investigate in
general (in other words two-caloron solutions need to be
studied, of which a few are known [32,33]). Then the
moduli space metric becomes a 4� 4 matrix and the
conditions, under which some of its eigenvalues are nega-
tive, are not that obvious. In Sec. III B and III C we perform
a detailed numerical analysis of the dependence of the
spectrum of G on the dyon number and density both for
randomly sampled dyon positions and for dyon positions
distributed according to j detðGÞj. The examples presented
here already indicate that the approximate moduli space
metric G might fail to fulfill the fundamental requirement
of positive definiteness.

In the following we show that for a fixed dyon number
nD the percentage of configurations with nonpositive defi-
nite G becomes larger, when the dyon density is increased.
The matrix G can be written in the form

G ¼ 2�InD�nD þDðxi
mÞ; (10)

where the elements ofD are linear combinations of inverse
dyon distances 1=dm;n

i;k [cf. Eq. (2)]. D is, therefore, in-

versely homogeneous in the dyon positions, i.e.

Dðxi
m=�Þ ¼ �Dðxi

mÞ: (11)

We start by considering an arbitrary dyon configuration
fxm

i g at density � fulfilling

Tr ðGÞ< 2�nD: (12)

For large dyon numbers nD, roughly half of the configura-
tions will satisfy this requirement. This is so, because
TrðDÞ is a sum of ðnD=2Þ2 positive and nD=2� ðnD=2�

1Þ negative terms, i.e. it fluctuates approximately around
zero, and because a traceless D gives exactly the bound of
Eq. (12). Obviously, such a matrix G has at least one
eigenvalue smaller than 2�, but might of course be positive
definite.
Now we scale all dyon locations xm

i by 1=� < 1, i.e.
fxm

i g ! fx0m
i g ¼ fxm

i =�g, which amounts to increasing the
dyon density by the factor �3, i.e. � ! �0 ¼ �3�. Because
of the inverse homogeneity ofD [Eq. (11)], the eigenvalues
of the squeezed configuration �0

j are related to the eigen-

values of the original configuration �j by multiplying their

difference to 2� by �, i.e.

�0
j ¼ 2�þ �ð�j � 2�Þ: (13)

Consequently, for any eigenvalue �j < 2� one can choose

� such that �0
j < 0. In other words, rescaling any such

generic configuration will give rise to a configuration for
which G is not positive definite.
This argument can be transferred to the average spectral

density of G. The latter is obtained by averaging over
randomly and uniformly chosen dyon positions inside a
cubic spatial volume. Comparing spectral densities for
dyon densities � and �0 (at fixed dyon number nD) one
finds that the latter is stretched by the factor � around a
‘‘fixed center’’ at 2� [cf. Eq. (13) and also Fig. 1 for
numerical evidence, where the center at 2� is indicated
by dashed lines]. This illustrates that all eigenvalues
smaller than 2� will eventually become negative, when
the dyon density is increased.

B. Multidyon configurations at fixed density:
Dependence of the spectrum of G on the dyon number

In the following we consider dyon configurations with
randomly and uniformly chosen positions inside a cubic
spatial volume V3 ¼ L3. At fixed density � we gradually
increase the dyon number nD (and consequently V3) to
investigate the effect on various quantities characterizing
the positive definiteness of G:
(i) the average percentage R of negative eigenvalues of

G, R ¼ hn�i=nD, where n� denotes the number of
negative eigenvalues for a given dyon configuration;

(ii) the probability distribution P�ðn�Þ of the number of
negative eigenvalues of G;

(iii) the spectral density of G (obtained by averaging
over sampled dyon configurations).

Results for two significantly different choices of the dyon
density, � ¼ 1=fm3 and � ¼ 1=125 fm3, are collected in
Table I and Fig. 2.
At first we discuss � ¼ 1=fm3, a density smaller by

more than a factor of 3 than the density �0 ¼ 3:10=fm3,
which is according to [28] needed to produce a quantita-
tively correct string tension, etc. [cf. also Eq. (4)]. The left
columns of Table I and Fig. 2 clearly show that for dyon
numbers in the range of 100 � nD � 800 the probability
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P�ð0Þ to find configurations with positive definite G is
essentially zero. In other words, among the 100 000 inde-
pendently chosen dyon configurations there is not a single
configuration, where the weight factor detðGÞ can be in-

terpreted in a physically meaningful way, i.e. coming from
a positive definite moduli space metric. Even worse, the
average percentage of negative eigenvalues R increases,
when we consider a larger number of dyons. This implies

TABLE I. The average percentage R of negative eigenvalues and the percentage of dyon configurations with positive definite G,
P�ðn� ¼ 0Þ, for various dyon numbers nD and two selected densities � (the averages have been computed from 100 000
independently chosen configurations).

� ¼ 1=fm3 � ¼ 1=125 fm3

nD L in fm R in % P�ð0Þ in % L in fm R in % P�ð0Þ in %

100 3.68 21.81(6) 0.000(0) 18.42 0.457(5) 64.53(35)

200 4.64 25.04(3) 0.000(0) 23.21 0.546(2) 36.72(2)

400 5.85 28.16(2) 0.000(0) 29.24 0.684(1) 10.22(3)

800 7.37 30.94(1) 0.000(0) 36.84 0.919(4) 0.60(40)
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FIG. 1. Histograms obtained from 100 000 independently chosen dyon configurations representing the spectral density of the
approximate moduli space metric G. Left column: nD ¼ 200. Right column: nD ¼ 800.
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that a model based on the approximate moduli space metric
G and enforcing its positive definiteness contains highly
nontrivial constraints determining a small admissible sub-
space of configuration space, and that the restrictiveness of
these constraints even increases in the thermodynamic
limit.

Since the construction of G in [28] is based on the
assumption that all dyons are well separated, one could
hope that reducing their density might cure the problem. To
check this, we have repeated the analysis for a rather dilute
ensemble with � ¼ 1=125 fm3. Note that according to the
model proposed in [28] this dyon density would yield a
rather low value for the string tension,� � 0:05� �physical

[cf. Eq. (4)]. Indeed, the average percentage of negative
eigenvalues R is now significantly smaller, as can be seen

in the right columns of Table I and Fig. 2. However, as
before, this percentage increases, when we consider a
larger number of dyons (keeping the same density), e.g.
for nD ¼ 800 dyons less than 1% of all configurations have
an associated matrix G, which is positive definite. This
gives additional evidence that even for rather low densities
the positive definiteness of the moduli space metric re-
mains a very selective constraint.
One could still hope that results obtained by an unre-

stricted integration over collective coordinates might evade
this problem in the sense that the integrated weight asso-
ciated with dyon configurations with positive definite G,
W�

G ðn� ¼ 0Þ, might be significantly larger than the inte-

grated weights corresponding to ‘‘unphysical sectors,’’
where G is not positive definite, namely W�

G ðn� 	 1Þ:
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FIG. 2. Histograms obtained from 100 000 independently chosen dyon configurations representing the probability distribution
P�ðn�Þ of the number of negative eigenvalues (as function of n�=nD). Left column: � ¼ 1=fm3. Right column: � ¼ 1=125 fm3.
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W�
G ðn�Þ ¼

Z �YK
i¼1

Y2
m¼1

d3xmi

�
�n�ðxm

i Þj detðGðxm
i ÞÞj; (14)

Z ¼
Z �YK

i¼1

Y2
m¼1

d3xmi

�
j detðGðxm

i ÞÞj; (15)

where

�n�ðxm
i Þ ¼

�
1 ifGðxm

i Þ has n� negative eigenvalues

0 otherwise.

(16)

We investigate this possibility by computing the integrated
weights with the absolute value of detðGÞ and sorting them
with respect to the number of negative eigenvalues n�. If
W�

G ð0Þ happens to be much larger than W�
G ðn� 	 1Þ, then

the positivity problem might be less severe in actual simu-
lations. In Ref. [28] this was expected from the strong
repulsion of dyons at a zero of the metric determinant.

Since detðGÞ exhibits strong fluctuations covering many
orders of magnitude, we have evaluated (14) via
Metropolis sampling writing j detðGÞj ¼ expðlnj detðGÞjÞ.
Results at dyon density � ¼ 1=fm3 are shown in Fig. 3. It is
clearly visible, that the integrated weight W�

G ð0Þ of the

physically meaningful sector without negative eigenvalues
is negligible compared to the absolute weight of all un-

physical sectors,
P

n�	1W
�
G ðn�Þ. Moreover, one can see

that for dyon numbers in the range 50 � nD � 200 physi-
cal observables are dominated by dyon configurations,
where G has around 80% to 90% negative eigenvalues
and where W�

G ðn�Þ follows a smooth bell-shaped curve.

Taking the full determinant into account, i.e. taking
detðGÞ instead of j detðGÞj, one has to multiply W�

G ðn�Þ
by an alternating sign (þ if n� is even, � if n� is odd).
Then roughly half of the dyon configurations have associ-
ated negative weights, when one computes ensemble aver-
ages ignoring the requirement of positive definiteness.
Similar to the case with randomly chosen dyon positions,
the average percentage R of negative eigenvalues of G
increases, when the dyon number is increased at fixed
density.
We conclude that results based on the approximate

moduli space metric G by performing an unrestricted in-
tegration over collective coordinates (without control over
positive definiteness) are physically meaningless.

C. Multidyon configurations at fixed dyon number:
Dependence of the spectrum of G on the density

To investigate the dependence of the spectrum of G on
the dyon density �, we proceed in the same way as in
Sec. III B, this time keeping the dyon number nD fixed,
while varying the spatial volume V3.
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FIG. 3. Integrated weights W�
G ðn�Þ (shown as functions of n�=nD) for various dyon numbers nD and a fixed density � ¼ 1=fm3.

TABLE II. The average percentage R of negative eigenvalues and the percentage of dyon configurations with positive definite G,
P�ðn� ¼ 0Þ, for two dyon numbers nD and various values of the density � (the averages have been computed from 100 000
independently chosen configurations).

nD ¼ 200 nD ¼ 800
� L in fm R in % P�ð0Þ in % L in fm R in % P�ð0Þ in %

1=125 fm3 23.21 0.546(2) 36.72(2) 36.84 0.919(4) 0.60(40)

1=64 fm3 18.57 1.225(8) 13.28(12) 29.47 2.305(8) 0.006(4)

1=27 fm3 13.92 3.241(3) 1.183(12) 22.10 5.997(7) 0.000(0)

1=8 fm3 9.28 9.382(18) 0.003(1) 14.74 14.60(2) 0.000(0)

1=fm3 4.64 25.04(3) 0.000(0) 7.37 30.94(1) 0.000(0)

�0 ¼ 3:10=fm3 3.18 33.08(2) 0.000(0) 5.05 38.10(1) 0.000(0)
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For randomly and uniformly chosen dyon positions, our
results show that the average percentage of negative eigen-
values R becomes larger, when the density is increased

(cf. Table II and Fig. 4). This is in agreement with the
analytical argument given in Sec. III A. This result was
expected, since the moduli space metric G is an approxi-
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FIG. 4. Histograms obtained from 100 000 independently chosen dyon configurations representing the probability distribution
P�ðn�Þ of the number of negative eigenvalues (as function of n�=nD). Left column: nD ¼ 200. Right column: nD ¼ 800.

0.75 0.8 0.85 0.9
0

5

10

15

20

0.75 0.8 0.85 0.9
0

5

10

15

20

0.75 0.8 0.85 0.9
0

5

10

15

20

FIG. 5. Integrated weights W�
G ðn�Þ, shown as functions of n�=nD, as obtained for a number nD ¼ 200 of dyons and various
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mation valid only for large dyon separations. Even when
considering rather dilute ensembles (� ¼ 1=125 fm3), still
less then 40% of all dyon configurations for nD ¼ 200 and
less than 1% of all dyon configurations for nD ¼ 800
possess a positive definite G.

To complement the picture, we refer to Fig. 1 where we
have shown the spectral density of G both for nD ¼ 200
and for nD ¼ 800. From these plots one can clearly see that
large dyon numbers or densities inevitably yield configu-
rations, where the associated matrices G are not positive
definite. The scaling of the spectrum predicted in Sec. III A
is nicely confirmed.

We have also studied the dependence of the integrated
weights W�

G ðn�Þ [cf. Eq. (14)] on the dyon density � at

fixed dyon number nD ¼ 200. Results are shown in Fig. 5.
Again one can see that for � 	 1=8 fm3 observables are
dominated by dyon configurations with associated matri-
ces G, which have between 80% and 90% negative eigen-
values. Moreover, the maximum of the integrated weights
is shifted towards larger numbers of negative eigenvalues,
when the dyon density is increased towards �0 that is
considered a realistic value.

IV. CONFINEMENT FROMARANDOMDYONGAS

In the following we consider dyon ensembles without a
moduli space metric (or other interactions), i.e. we perform
a uniform sampling of dyon positions. Although this is a
rather extreme simplification of a dyon model (see also
[22]), such ensembles might be worth studying, because
confinement still persists, as we will shortly demonstrate.
This investigation might also be helpful to better under-
stand the impact of a moduli space metric on ensembles of
dyons.

We consider nD ¼ 1, 600 dyons at the same densities as
in Sec. III. We compute the Polyakov loop correlator
yielding the free energy of a pair of static charges:

F �QQðRÞ ¼ �T lnhPðxÞPyðyÞi; R ¼ jx� yj: (17)

The Polyakov loop,

PðxÞ ¼ 1

2
Tr

�
exp

�
i
Z 1=T

0
dx0A0ðxÞ

��
¼ cosðA3

0ðxÞ=2TÞ;
(18)

can be evaluated analytically, because the gauge field is
treated in the Abelian far field limit (see Appendix B). In
the algebraic gauge it is given by

a30ðx; qÞ ¼
q

r
; a31ðx;qÞ ¼ � qy

rðr� zÞ ;

a32ðx; qÞ ¼ þ qx

rðr� zÞ ;
(19)

where x ¼ ðx; y; zÞ and r ¼ jxj. All other gauge field com-
ponents are zero. The multidyon configurations we use are
linear superpositions of gauge potentials (19) determined
by dyon positions xm

i and charges qm,

Aa
�ðxÞ ¼ �a3��0�T þXK

i¼1

X2
m¼1

aa�ðx� xm
i ; q

mÞ; (20)

where qm ¼ �1 for the m ¼ 1; 2 dyons plus an additional
term in A3

0 generating (in periodic gauge) the nontrivial

holonomy� ¼ expði�=2�3Þ sufficiently far away from all
dyons. We regularize the singularities at the dyon centers
by factors 1� expð�r=	Þ with 	 ¼ 0:25 fm.4

As is shown in Fig. 6 the free energy rises linearly up to
� 1:5 fm for � ¼ 3:10=fm3 and up to � 2:7 fm for � ¼
1=fm3, where statistical noise starts to dominate and up to
� 4 fm for � � 1=8 fm3, which is the maximum separa-
tion considered.
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FIG. 6 (color online). The free energy of a pair of static charges FQ �Q as a function of the separation R for various dyon densities �.

4We have checked that numerical results remain essentially
unaltered, when 	 is further decreased.
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The corresponding string tensions are summarized in
Table III. We conclude that even noninteracting dyons
give rise to confinement, when considering the Polyakov
loop correlator. Quantitatively there is a strong dependence
of the string tension � on the dyon density �. Note that for
dyon density � ¼ �0 ¼ 3:10=fm3 (which is according to
the model proposed in [28] that density yielding approxi-
mate agreement with lattice results) the extracted value of
the string tension even slightly overshoots its physical
value: �=�physical � 1:4.

On the other hand it is hardly surprising that confine-
ment is already present on such a simple level. Because of
the long range nature of the dyon far fields, the models
studied in [28] and also in this paper exhibit certain sim-
ilarities to ensembles of regular gauge instantons and
merons [34–36] and to the pseudoparticle approach [37–
41], for which it is well known that confinement and the
long range nature of the ‘‘gauge field building blocks’’ are
closely related (in particular cf. [36], where it has been
demonstrated that even a random ensemble of merons
yields a linearly rising static potential, as well as [38,39],
where the relation between the long range nature of the
gauge field building blocks and confinement has been
established). In a semiclassical approach at finite tempera-
ture, however, dyons are rather the natural building blocks.

V. CONCLUSIONS

The results obtained in [28] are based on an approxima-
tion of the multidyon moduli space metric, as shown in
Eq. (2). This metric G—as we have demonstrated above—
is positive definite only at small dyon numbers nD and
small dyon densities �. However, it is used at values of nD
and �, where it does not satisfy the fundamental require-
ment of positive definiteness.

In detail our findings are the following:
(i) At dyon numbers 100 � nD � 800 and typical den-

sities (� � 1=fm3), practically all dyon configura-
tions correspond to matrices G, which are not
positive definite.

(ii) Roughly half of the dyon configurations have odd
numbers of negative eigenvalues. This implies that
every second dyon configuration receives a negative
weight factor, when the metric determinant is taken

into account as weight of an unrestricted integration
over collective coordinates.

(iii) All attempts to approach the thermodynamic limit
by increasing the dyon number, while keeping their
density fixed, have lead to more severe violations of
positive definiteness.

(iv) Decreasing the temperature (throughout this work
we have used � ¼ 1=T ¼ 1:00 fm), while keeping
the physical values of the string tension and the
critical temperature fixed [according to Eq. (4)],
amounts to increasing the three-dimensional den-
sity. As we have demonstrated this makes the situ-
ation even worse.

(v) Dyons generically induce confinement; already
dyon ensembles with randomly chosen positions
do so.

We expect that the problems encountered for SU(2) are
generic also for higher gauge groups.
We consider these findings a challenge. Since positive

definiteness is a fundamental property of any moduli space
metric, it seems doubtful that results without restriction to
the ‘‘positive definite subset’’ of dyon configurations can
be interpreted in a physically meaningful way. If the metric
determinant is taken into account as weight, averages of
physical observables are computed from alternating sums
over the number of negative eigenvalues of G. We con-
clude that, in order to obtain physically meaningful results,
it is necessary either to modify the dyon model in a way
that the (corrected) weight factor is always positive, or to
restrict the integration over dyon positions to those parts of
configuration space, where G is positive definite.
In a subsequent publication we plan to present numerical

simulations of dyon models with interactions derived from
the approximate moduli space metric G, which do not
suffer from ‘‘unphysical sign problems.’’ One appealing
possibility is the following integration over collective co-
ordinates:

�YK
i¼1

Y2
m¼1

d3xmi

�
W;

W ¼
�
detðGÞ ifG is positive definite

0 otherwise.

(21)

Since the constraints imposed on the dyon coordinates xm
i

by this measure are highly nontrivial, it seems unlikely that
this model can be treated analytically. Therefore, we are
currently developing efficient Monte Carlo algorithms,
which are respecting the positive definiteness of G, i.e.
which are designed to avoid ‘‘forbidden’’ multidyon con-
figurations. In this respect our finding that already dyons
with randomly chosen positions generate confinement is
encouraging in the sense that models based on dyons seem
to capture the relevant degrees of freedom of SU(2) Yang-
Mills theory.

TABLE III. String tensions in units of the physical string
tension �physical ¼ ð440 MeVÞ2 for various dyon densities �.

� L in fm �=�physical

1=125 fm3 46.42 0.015(1)

1=64 fm3 37.13 0.020(1)

1=27 fm3 27.85 0.037(1)

1=8 fm3 18.57 0.074(1)

1=fm3 9.28 0.466(13)

�0 ¼ 3:10=fm3 6.37 1.434(19)
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APPENDIX A: RELATION BETWEEN THE
SPECTRUM OF GAND THE SPECTRUM OF g

In the following we show that the number n�ðgÞ of
negative eigenvalues of g is 4 times the number n�ðGÞ of
negative eigenvalues of G.
The relation between G and g is

g ¼
GþWT

x G
�1Wx WT

x G
�1Wy WT

x G
�1Wz WT

x G
�1

WT
y G

�1Wx GþWT
y G

�1Wy WT
y G

�1Wz WT
y G

�1

WT
z G

�1Wx WT
z G

�1Wy GþWT
z G

�1Wz WT
z G

�1

G�1Wx G�1Wy G�1Wz G�1

0
BBB@

1
CCCA

¼
1 0 0 WT

x

0 1 0 WT
y

0 0 1 WT
z

0 0 0 1

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ~WT

G 0 0 0
0 G 0 0
0 0 G 0
0 0 0 G�1

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ~G

1 0 0 0
0 1 0 0
0 0 1 0
Wx Wy Wz 1

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ ~W

; (A1)

cf. Eq. (20) in [28].

Obviously, ~G has 4n�ðGÞ negative eigenvalues. We denote the eigenvectors of ~G by vðk;�Þ and the eigenvalues by �ðk;�Þ,
i.e. ~Gvðk;�Þ ¼ �ðkÞvðk;�Þ.þ denotes a positive eigenvalue, i.e. �ðk;þÞ > 0, and� denotes a negative eigenvalue, i.e. �ðk;�Þ <
0. Because ~G is symmetric, the eigenvectors can be chosen orthonormal. Moreover, all eigenvalues are real and all
eigenvectors can be chosen real.

With arbitrary real coefficients �ðkÞ one has

0>
X
k

�ðkÞ2�ðk;�Þ ¼
�X

k

�ðkÞvðk;�Þ
�
T
~G

�X
k0
�ðk0Þvðk0;�Þ

�
¼

�
~W�1

X
k

�ðkÞvðk;�Þ
�
T
~WT ~G ~W|fflfflfflffl{zfflfflfflffl}

¼g

�
~W�1

X
k0
�ðk0Þvðk0;�Þ

�
: (A2)

The 4n�ðGÞ dimensional subspace

S ¼ ~W�1
X
k

�ðkÞvðk;�Þ (A3)

can be expanded in terms of the orthonormal and real
eigenvectors xðk;�Þ of g (g is also symmetric), i.e.

S ¼ X
k

�ðk;�Þxðk;�Þ þX
k

�ðk;þÞxðk;þÞ: (A4)

If gwould have less than 4n�ðGÞ negative eigenvalues, one
could chose a combination of �ðkÞ such that �ðk;�Þ ¼ 0.
This, however, would be a contradiction to (A2).
Therefore, g has at least 4n�ðGÞ negative eigenvalues,
i.e. n�ðgÞ 	 4n�ðGÞ.

Analogously one can show that nþðgÞ 	 4nþðGÞ. This
proves that n�ðgÞ ¼ 4n�ðGÞ.

APPENDIX B: THE DYON GAUGE FIELD IN THE
FAR FIELD LIMIT

The gauge field of a single dyon can be obtained by
considering the gauge field of a caloron at maximal hol-
onomy in the limit of infinite dyon separation.

When the distance to the dyon center r ¼ ðx2 þ y2 þ
z2Þ1=2 is large, the gauge field A� ¼ Aa

��
a=2 is Abelian:

A1
� ¼ 0; A2

� ¼ 0;

A3
� ¼ ��0�T þ q �
3

��@� lnð�Þ; (B1)

where

� ¼ 1

r� z
; (B2)

and �
a
�� ¼ 	a�� � �a��0� þ �a��0� is the ’t Hooft sym-

bol. The charge q is either þ1 (dyons of the first kind) or
�1 (dyons of the second kind). The coordinate system has
been chosen such, that the singular Dirac string points in
positive z-direction.
The nonzero components of the gauge field read

A3
0 ¼ �T þ q

r
; A3

1 ¼ � qy

rðr� zÞ ;

A3
2 ¼ þ qx

rðr� zÞ :
(B3)

With the definitions Ej ¼ F0j, Bj ¼ �	jklFkl=2, and
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F�� ¼ @�A
3
� � @�A

3
� the corresponding electric and mag-

netic monopole fields are given by
E ¼ qr

r3
; B ¼ qr

r3
: (B4)

Throughout this paper we approximate dyons always by
these Abelian far fields.
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