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In the framework of Coulomb gauge QCD we explore dynamical breaking of chiral symmetry and

screening of the confinement potential at finite density. The screened potential is applied in the study of

charmonium dissociation.
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I. INTRODUCTION

Since the recent discovery of the strongly correlated
QCD fluid, the phenomenology of the quark-gluon plasma
has attracted a lot of attention [1]. Many predictions have
been made for the several possible phases of the quark-
gluon plasma in which quarks and gluons are no longer
confined to nucleons and pions [2–5]. At extremely high
temperature and low density, thermal excitations of the
gluon field are expected to screen interactions between
color charges and ultimately, due to asymptotic freedom
result in a weakly interacting quark gas [6–8]. Similarly, at
low temperature but high density Debye screening is ex-
pected to reduce the range of strong interactions. Novel
phases that correlate quark color and flavor are predicted to
occur at asymptotic densities due to the attractive nature of
quark-quark interactions in certain color-flavor locked
combinations [9,10]. Thus, finite temperature and/or den-
sity are expected to reflect on various aspects of confine-
ment. Furthermore any modification of the ground state
influences symmetry properties and, in particular, restora-
tion of chiral symmetry is expected. At finite density and
low temperature the precise relation between chiral sym-
metry restoration and deconfinement is not yet known. A
common wisdom is that in this regime there is a phase
transition from hadronic (confined) matter at low density to
the unconfined (possibly superconducting) phase at higher
densities [11–14]. Recently, however, it has been observed
that the confined and deconfined phases may be separated
by a phase where quarks are confined but chiral symmetry
is restored. In the limit of an infinite number of colors
NC ! 1 this so-called quarkyonic phase would in fact
extend to infinite density, since in this limit Debye screen-
ing due to quark loop vanishes [15]. In this paper we
examine the possible emergence of this new phase using
a canonical formulation of the QCDmany body problem in
the Coulomb gauge. The Coulomb gauge canonical for-
mulation can describe both finite temperature and density.
In this formulation manifestation of deconfinement can be
inferred from the temperature and/or density dependence
of the color Coulomb interaction. In contrast, lattice simu-
lations at finite density are still at their infancy [16,17].
One of the smoking gun signals of deconfinement is the
possible dissociation of heavy quarkonia [18–25]. By

studying the density dependence of the Coulomb gauge
heavy quark potential we will be able to explore charmo-
nium properties at finite density.
The paper is organized at follows: In the following

section we discuss the Coulomb gauge QCD and approx-
imations relevant to the problem in hand. Zero and finite
density properties are discussed in Secs. III and IV, respec-
tively. Charmonium dissociation is studied in Sec. V and
followed by conclusions and outlook.

II. COULOMB GAUGE QCD

In this section we briefly discuss QCD in the Coulomb
gauge and the approximations appropriate for the high
density and/or temperature systems [26,27]. In the
Coulomb gauge gluons are described by the transverse
potentials AaðxÞ, a ¼ 1 � � �N2

C � 1, r �AaðxÞ ¼ 0 and

the conjugated, transverse momenta �aðxÞ,
½AaðxÞ;�bðyÞ� ¼ i�Tðx� yÞ�ab; (1)

where �Tðx� yÞ � ½I� rr=r2��3ðx� yÞ. The canoni-
cal momentum �aðxÞ is the negative of the transverse
component of the chromo-electric field. The quark and
antiquark degrees of freedom will be defined below in

terms of the canonical set of Dirac fields c iðxÞ; c y
i ðxÞ, i ¼

1 � � �NC, one for each flavor. The Hamiltonian is given by

H ¼ HD þHYM þHC; (2)

where HD contains the Dirac kinetic energy and quark-
transverse gluon interaction, HYM is the Yang-Mills term,
which contains the gluon kinetic energy and the three- and
four-gluon interactions and finally HC is the Coulomb
potential given by

HC ¼ 1

2

Z
dxdyJ�1�aðxÞKðx; a; y; bÞ½A�J�bðyÞ: (3)

It represents the non-Abelian Coulomb gauge interaction
between color charge densities �aðxÞ ¼ c yðxÞTac ðxÞ þ
fabcA

bðxÞ�cðxÞ mediated by the Coulomb kernel K½A�
given by

Kðx; a; y; bÞ½A� ¼
�

g

r �D ð�r2Þ g

r �D
�
ðx;a;y;bÞ

: (4)

Finally, J ¼ det½�r �D� is the determinant of the
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Faddeev-Popov operator; D ¼ Dab ¼ �abrþ gfacbA
c

is the covariant derivative in the adjoint representation,
andB is the chromo-magnetic fieldBaðxÞ ¼ r�AaðxÞ þ
ðg=2ÞfabcAbðxÞ �AcðxÞ. At every space point x and color
component a the Coulomb gauge potentials, AaðxÞ are an
analog of a curvilinear coordinate. This is because their
values are restricted to reside within the boundary of the
Gribov region, which has a nontrivial metric determined by
J [28]. A confinement scenario in the Coulomb gauge
states that it is the field configurations near the boundary of
the Gribov region @� that dominate the QCD vacuum
[29,30], and it follows that fluctuations near the boundary
lead to massive quasiparticle excitations. Since the exact
parametrization of the Gribov horizon is not known the
quantitative description of this confinement scenario varies
depending on how restriction to the Gribov horizon is
implemented, but the general features seem to be robust
[31–34]. With this picture in mind we approximate the
ground state of a finite density quark plasma by the state
with no quasiparticle gluon excitations, and the large back-
ground fields concentrated near @� lead to enhancement in
the long-range behavior of the Coulomb kernel [26,34].
That is we make the replacement

Kðx; a; y; bÞ½A� ! hKðx; a; y; bÞ½A�i ¼ Kðx� yÞ�ab;

(5)

with the potentialKðrÞmodified from its free (A ¼ 0) form
KðrÞ ¼ �=r, for large r due to the large fields A 2 @�. In
particular, we approximate the kernel by the from

KðrÞ ¼ KCðrÞ þ KLðrÞ; (6)

with KC and KL being the short-range Coulomb and long-
range linear potentials, respectively, which will be dis-
cussed in detail in the following section. The final
Hamiltonian, describing massless quarks with energies
below gluon quasiparticle excitations is given by

H ¼
Z

dxc yðxÞð�i� � rÞc ðxÞ þ 1

2

�
Z

dxdyc yðxÞTac ðxÞKðjx� yjÞc yðyÞTac ðyÞ:
(7)

Note, that from Eq. (7) it follows that it is�CFKðrÞ, which
is the instantaneous interaction in the color-singlet q �q
channel.

III. QUARKS AT ZERO DENSITY

In presence of the effective density-density interaction
mediated by the kernel K, in Eq. (7) quarks and antiquarks
acquire effective mass, which in the mean field approxi-
mation can be described within the Hartree-Fock-
Bogolubov framework [11–13,35]. The single quark qua-
siparticle operators are defined by a canonical transforma-
tion to a plane wave representation of the Dirac fields.

c ðxÞ ¼ X
�

Z
dkeik�x½uðk; �Þbk;� þ vð�k; �Þdyk;�� (8)

and similarly for c y. Here, dk � d3k=ð2�Þ3, � ¼ �1=2 is
the quark (antiquark) spin projection and bðdÞ; byðdyÞ are
the quark (antiquark) annihilation and creation operators,
respectively. These quasiparticle operators satisfy the stan-
dard fermion anticommutation relations and define the
vacuum state by b�;kjvaci ¼ d�;kjvaci ¼ 0. The single

particle wave functions are given by

uTð�;kÞ ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ Ek

mk

s
��;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ek

mk

s
� � k̂��

�

vTð�;kÞ ¼ 1ffiffiffi
2

p
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ek

mk

s
� � k̂ ���;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Ek

mk

s
���

�
;

(9)

where �� � i�2�, mk=Ek � sin	k and 	k is the BCS
angle, which determines the number density of quark-
antiquark pairs in the BCS vacuum, i.e. the quark conden-
sate and the extent of chiral symmetry breaking [36–38].
At zero temperature and density the BCS angle is deter-
mined by minimizing the vacuum energy density
�hvacjHjvaci=�	k ¼ 0, which leads to the gap equation
(sp � sin	p, cp � cos	p)

psp ¼ CF

2

Z
dk ~Kðjk� pjÞ½skcp � ckspk̂ � p̂�: (10)

Here, ~KðpÞ is the Fourier transform of the effective poten-
tial from Eq. (4). The Fourier transform of the linear
potential KL has to be taken with care, since naively,R
dxjxj expð�k � xÞ ¼ 1. We introduce an infrared regu-

lator 
 and define [39]

KLðrÞ ! KL;
ðrÞ ¼ 2b


2

�
1

R
� e�
R

R

�
� 2b



(11)

so that lim
!0KL;
ðrÞ ¼ �br. The difference between the

linear potential and the IR finite approximation is shown in
Fig. 1. In momentum space the IR finite kernel becomes

~K L;
ðpÞ ¼ 8�b

p2ðp2 þ 
2Þ �
2b



ð2�Þ3�3ðpÞ: (12)

It is clear that the � term does not contribute the gap
Eq. (10) and the gap equation is well defined in the limit

 ! 0. Equivalently, the gap equation is invariant under a
constant shift in the potential

KðrÞ ! KðrÞ þ C: (13)

Since such a shift induces a contribution to the
Hamiltonian proportional to the square of the total charge
operator

P
aQ

aQa,

Qa ¼
Z

dx�aðxÞ (14)

invariance under (13) is an exclusive property of color-
singlet states, and it is only matrix element invariant under
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global color rotations that are physical. In contrast, under
this shift, the energy �p of a single quark state

(byð�;pÞjvaci) that is given by

�p ¼ pcp þ CF

2

Z
dk ~Kðjk� pjÞ½sksp þ ckcpk̂ � p̂�

(15)

transforms to

�p ! �p þ CF

2
C: (16)

So single quark states are clearly unphysical. For 
 ! 0 the
� term in ~K dominates the integrand in Eq. (15), and the
quark self-energy becomes negative and tends to�1 in the

 ! 0 limit. As pointed out in [39] this is necessary in
order for color-singlet q �q excitations to have finite, non-
negative energies. This is because the potential energy in
the q �q bound state, given by �CF

~KðpÞ, where p is the
relative momentum between the quark and the antiquark is
large and positive for small 
 (and approached þ1 in the
limit 
 ! 0). Thus, the infinities in the 
 ! 0 limit cancel
between the self-energies and the residual interaction be-
tween the quark and the antiquark. Since 	 � 0 is a lower
energy state compared to 	 ¼ 0, after cancellation of the
IR divergencies, the finite energy of color single excita-
tions is C independent and non-negative. This is, however
not the case for color-nonsinglet states. For example, a
single quark state with energy given by Eq. (15) has
negative energy, which becomes �1 in the limit when
the interaction is confining (i.e. 
 ! 0). This is clearly
unphysical as one would expect colored states to have
positive, and IR diverging energies, � ! þ1 in the con-
fining limit. Since the shift in Eq. (13) is a symmetry of the
physical sector we can choose C to cancel the IR diver-
gence in the quark self-energy, and redefine KL accord-

ingly Thus, instead of Eq. (12) we should use

~K L;
ðpÞ ¼ 8�b

p2ðp2 þ 
2Þ ; (17)

which is positive, gives � ! þ1 as 
 ! 0 and does not
affect properties of color-singlet states. In fact, an interac-
tion without the IR divergent constant term constant term is
obtained when computing the expectation value of K½A�
[cf. Eq. (4)] in a mean field ansatz for the gluon vacuum
distribution [26,27].
A similar argument for regulating the p ¼ 0 singularity

of ~KL was proposed in [40]. There by explicitly restricting
the spectrum of the Hamiltonian to include only the color-
singlet subspace an even stronger constraint on the IR
momentum dependence of the kernel was derived, namely,
~KLð0Þ ¼ 0. With an IR regulated (finite-
) kernel the
minimal physical requirement, however is that colored
excitations have positive energies, (becoming þ1 as 
 !
0). Thus, we do consider kernels ~KðpÞ that have integrable,
but in principle finite zero modes.

IV. QUARKS AT FINITE DENSITY

With the interactions in the Hamiltonian now well de-
fined in the IR, the system at finite quark density can be
described using standard many body techniques [11–13].
In particular, the finite density gap equation becomes

psp ¼ CF

2

Z
dkð1� nkÞ ~Keffðjk� pjÞ½skcp � ckspk̂ � p̂�;

(18)

and the single quark energy is given by

�p ¼ pcp þ CF

2

Z
dkð1� nkÞ ~Keffðjk� pjÞ

� ½sksp þ ckcpk̂ � p̂�: (19)

Here, nk is the quark occupation number at zero tempera-
ture,

nk ¼ �ðkF � kÞ; (20)

with kF denoting the Fermi momentum. Because of the
Pauli blocking factor 1� nk interactions between quarks
have small effect on quark levels inside the Fermi sphere
where quarks are effectively free �p � pcp. The self-

energy contributes mainly for states above the Fermi sur-
face and results in states that are similar to the confined
quark states at zero density. Since any modification of the
antiquark distribution from its vacuum value is suppressed
at finite quark density, we have set the antiquark occupa-
tion number to be zero, and in the following we only
consider quark-hole excitations near the quark Fermi sur-
face. We use the Fermi momentum to count the quark
states because at zero temperature it is directly related to
quark density. Furthermore, due to the attractive, long-
range interaction the single quark energies are large, even

0 0.2 0.4 0.6 0.8 1
ε r

0

0.2

0.4

0.6

0.8

1
εV

(r
)/

b
V(r) = -K

L,ε(r)

V(r) = b r

FIG. 1. IR finite approximation to the linear potential of Eq.
(11). The proper potential for describing the color-nonsinglet
state, [cf. Eq. (11)] corresponds to a downward shift by two
units.
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for a screened potential and the same is true for the
chemical potential; it takes large energy to remove a quark.
So, instead of treating Fermi momentum as a function of
the large single quark energy and chemical potential, we
treat Fermi energy as a function of the Fermi momentum.
For small Fermi momentum, i.e. low density, screening is
weak and the energy to remove a single quark tends to
infinity.

A. Screening effect at finite density

At finite density the quark-quark potential CF
~KðpÞ is

screened by particle-hole excitations near the Fermi sur-
face, resulting in the effective interactionCF

~KeffðpÞ, which
enters Eqs. (18) and (19),

~K effðpÞ ¼ ~KðqÞ � ~KðqÞ�ðqÞ ~KðqÞ þ � � �
¼ ~KðqÞ � ~KðqÞ�ðqÞ ~KeffðqÞ; (21)

or

~K effðqÞ ¼
~KðqÞ

1þ ~KðqÞ�ðqÞ : (22)

The vacuum polarization, �ðqÞ is shown in Fig. 2, and it
describes the probability for creating a particle-hole exci-
tation. Since the pair is excited in the colored state in the
confining limit (
 ! 0) it is expected that�ðqÞ ! 0, since
the amplitude is proportional the inverse of the particle-
hole excitation energy, which becomes infinite in the con-
fining limit. Assuming phase transition does take place,
however, we can examine the effect of Debye screening in
the deconfined phase near or above the phase transition
density. In this case vacuum polarization is given by

�ðqÞ ¼ � nf
2

Z
dk

nk � njkþqj
�k ��jkþqj

�
�
1þ sksjkþqj

þ ckcjkþqj
k � ðkþ qÞ
kðjkþ qjÞ

�
; (23)

where nf is the number of light flavors. The set of equa-

tions (18), (19), (22), and (23) with ~KðpÞ given by

~KðpÞ ¼ 4��ðpÞ
p2

þ 8�b

p2ðp2 þ 
2Þ (24)

forms a set of coupled equations, which we solve numeri-
cally and discuss below.

B. Numerical result

We solved coupled Eqs. (18), (19), (22), and (23) at
finite density and zero temperature with two light quarks
flavors using

�ðpÞ ¼ 4�Z

�3=2log3=2ð p2

�2
QCD

þ cÞ
; (25)

with Z ¼ 5:94, c ¼ 40:68, and �QCD ¼ 250 MeV deter-

mined from fitting the zero-density q �q potential [41]. At
zero density what makes quark energies finite is the IR
regulator 
 in Eq. (24), at finite density, above the decon-
finement phase transition we expect, however, that the self-
consistent set of equations will admit nontrivial solutions
in the limit 
 ! 0, with the Fermi momentum kF taking
over the role of the IR regulator instead. We have verified
numerically that this indeed is the case. The equations are
solved by iterations. For given density, kF we start with a
small, but finite 
, e.g. 
 ¼ 0:008 GeV, so the self-energy
at the first iteration has a sharp jump at the Fermi surface
(see left panel in Fig. 5). At this initial state the vacuum
polarization is highly suppressed (see left panel in Fig. 6),
particularly for small momenta. After a few iterations,
however, the self-energy becomes regulated by the vacuum
polarization itself and simultaneously the vacuum polar-
ization increases at small momenta. Finally, we reduce the
initial value of the IR regulator 
, and we verify that after
several iterations solutions converge to the same value,
regardless of the starting value of the regulator. We repeat
the calculations for several values of the Fermi energy. We
show these final results for the effective potential, BCS gap
angle, quark single energy, and vacuum polarization in
Figs. 3–6, respectively.
It is often stated that chiral symmetry restoration and

deconfinement occur simultaneously [11,12]. Our calcula-
tion illustrates that this need not be the case. At finite
density, effective potential is already deconfined, but the
gap equation admits nontrivial solutions. Only when the
Fermi momentum increases above, approximately kF �
0:05 to 0.06 GeV, the effective potential at large distance
is not strong enough to sustain spontaneous chiral symme-
try breaking.

C. Quarkyonic matter

Another manifestation of the independence of chiral
symmetry restoration and deconfinement is the appearance
of confined, chirally symmetric, quarkyonic, matter [15].
Since K / g2 / 1=NC we can extract explicit NC depen-
dence of the effective interaction

Q

anti−Q

FIG. 2. Vacuum polarization �q.
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~K NC

eff ¼
3
NC

~KNC¼3

1þ 3
NC

~KNC¼3�
: (26)

The q �q potential being proportional to CFK
NC

eff at large NC

becomes

CFKeff ! 3
2
~KNC¼3; (27)

since the vacuum polarization contribution is suppressed in
the NC ! 1 limit. In this limit we thus find that the Debye
screening disappears and confinement is restored at any
density. The gap Eq. (18), however is not affected by the
large NC limit, and the Pauli blocking remains in effect.
Thus, as density increases it will eventually prevent the gap
equation from developing a nontrivial, chirally broken
solution [14].

V. CHARMONIUM BINDING AT FINITE DENSITY

Modifications of charmonium properties, in particular,
binding energy and size may be strongly affected when the
bound state propagates through the plasma. At finite tem-
perature such modifications have been studied by comput-
ing charmonium spectrum using a temperature-dependent
static potential that is extracted from the lattice calculation
[18–20]. With such temperature-dependent static potential,
melting of charmonium can be inferred from the tempera-
ture dependence of the spectral function [24,25] or by
directly solving the bound state Shrödinger equation
[22,42]. In the former approach, melting of charmonium
can be seen when the bound state peak of spectral function
collapses, and as temperature increases it becomes buried
under the continuous background. From Shrödinger equa-
tion calculation melting is inferred at a temperature when
the bound state solution disappears. The melting tempera-
ture of the J=� from these two different approaches ap-
pears to be in a very good agreement at approximately
1:6Tc. Here, we use the Shrödinger equation approach to
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FIG. 3. Effective potential at finite density (r0 ¼
1=0:45 GeV�1).
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FIG. 4. Solution of gap equation 	k at finite density. For kF *
0:05 GeV the solution of the gap equation is 	ðpÞ ¼ 0.
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calculate dissociation of the J=� at finite density with two
flavors of light quarks. The mass MJPC of the J=� is given
by

MJPC ¼ 
JPC þ 2mþ CF½Keffðr0Þ � KCLðr0Þ�; (28)

and�

JPC �

q2

m

�
�N

�ðqÞ ¼ �CF

X
�0

Z
dq0PL0

q
ðq̂ � q̂0Þ

� ~Keffðjq� q0jÞ�N
�0 ðq0Þ; (29)

with N being the radial quantum number, � ¼ ðSq; LqÞ
stands for total quark spin Sq and relative orbital angular

momentum Lq. The heavy (charm) quark mass, m absorbs

any finite shift that has been removed from Keff as dis-
cussed in Sec. III and is fixed, by fitting spin-averaged
Lq ¼ 0 charmonium masses �MS

c �c ¼ 1
4 ½M0�þ þ 3M1��� ¼

3:068 GeV. The energy of J=� and its first radial excita-
tion as a function of the light quark density are given in

Table I, and the binding energy is plotted in Fig. 7. From
our numerical evaluation it follows that melting occurs at
light quark density kF � 0:9 GeV for J=� and kF �
0:3 GeV for �0. Finally, in Fig. 8, we show how the
wave function of J=� collapses with increasing density.

VI. CONCLUSION AND OUTLOOK

In this work we studied the screened quark-quark effec-
tive potential at finite temperature and presented a numeri-
cal result for the effective potential. We investigated the
restoration of chiral symmetry using the many body frame-
work of the Coulomb gauge QCD and find that the tran-
sition densities of chiral symmetry restoration and
deconfinement need not be related. In the deconfined
phase, chiral symmetry can be broken at density kF �
0:05 to 0.06 GeV. We also computed the melting density
for J=� and �0, which we find to be at kF � 0:9 GeV and
kF � 0:3 GeV, respectively. Similar to the situation at high
temperature and low density [21,22,43,44], collision of
gluons and quarks with heavy quarkonium will reduce
the dissociation temperature of quarkonium. We are ex-
pecting the same situation occurs at high density and low
temperature. As pointed out previously [21,22,43,44], pro-
duction of quarkonium in heavy-ion collision may provide
a clear signal for quark-gluon plasma. Clearly, the collision
effect of gluons and quarks with heavy quarkonium should
be incorporated in this case, and a detailed discussion of
collision dissociation of heavy quarkonium at the phase of
high density and low temperature is under way.

[1] J. Adams et al. (STAR Collaboration), Nucl. Phys. A757,
102 (2005).

[2] D. H. Rischke, Prog. Part. Nucl. Phys. 52, 197 (2004).

[3] M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30
(2005).

[4] J.W. Harris and B. Muller, Annu. Rev. Nucl. Part. Sci. 46,

TABLE I. J=� and �0 energy spectrum at finite density.

kF (GeV) J=� (GeV) �0 (GeV) hriJ=� ðGeV�1Þ
0.0 3.065 3.823 1=0:476
0.2 2.801 3.288 1=0:417
0.4 2.771 2.946 1=0:351
0.6 2.733 2.771 1=0:250
0.8 2.682 2.683 1=0:050

0 0.2 0.4 0.6 0.8 1
k

F
 (GeV)

-10

-8

-6

-4

-2

0

ε cc
(G

eV
)

:J/Ψ
:Ψ’

FIG. 7. 
J=� and 
�0 at finite density, where 
JPC is defined in
Eq. (29).

0 2 4 6 8 10 12 14

r(GeV
-1

)

0

0.1

0.2

0.3

0.4

0.5

0.6

Ψ
J/

Ψ
(r

)

k
F
=0GeV

k
F
=0.2GeV

k
F
=0.4GeV

k
F
=0.6GeV

k
F
=0.8GeV

FIG. 8. J=�’s wave function �J=�ðrÞ at finite density.

PENG GUO AND ADAM P. SZCZEPANIAK PHYSICAL REVIEW D 79, 116006 (2009)

116006-6



71 (1996).
[5] D. J. Gross, R. D. Pisarski, and L.G. Yaffe, Rev. Mod.

Phys. 53, 43 (1981).
[6] J. C. Collins and M. J. Perry, Phys. Rev. Lett. 34, 1353

(1975).
[7] F. Karsch, Lect. Notes Phys. 583, 209 (2002).
[8] E. Laermann and O. Philipsen, Annu. Rev. Nucl. Part. Sci.

53, 163 (2003).
[9] K. Rajagopal, Nucl. Phys. A642, c26 (1998).
[10] M.G. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys.

B537, 443 (1999).
[11] A. C. Davis and A.M. Matheson, Nucl. Phys. B246, 203

(1984).
[12] V. F. Galina and K. S. Viswanathan, Phys. Rev. D 38, 2000

(1988).
[13] A. Kocic, Phys. Rev. D 33, 1785 (1986).
[14] L. Y. Glozman and R. F. Wagenbrunn, Phys. Rev. D 77,

054027 (2008).
[15] L. McLerran and R.D. Pisarski, Nucl. Phys. A796, 83

(2007).
[16] Z. Fodor and S. D. Katz, Phys. Lett. B 534, 87 (2002).
[17] Z. Fodor and S. D. Katz, J. High Energy Phys. 03 (2002)

014.
[18] M. Doring, K. Hubner, O. Kaczmarek, and F. Karsch,

Phys. Rev. D 75, 054504 (2007).
[19] O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510

(2005).
[20] P. Petreczky and K. Petrov, Phys. Rev. D 70, 054503

(2004).
[21] H. Satz, J. Phys. G 32, R25 (2006).
[22] C. Y. Wong, Phys. Rev. C 72, 034906 (2005).
[23] S. Digal, P. Petreczky, and H. Satz, Phys. Lett. B 514, 57

(2001).
[24] A. Mocsy, P. Petreczky, and J. Casalderrey-Solana, Nucl.

Phys. A783, 485 (2007); A785, 266 (2007).

[25] A. Mocsy and P. Petreczky, Phys. Rev. D 77, 014501
(2008).

[26] A. P. Szczepaniak and E. S. Swanson, Phys. Rev. D 65,
025012 (2001).

[27] A. P. Szczepaniak, Phys. Rev. D 69, 074031 (2004).
[28] N. H. Christ and T. D. Lee, Phys. Rev. D 22, 939 (1980);

Phys. Scr. 23, 970 (1981).
[29] D. Zwanziger, Nucl. Phys. B412, 657 (1994).
[30] V. N. Gribov, Nucl. Phys. B139, 1 (1978).
[31] D. Epple, H. Reinhardt, W. Schleifenbaum, and A. P.

Szczepaniak, Phys. Rev. D 77, 085007 (2008).
[32] D. Epple, H. Reinhardt, and W. Schleifenbaum, Phys. Rev.

D 75, 045011 (2007).
[33] H. Reinhardt and C. Feuchter, Phys. Rev. D 71, 105002

(2005).
[34] C. Feuchter and H. Reinhardt, Phys. Rev. D 70, 105021

(2004).
[35] A. L. Yaouanc, L. Oliver, O. Pene, J. J. C. Raynal, M. Jarfi,

and O. Lazrak, Phys. Rev. D 37, 3691 (1988).
[36] S. L. Adler and A. C. Davis, Nucl. Phys. B244, 469 (1984).
[37] A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal, Phys.

Rev. D 29, 1233 (1984).
[38] P. J. d. Bicudo and J. E. F. Ribeiro, Phys. Rev. D 42, 1611

(1990).
[39] A. L. Yaouanc, L. Oliver, O. Pene, and J. J. C. Raynal,

Phys. Rev. D 29, 1233 (1984).
[40] A. Le Yaouanc, L. Oliver, O. Pene, J. C. Raynal, M. Jarfi,

and O. Lazrak, Phys. Rev. D 39, 924 (1989).
[41] P. Guo, A. P. Szczepaniak, G. Galata, A. Vassallo, and E.

Santopinto, Phys. Rev. D 77, 056005 (2008).
[42] P. Bicudo, M. Cardoso, P. Santos, and J. Seixas, Phys. Rev.

C 72, 034906 (2005).
[43] M. E. Peskin, Nucl. Phys. B156, 365 (1979).
[44] G. Bhanot and M. E. Peskin, Nucl. Phys. B156, 391

(1979).

CHIRAL SYMMETRY RESTORATION AND DECONFINEMENT . . . PHYSICAL REVIEW D 79, 116006 (2009)

116006-7


