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Correlators of singlet and octet axial currents, as well as anomaly and pseudoscalar densities have been

studied using QCD sum rules. Several of these sum rules are used to determine the couplings f8�, f
0
�, f

8
�0

and f0�0 . We find mutually consistent values which are also in agreement with phenomenological values

obtained from data on various decay and production rates. While most of the sum rules studied by us are

independent of the contributions of direct instantons and screening correction, the singlet-singlet current

correlator and the anomaly-anomaly correlator improve by their inclusion.
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I. INTRODUCTION

The determination of the decay constants of the� and�0
mesons for the octet and singlet axial vector currents is of
great interest both experimentally and theoretically. The
constants are defined by

h0jJa�5jPðpÞi ¼ ifaPp�; (1)

where the index a ¼ 8, 0 denotes the octet and singlet
currents, respectively. In terms of u, d and s quark fields
the currents are defined by

J8�5 ¼
1ffiffiffi
6

p ð �u���5uþ �d���5d� 2�s���5sÞ (2a)

J0�5 ¼
1ffiffiffi
3

p ð �u���5uþ �d���5dþ �s���5sÞ: (2b)

The pseudoscalar meson state P of momentum p can be
either � or �0. The four couplings f8�, f

8
�0 , f0�, and f0�0

occur in the determination of a number of production and
decay amplitudes involving � and �0. Among the nonet of
pseudoscalars �, K, � and �0, the isosinglets � and �0 are
of special interest because of the so-called U(1) problem
[1–7] and the presence of an anomaly in the divergence of
the axial singlet current. Thus, one has

@�J0�5 ¼
2iffiffiffi
3

p ðmu �u�5uþmd
�d�5dþms �s�5sÞ �

ffiffiffi
3

p
4

� �s

�
G ~G (3)

@�J8�5 ¼
2iffiffiffi
6

p ðmu �u�5uþmd
�d�5d� 2ms �s�5sÞ (4)

where

G ~G ¼ 1

2
"����Ga

��G
a
��; "0123 ¼ þ1: (5)

Following current literature we write the four constants faP
(a ¼ 0, 8; P ¼ �, �0) defined in Eq. (1) in the matrix form

f8� f0�
f8
�0 f0

�0

 !
¼ f8 cos	8 �f0 sin	0

f8 sin	8 f0 cos	0

� �
(6)

in terms of two mixing angles 	8 and 	0.
A number of theoretical approaches have been used to

compute the four constants f8, f0, 	8, and 	0. After the
initial works in a chiral Lagrangian approach with 1=NC

expansion, where two mixing angles were introduced by
Schechter et al. [8] and Moussallam [9], they have been
calculated in chiral perturbation theory by Kaiser and
Leutwyler [10–12]; Shore [13] has computed them using
the so-called generalized Dashen-Gell-Mann-Oakes-
Renner (DGMOR) program. A number of theoretical pa-
pers based on QCD sum rules have also appeared [14–19].
The topological susceptibility 
ðq2Þ is defined by


ðq2Þ ¼ i
Z

d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0i (7)

where

Q5ðxÞ ¼ ð�s=8�ÞGa
��ðxÞ ~Ga��ðxÞ: (8)

In an earlier work [20], we had computed the derivative of
the topological susceptibility at zero momentum 
0ð0Þ and
determined the mass of �0 in the chiral limit as well as
singlet decay constant in the same limit. For 
0ð0Þ we
obtained a value � 1:82� 10�3 GeV2. This is close to
the value 1:9� 10�3 GeV2 obtained in Ref. [21] using
only the axial vector current sum rules. Further it was
used to determine the isosinglet axial vector coupling
hp; sj �u���5uþ �d���5djp; si which along with GA, and

the octet coupling G8 successfully account for the Bjorken
sum rule. In a complimentary approach Ioffe and his
collaborators [16,17] used the experimental data on
Bjorken sum rule to determine 
0ð0Þ and found


0ð0Þ ¼ ð2:3� 0:6Þ � 10�3 GeV2: (9)

Dorokhov and Broniowski [22] using a nonlocal chiral
quark model found 
0ð0Þ ¼ 2:5� 10�3 GeV2. Further,
Leutwyler [23] in chiral perturbation theory found that
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0ð0Þ ¼ 2:2� 10�3 GeV2 þ ~H0

6
: (10)

This suggests that the ~H0 term in the effective
Lagrangian is indeed small.

In Ref. [20], we had estimated the mass of �0 in the
chiral limit to be

m�0 ðmq ¼ 0Þ ¼ 723 MeV (11a)

Fðmq ¼ 0Þ ¼ 178 MeV: (11b)

Many years ago, Witten [3] and Veneziano [5], using 1=NC

expansion where NC is the number of colors, obtained the
relation

m�02ðmq ¼ 0Þ ¼ 12
ð0ÞjGD=F2 (12)

where 
ð0ÞjGD is the topological susceptibility in gluody-
namics (GD), i.e., in SUðNcÞ gauge theory without any
quark fields. From Eqs. (11a), (11b), and (12), one gets


ð0ÞjGD ¼ ð193 MeVÞ4; (13a)

which is in excellent agreement with the lattice value [24]


ð0ÞjGD ¼ ð191� 5Þ4 MeV4: (13b)

The above discussion on 
0ð0Þ and Eqs. (13a) and (13b)
suggests that despite the various approximations involved,
the QCD sum rule method can be a useful tool to determine
the values of f8, f0, 	8, and 	0, which is the main theme of
the current work.

The paper is organized as follows: In the next section we
introduce several functions which a priori can be useful to
compute the four constants f8, f0, 	8, and 	0. We briefly
discuss the various low-energy theorems and briefly dis-
cuss the QCD sum rule method and point out that replace-
ment of the correlators by the operator product expansion
can violate low-energy theorems, and therefore introduce
poles at q2 ¼ 0 while the exact function has none. In
Sec. III, we write down the OPE for the various correlators
and corresponding sum rules for the various functions of
interest. In Sec. IV, we analyze the fits for the sum rules and
extract the values of f8, f0, 	8, and 	0 from the residues
from the sum rules that are not dependent on direct in-
stanton contributions. In Sec. V sum rules for the 
ðq2Þ and
the singlet-singlet current correlators are studied, which
improve with inclusion of direct instantons with screening.
Section VI. contains a summary and brief comments on
other authors’ works. An Appendix gives brief details of
low-energy theorems.

II. FORMALISM

Following Ioffe [15–18], we introduce the correlator of
axial vector currents

�ab
��ðqÞ ¼ i

Z
d4xeiqxh0jTfJa�5ðxÞ; Jb�5ð0Þgj0i;

ða; b ¼ 8; 0Þ: (14)

The general form of the polarization tensor �ab
��ðqÞ is

�ab
��ðqÞ ¼ �Pab

L ðq2Þg�� þ Pab
T ðq2Þð�q2g�� þ q�q�Þ:

(15)

The functions Pab
L ðq2Þ and Pab

T ðq2Þ are free from kinematic
singularities. On forming the divergence with the momen-
tum, we get

q��ab
��ðqÞq� ¼ �Pab

L ðq2Þq2: (16)

On the other hand from Eq. (14) we have the Ward identity
[17]

q��00
��ðqÞq� ¼ i12

Z
d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0i

� i2
Z

d4xeiqxh0jTfQ5ðxÞ; Dð0Þgj0i

� i2
Z

d4xeiqxh0jTfDðxÞ; Q5ð0Þgj0i

þ i
1

3

Z
d4xeiqxh0jTfDðxÞ; Dð0Þgj0i

þ 4

3

X
i¼u;d;s

mihoj �qiqij0i: (17)

In Eq. (17) we have introduced the notation

DðxÞ ¼ 2i
X

i¼u;d;s

mi �qiðxÞ�5qiðxÞ: (18)

Following Ioffe we note

lim
q!0

q��00
��ðqÞq� ¼ lim

q!0
� P00

L ðq2Þq2 ¼ 0 (19)

since the invariant P00
L ðq2Þ is regular at q2 ¼ 0. This low-

energy theorem, namely, the vanishing of the left-hand side
of Eq. (17), has been studied in detail by Ioffe [17]. In
particular, he noted that the contributions of the Goldstone
states, which are linear in quark masses, must vanish
separately in the right-hand side of Eq. (17) for zero
momentum. The special nature of the matrix elements of
the anomaly Q5ðxÞ between the vacuum and Goldstone
states plays a crucial role. One has the following results:

h0jQ5j�i ¼ � 1

2
ffiffiffi
2

p mu �md

mu þmd

f�m
2
� (20)

h0jQ5j�i ¼ 1

2

ffiffiffi
1

6

s
f�m

2
� (21)

which shows that the anomaly matrix elements are far from
flavor symmetric and linear in quark masses. In Eq. (20)
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mu �md

mu þmd
¼ Oð1Þ

and we have the GMOR relation

m2
� ¼ �2ðmu þmdÞh0j �qqj0i=f2�

m2
� ¼ � 8

3
ms

�
1� 1

4

mu þmd

ms

�
h0j �qqj0i=f2�

so that the matrix elements (20) and (21) are linear in quark
masses. The intermediate states other than the � and �
occurring in Eq. (21) have nonzero masses in the chiral
limit. We can therefore separately consider terms linear in
the light quark masses in analyzing the low-energy theo-
rem Eq. (19) which lead Ioffe to obtain the result [17]:


ð0Þ ¼ mredh0j �qqj0i
þ higher order terms in quark masses: (22)

Let us briefly consider the method of QCD sum rules.
Denoting generically

Fðq2Þ ¼ i

�

Z
d4xeiqxh0jTfAðxÞ; Bð0Þgj0i

where AðxÞ and BðxÞ are the local fields that connect the
vacuum to the hadronic state of interest, one considers the
dispersion relation

Fðq2Þ ¼ 1

�

Z ImFðsÞ
s� q2

dsþ subtractions

and Borel transforms it to obtain

B̂Fðq2Þ ¼ 1

�

Z
ImFðsÞe�s=M2

ds (23)

where the Borel transform is defined by

B̂Fðq2Þ ¼ lim
�q2!1;n!1

�ð�q2Þnþ1

n!

�
d

dq2

�
n
Fðq2Þ

�
�q2=n¼M2

:

Now the left-hand side of Eq. (23) is computed using the
operator product expansion while the right-hand side is
written in the form

1

�

Z
ImFðsÞe�s=M2

ds ¼ �He
�m2

H=M
2 þ 1

�

�
Z 1

W2
ImFðsÞe�s=M2

ds (23a)

where �H is the coupling involving the lowest mass stateH
in the dispersion representation:

ImFðsÞ ¼ ��H�ðs�m2
HÞ

þ contributions from higher mass states:

This leads to

�He
�m2

H=M
2 ¼ B̂Fðq2Þ � 1

�

Z 1

W2
ImFðsÞe�s=M2

ds: (23b)

One matches the left-hand side and the right-hand side over
some M2 interval to determine �H and mH. There are
several issues to be addressed here: (1) which function
Fðq2Þ should one choose where there is more than one
choice—in our case instead of P88

L we could have chosen
the function describing the correlator

i
Z

d4xeiqxh0jTfDðxÞ; Dð0Þgj0i;

(2) what W2 one should choose for the second term in
Eq. (23a), and (3) what is the M2 region over which we
should match the left-hand side and right-hand side in Eq.
(23b)? These are all related questions. The choice of Fðq2Þ
is dictated by its asymptotic behavior for large q2. If the
choice is between, say

F1ðq2Þ � q4 lnð�q2Þ
and

F2ðq2Þ � q2 lnð�q2Þ;
F2ðq2Þ is to be preferred since higher mass states in
ImF2ðsÞ are less dominant as compared to higher mass
states in ImF1ðsÞ. One can at best make an estimate of the
higher mass state contribution by using duality; that is, one
equates the sum over excited states by the smeared average
as given by the perturbative loop in F2ðq2Þ. Clearly W2

should be close to the squared mass of the first excited state
which one expects to be in the range 2 to 2:5 GeV2. Using a
significantly higher value of W2 invalidates Eqs. (23a) and
(23b). Similarly the interval in M2 is dictated by the

following. In computing B̂Fðq2Þ using OPE, we are usually
able to calculate only a small number of higher dimen-
sional operators. The smaller theM2 is the more important
are the higher dimensional operators which put a lower
limit on M2, while the larger the M2 is the more important
are the excited states in Eqs. (23a) and (23b) which put an
upper limit on M2. This, therefore, determines the M2

interval over which Eqs. (23a) and (23b) can be expected
to be valid. The constants mH and �H are then obtained by
looking for the best fit for Eqs. (23a) and (23b). It is easy to
see that if one fits mH at the experimental mass, this leads
to a better determination of the coupling since mH appears
in the exponential. It should be borne in mind that the sum
rule results are subject also to the errors in values of the
vacuum expectation values for the various condensates.
We shall consider several functions: P88

L ðq2Þ, P08
L ðq2Þ,

P00
L ðq2Þ, 
ðq2Þ

q2
, 


0ðq2Þ
q2

, �P00
L ðq2Þ � 12 
ðq2Þ

q2
, and Sðq2Þ which

are discussed in the Secs. IV and V. Before that we turn to
the OPE for the various T-products that are needed.

III. OPERATOR PRODUCT EXPANSION AND
DIRECT INSTANTON CONTRIBUTION

We will be using the following operator product expan-
sion, cf. Refs. [14,25,26]
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i
Z

d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0i ¼ �
�
�s

8�

�
2 2

�2
q4 ln

��q2

�2

��
1þ �s

�

�
83

4
� 9

4
ln

�
� q2

�2

���
� 1

16

�s

�
h0j�s

�
G2j0i

�
�
1� 9

4

�s

�
ln

��q2

�2

��
þ 1

8q2
�s

�
h0j�s

�
gsG

3j0i � 15

128

��s

q4
h0j�s

�
G2j0i2

þ 16

�
�s

4�

�
3 X
i¼u;d;s

mih �qiqii
�
ln

�
� q2

�2

�
þ 1

2

�
� 1

2

Z
d�nð�Þ�4q4K2

2ðQ�Þ

þ screening correction to the direct instanton: (24)

The perturbative term above is taken from Kataev et al.
[26]. The so-called direct instanton (DI) terms and their
screening are described in detail by Forkel [25]. In the
constant density or spike approximation

nð�Þ ¼ n0�ð�� �cÞ
one gets

i
Z

d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0ijDI

’ 1

4
n0M

3�3
c

ffiffiffiffi
�

p
e�M2�2

c

�
M2�2

c þ 13

4
þ 165

32

1

M2�2
c

�

(25)

while in the Gaussian-tail approximation [25]

nGð�Þ ¼ 218

36�3

�n

��

�
�

��

�
4
exp

�
� 26

32�

�2

��2

�
;

Nf ¼ Nc ¼ 3; ���1 ’ 0:6 GeV;

�n ffi 7:53� 10�4 GeV4; (26)

i
Z

d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0ijDI

¼ � 1

2

Z
d�nGð�Þ�4q4K2

2ðQ�Þ (26a)

and the integration has to be performed numerically. Forkel
has also extensively described the screening corrections to
the above, caused by correlations between instantons,
which are very important. We shall return to this point later.

For the crossed correlation between the anomaly and
psuedoscalar density, we have

ið�2imsÞ
Z

d4xeiqxh0jTfQ5ðxÞ; �s�5sð0Þgj0i

¼ m2
sq

2 ln

�
� q2

�2

��
�

2
� 7

4
þ 1

4
ln

��q2

�2

��

þ
�
�s

�

�
2
msh�ssi ln

�
� q2

�2

�
� 1

4

�s

�

�
�s

�
G2

	
m2

s

q2

� ln

�
� q2

�2

�
þ �s

2�
msh�sgs� �Gsi 1

q2
: (27)

The expressions in Eq. (27) are the result of our indepen-
dent calculations. For the psuedoscalar density–density

correlation we have the OPE [14]

ið2imsÞ2
Z

d4xeiqxh0jTf�s�5sðxÞ; �s�5sð0Þgj0i

¼ � 3

2�2
m2

sq
2

�
ln

�
� q2

�2

�
� 2þ

�
� 131

12

þ 17

3
ln

�
� q2

�2

�
� 11

3
ln2
�
� q2

�2

���
þ 8m3

sh �ssi 1
q2

�m2
s

�
�s

�
G2

	
1

q2
þ 4m2

s

�
16

3
�2 �s

�
h�ssi2

þmsh�sgs� � Gsi
�
1

q4
: (28)

The last dimension five and six terms above have been
computed by us.

IV. ANALYSIS AND DISCUSSION

Our interest in this work is to determine the couplings
listed in Eq. (6). The seven functions listed in the last
paragraph of Sec. II contain differing combinations of
these four couplings. They have differing asymptotic q2

behavior, and differ in the remaining nonperturbative terms
given the various vacuum condensates. We fix the � and �0
masses at their experimental values

m� ¼ 0:547 GeV; m�0 ¼ 0:958 GeV:

For the other quantities needed in the sum rules, we shall
use the values (cf. Refs. [17,20])

�sð1 GeVÞ ¼ 0:5;

a ¼ �ð2�Þ2h �qqi ¼ 0:55 GeV3;

b ¼ hg2sG2i ¼ 0:5 GeV4;

h �qgs� �Gqi ¼ m2
0h �qqi with m2

0 ¼ 0:8 GeV2;

h �ssi ¼ 0:8h �uui;�
gs

�s

�
G3

	
¼ "

2

�
�s

�
G2

	
with " ¼ 1:0 GeV2;

and ms ¼ 0:153 GeV:

(29)

We first begin with the octet-octet correlator, P88
L ðq2Þ

obtained from Eq. (16) with both a ¼ b ¼ 8. We have
from Eq. (4)
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�q2P88
L ðq2Þ ¼ iq�q�

Z
d4xeiqxh0jTfJ8�5ðxÞ; J8�5ð0Þgj0i

¼ i
Z

d4xeiqxh0jTf@�J8�5ðxÞ; @�J8�5ð0Þgj0i
þ ETCR (30)

where the equal time commutation relation ETCR has the
value 8msh�ssi=3. The Borel transformed sum rule is ob-
tained following the procedure of Eqs. (23), (23a), and
(23b). Since we must include �, �0 mixing, the ground
state hadrons consist of both � and �0. In Sec. II it was
pointed out that in P88

L ðq2Þ, because of division by q2 in the
left-hand side of Eq. (16), suppression of the excited state
contributions will lead to a better sum rule than, for ex-
ample, the one obtained from Sðq2Þ in Eq. (35) below.
However, care is needed. First note that the left-hand side
of Eq. (16) is zero when q2 is zero. This means that the
exact function P88

L ðq2Þ is regular at q2 ¼ 0. As noted by
Ioffe [17], the vanishing at q2 ¼ 0 of the right-hand side of
Eq. (30) results from the cancellation of Goldstone state
contribution at q2 ¼ 0 and ETCR. As explained in detail in
the Appendix, the replacement of the T product

TfDsðxÞ; Dsð0Þg (31)

by its operator product expansion valid for large q2 can
lead to a violation of the low-energy theorem

lim
q�!0

q��88
��ðqÞq� ¼ lim

q�!0
� q2P88

L ðq2Þ ¼ 0: (32)

Hence the approximate P88
L ðq2Þ obtained by OPE used in

the sum rule introduces a spurious pole in P88
L ðq2Þ at q2 ¼

0 whose residue we denote by K88. With this, the sum rule
reads

K88 þm2
�0 ðf8�0 Þ2 expð�m2

�0=M2Þ
þm2

�ðf8�Þ2 expð�m2
�=M

2Þ

¼ 1

�2
m2

sM
2

�
1þ �s

�

�
17

3
þ 2�� 2 ln

M2

�2

��
E0ðW2=M2Þ

� 8

3
msh �ssi þ 16

3
m3

s

1

M2
h�ssi � 2

3
m2

s

1

M2

�
�s

�
G2

	

� 64

9
�2 �s

�
m2

s

1

M4
h�ssi2 � 4

3
m3

s

1

M4
h �sgs� �Gsi:

(33)

To extract ðf8
�0 Þ2 and ðf8�Þ2 we need to specify the range of

M2 over which the left-hand side and the right-hand side
match and the value of the continuum thresholdW2. In this
and the following sum rules we use the criterion that at the
lower end of M2 the contribution of the highest dimen-
sional term to the OPE side be less than 5% and, at the
higher end ofM2, the continuum state contributions be less
than 32% of the sum of all terms in the right-hand side. In
Eq. (33) we use a value W2 ¼ 2:3 GeV2 and the results of
fitting Eq. (33) in the range 1:0 GeV2 � M2 � 1:7 GeV2

are displayed in Fig. 1. We find

K88 ¼ 1:097� 10�3 GeV4;

ðf8�Þ2m2
� ¼ 8:20� 10�3 GeV4;

ðf8
�0 Þ2m2

�0 ¼ 3:55� 10�3 GeV4 (34)

leading to the values

f8 ¼ 176:8 MeV and j	8j ¼ 20:6	: (34a)

Next, we write the pseudoscalar density correlator

Sðq2Þ ¼ i
Z

d4xeiqxh0jTfms �sðxÞ�5sðxÞ; ms �sð0Þ�5sð0Þgj0i:
(35)

We have the sum rule

m4
�0 ðf8�0 Þ2 expð�m2

�0=M2Þ þm4
�ðf8�Þ2 expð�m2

�=M
2Þ

¼ 8

3
m2

s

�
3

8�2
M4

�
1� �s

�

�
5

3
� 22

3

�
�� ln

M2

�2

���

� E1

�
W2

M2

�
� 2msh�ssi þ 1

4

�
�s

�
G2

	

þ 1

M2

�
16

3
�2 �s

�
h�ssi2 þmsh �sgs� �Gsi

��
: (36)

Notice that there is no division by q2 as in the case of
P88
L ðq2Þ and therefore there is no spurious pole. For the

same reason Sðq2Þ grows faster at large q2 than P88
L ðq2Þ

which means excited states are more significant in Sðq2Þ
than in P88

L ðq2Þ. Also the residues at � and �0 have addi-
tional m2

� and m2
�0 respectively as compared to Eq. (33).

We use W2 ¼ 2:3 GeV2 and the values of the parameters

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.0084

0.0086

0.0088

0.0090

0.0092

0.0094

0.0096

0.0098

0.0100

0.0102

B
T

[-
P

88 L
]

M2

 B: RHS of Eq.(33)
C: LHS 0f Eq.(33)

FIG. 1 (color online). Plots of the two sides of Eq. (33) (called
BT½�P88

L 
), with a constant included on the left-hand side, as a

function of the Borel mass squared. The best fit corresponds to
K88 ¼ 1:10� 10�3 GeV4, m2

�ðf8�Þ2 ¼ 8:20� 10�3 GeV4, and

m2
�0 ðf8�0 Þ2 ¼ 3:55� 10�3 GeV4.
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the same as in Eq. (29). In order to reduce the contributions
of excited states to a reasonable limit ( � 32%), the limits
on the Borel parameter were taken somewhat lower in this
case: 0:6 GeV2 � M2 � 0:9 GeV2. Our results of fits are
displayed in Fig. 2. We have

3m4
�ðf8�Þ2=ð8m2

sÞ ¼ 3:64� 10�2 GeV4;

3m4
�0 ðf8�0 Þ2=ð8m2

sÞ ¼ 4:02� 10�2 GeV4:
(37)

This corresponds to

f8 ¼ 168:4 MeV and j	8j ¼ 18:9	; (37a)

very close to the values listed in Eq. (34a). This confirms
that our introduction of the spurious pole in Eq. (33) is
correct. In order to compare the quality of fits obtained
from various curves, we define 
2 by the relation


2 ¼
�Xn
i¼0

½fðxiÞ � ffitðxiÞ
2=½fðxiÞ þ ffitðxiÞ
2
�
=ð1þ nÞ:

(38)

The values corresponding to Figs. 1 and 2 are given in
Table I. It is seen that as expected P88

L ðq2Þ fits better than
Sðq2Þ. We can check the effect of changing the lower and
higher M2 ends on 
2. For Eq. (36), the interval
0:5 GeV2 � M2 � 0:9 GeV2 gives f8 ¼ 165:5 MeV and
j	8j ¼ 20:2	 with 
 ¼ 2:5� 10�3, while 0:6 GeV2 �
M2 � 1:0 GeV2 gives f8 ¼ 171:7 MeV and j	8j ¼ 17:2	
with 
 ¼ 3:1� 10�3 and excited states contribution rising
to the level of 42% for the last case. For further discussion,
we consider only the values given in Eq. (37a).
We next consider the sum rule for P08

L ðq2Þ. We have

K08 þm2
�0f0�0f8�0 expð�m2
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þ 1ffiffiffi
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ffiffiffi
2
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s

1
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h �ssi � ffiffiffi

2
p �s

�
ms

1

M2
h �sgs� �Gsi þ 32

ffiffiffi
2

p
9

�2 �s

�
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s

1

M4
h �ssi2 þ 2

ffiffiffi
2

p
3

m3
s

1

M4
h �sgs� �Gsi: (39)

We again take W2 ¼ 2:3 GeV2 with parameter values the
same as in Eq. (29). The details of the fit in the interval
0:8 GeV2 � M2 � 1:5 GeV2, are displayed in Fig. 3 with
the result

K08 ¼ �3:7� 10�3 GeV4;

m2
�f

0
�f

8
� ¼ 1:36� 10�3 GeV4 and

m2
�0f0�0f8�0 ¼ �7:97� 10�3 GeV4: (40)

Since we have f0� ¼ �f0 sin	0 positive and f
8
�0 ¼ f8 sin	8

negative, it follows that both 	0 and 	8 are negative.
Combining with Eq. (34a) we find

f0 ¼ 142:3 MeV and 	0 ¼ �11:1	: (40a)

Let us now consider the combination Fðq2Þ ¼
�P00

L ðq2Þ � 12
ðq2Þ=q2 where 
ðq2Þ is defined by
Eq. (7). This has the effect of removing 
ðq2Þ from
�P00

L ðq2Þ, and has the advantage that the Fðq2Þ receives
no contribution for direct instantons. We can write the sum
rule corresponding to Fðq2Þ as

0.60 0.65 0.70 0.75 0.80 0.85 0.90

0.030

0.032

0.034

0.036

0.038

0.040

0.042
B

[p
se

ud
os

ca
la

r 
co

rr
el

at
or

]

M2

 B : OPE side of S(q2)
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FIG. 2 (color online). The plots of Borel transforms of pseu-
doscalar correlator Sðq2Þ: right-hand side of Eq:ð36Þ � 3

8m2
s
(curve

B) and a two-parameter fit (curve C). The fit corresponds to
3:64� 10�2 GeV4 and 4:02� 10�2 GeV4 as residues at �- and
�0-poles. This gives f8 ¼ 168:4 MeV and 	8 ¼ �18:9	.

TABLE I. List of 
 ¼ ffiffiffiffiffiffi

2

p
of curves which are independent of

instanton contribution. 
2 has been defined in Eq. (38). F has
been defined in the text below Eq. (40a).

Fig. no. Plot of 
 n

1 P88
L 2:0� 10�4 28

2 S 1:6� 10�3 28

3 P08
L 1:1� 10�3 28

4 F 2:8� 10�3 28

5 
0 5:1� 10�3 28
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h�sgs� �Gsi: (41)

Using W2 ¼ 2:3 GeV2 and the same values of other parameters as in Eq. (29), we have fitted Eq. (41) in the range
0:8 GeV2 � M2 � 1:5 GeV2 and displayed it in Fig. 4. This gives

K ¼ 4:64� 10�3 GeV4;

� 1

2
m2

�½ðf8 cos	8Þ2 � 2
ffiffiffi
2

p
f0f8 sin	0 cos	8
 ¼ �6:58� 10�3 GeV4; and

� 1

2
m2

�0 ½ðf8 sin	8Þ2 þ 2
ffiffiffi
2

p
f0f8 cos	0 sin	8
 ¼ 9:2� 10�3 GeV4: (42)

Combining with Eq. (34a) we find

f0 ¼ 140:5 MeV and 	0 ¼ �14:6	: (42a)

We reconsider the sum rule for 
0ðq2Þ=q2 � 
0ð0Þ=q2 from a slightly different perspective than in our earlier work [20]
where we determined 
0ð0Þ using the empirical values of the f8, f0, 	8, 	0 for residues of poles at � and �0. Here, we shall
regard 
0ð0Þ as well as the pole residues as unknowns to be determined by the sum rule. Writing it in the form (we set
mu ¼ md ¼ 0 so that the pion pole is absent)


0ð0Þ � 1
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FIG. 3 (color online). Plots of the two sides of Eq. (39) (called
BT½�P08

L 
), with a constant included on the left-hand side, as a

function of the Borel mass squared. The best fit corresponds to
K08 ¼ �3:7� 10�3 GeV4, m2

�f
0
�f

8
� ¼ 1:36� 10�3 GeV4, and

m2
�0f0�0f8�0 ¼ �7:97� 10�3 GeV4.
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FIG. 4 (color online). Plots of BT½�P00
Lðq2Þ � 12
ðq2Þ=q2


and its three-parameter fit. The fit corresponds to a constant K ¼
0:00464 GeV4 and residues as �0:00658 GeV4 and
0:0092 GeV4 at �- and �0- poles.
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We have ignored the possible contribution from direct
instantons given in the last term in Eq. (24). In Ref. [20]
we had already pointed out that adding the direct instanton
(DI) term without screening [25] gives an absurdly large
contribution in Eq. (43) and completely destroys the sum
rule. This point will be discussed below later, but for now,
discard the plausible DI terms in Eq. (43). With W2 ¼

2:3 GeV2 and other parameters the same as in Eq. (29),
fitting Eq. (43) in the range 0:8 GeV2 � M2 � 1:5 GeV2,
we have from Fig. 5


0ð0Þ ¼ 1:65� 10�3 GeV2; (44a)

1

24
ðf8 cos	8 �

ffiffiffi
2

p
f0 sin	0Þ2 ¼ 1:47� 10�3 GeV4; (44b)

1

24
ðf8 sin	8 þ

ffiffiffi
2

p
f0 cos	0Þ2 ¼ 9:67� 10�4 GeV4: (44c)

On combining with the results from Eq. (34a) we get

f0 ¼ 152:5 MeV and 	0 ¼ �5:9	: (44d)

Not surprisingly, when the values of f8, f0, 	8, and 	0 used
in Ref. [20] are used in Eqs. (44b) and (44c), the numbers
obtained here are recovered. However, there is a small
difference in the value of 
0ð0Þ, which can be accounted
for by including pion pole contribution which was done in
Ref. [20] but is ignored here.
We list in Table II the values for f8, f0, 	8, and 	0 from

the results of Eqs. (34a), (37a), (40a), (42a), and (44d). We
also note that from Table I, with values used in Eq. (29), the
quality of fit is best for P88

L followed by P08
L , S, F, and 
0.

V. SINGLET CHANNEL AND INSTANTON
CONTRIBUTIONS

For completeness we also consider the sum rule for
P00
L ðq2Þ. We have
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FIG. 5 (color online). Plots of BT½
0ðq2Þ=q2
 and its three-
parameter fit as a function of Borel mass squared. The fit
corresponds to 0:00165 GeV2, 0:00147 GeV2, and
0:000967 GeV2 as the constant ½
0ð0Þ
 and the coefficients of
ð1þm�

2=M2Þ expð�m�
2=M2Þ and ð1þm�0 2=M2Þ�

expð�m�0 2=M2Þ respectively.

TABLE II. Determination of the coupling constants of � and �0 mesons for the octet and singlet axial vector current with one or a
combination of two equations out of Eqs. (34a), (37a), (40a), (42a), and (44d).

Eqs. used Sum rule/

sum rule pair

f8 cos	8
(MeV)

�f8 sin	8
(MeV)

f0 cos	0
(MeV)

�f0 sin	0
(MeV)

f8 (MeV) f0 (MeV) �	8 (degree) �	0 (degree)

(34a) P88
L 165.6 62.2 � � � � � � 176.8 � � � 20.6 � � �

(37a) S 159.3 54.6 � � � � � � 168.4 � � � 18.9 � � �
(34a) and (44d) P88

L , 
0 165.6 62.2 151.7 15.7 176.8 152.5 20.6 05.9

(34a) and (40a) P88
L P08

L 165.6 62.2 139.6 27.5 176.8 142.3 20.6 11.1

(34a) and (42a) P88
L , F 165.6 62.2 136.0 35.4 176.8 140.5 20.6 14.6
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A brief discussion of the last two terms of Eq. (45) is now
necessary. Although there is no universally accepted de-
scription of the QCD vacuum, the model based on instan-
ton fluid, which regards the ground state as a collection of
instanton–anti-instanton pairs has been widely used to
study a number of vacuum correlation functions [27]. As
is well known, an instanton of size � located at x0 (see
Eq. (65) of Forkel [25]) corresponds to the field strength

GðIÞ;a
�� ðxÞ ¼ �4�2

gs

�a��

½ðx� x0Þ2 þ �2
2
where �a�� is a ‘t Hooft symbol. This means the anomaly-
anomaly correlation has a contribution directly from the
distribution of instantons in the vacuum. In the picture in
which instantons are noninteracting, the calculation is
simple as in statistical mechanics of a noninteracting gas.
In Eq. (25) the DI contribution for the constant density case
is displayed, and in Eq. (26) the density function in the
Gaussian tail approximation [25] for using in the numerical
integration in Eq. (24) to get the DI contribution is dis-
played. Forkel has pointed out that this contribution has to
be corrected for screening caused by exchanges of the
Goldstone fields. We then begin first ignoring both the
direct instanton term and screening in the right-hand side
of Eq. (45); this and the contribution of DI with density in
the Gaussian tail approximation of Eq. (26a) are shown in
Fig. 6. It is easily seen that the DI term is much too large.
Forkel has estimated the screening corrections arising from
�, �0 exchange as

i
Z
d4xeiqxh0jTfQ5ðxÞ;Q5ð0Þgj0iDISC

¼ ð8�Þ2
� F2

�0

Q2þm2
�0
þ F2

�

Q2þm2
�

�
; ðQ2 ¼�q2Þ (46)

where the subscript in the left-hand side refers to the
screening and

F2
� ¼ 0:0886 GeV6; F2

�0 ¼ 0:543 GeV6: (47)

In Fig. 7, the DI term and the screening term are displayed
after Borel-transformation to M2, which shows that the
screening is comparable to the DI. We have already seen
that the sum rule for 
0ðq2Þ=q2, Eqs. (43) and (44d), works
very well by discarding the DI and screening and more
importantly yields values for the couplings consistent with
values obtained from Eqs. (34a) and (40a) which have no
direct instanton terms at all. Encouraged by this, we can
consider the possibility of the screening term in P00

L ðq2Þ
being even larger than DI. To be specific we tried the form

DI þ Screening ¼ �� RHS½Eq:ð26aÞ
 (48)

where � is some numerical factor to be determined by
fitting Eq. (45). We find the value � ¼ �0:074 fits the
sum rule well as can be seen from Figs. 8 (curves B and C).
TakingW2 ¼ 2:5 GeV2 and the values of the parameters

as in Eq. (29), we fit the sum rule in the range 0:8 GeV2 <
M2 < 1:5 GeV2 with results

K00 ¼ �9:22� 10�4 GeV4; (49a)

m2
�ðf0�Þ2 ¼ 7:2� 10�5 GeV4; (49b)

m2
�0 ðf0�0 Þ2 ¼ 1:812� 10�2 GeV4: (49c)
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FIG. 6 (color online). Plots of direct instanton contribution
(DI) to the OPE side of Eq. (45), the OPE side of Eq. (45),
and a combination of the two with DI contribution included with
a factor of �0:074. The last curve is separately plotted in Fig. 8
also. All quantities are in GeV units. Note the difference in scale
in Fig. 8.
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This corresponds to f0 ¼ 141:4 MeV and 	0 ¼ �6:4	. To
see the sensitivity of the physical parameters on the coef-
ficients of the DI term taken, we find that a change of �
from �0:074 to �0:1 changes the results substantially,

K00 ¼ �6:872� 10�3 GeV4;

m2
�ðf0�Þ2 ¼ 6:433� 10�3 GeV4;

m2
�0 ðf0�0 Þ2 ¼ 1:866� 10�2 GeV4;

which corresponds to f0 ¼ 204:5 MeV and 	0 ¼ �45:8	.
We now turn to the sum rule for 
ðq2Þ=q2 � 
ð0Þ=q2.

We have
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For P00
L ðq2Þ, Eq. (45) above, we accounted for screening by

multiplying the DI by � ¼ �0:074. As explained already
with other sum rules, replacing the T-product by OPE
means 
ð0Þ may not satisfy Eq. (A2) as demanded by
low-energy theorems. As in the analysis of sum rule (45),
we again take W2 ¼ 2:5 GeV2 and fit in the range
0:8 GeV2 � M2 � 1:5 GeV2. We get (cf. Figs. 9 and 10):


ð0Þ¼ 4:3�10�4 GeV4; (51a)

m2
�

1

24
ðf8 cos	8�

ffiffiffi
2

p
f0 sin	0Þ2 ¼ 4:4�10�4 GeV4; (51b)

m2
�0

1

24
ðf8 sin	8þ

ffiffiffi
2

p
f0 cos	0Þ2 ¼ 8:5�10�4 GeV4 (51c)

as the constant and residues at the �- and �0-poles, respec-

tively. This corresponds to f0 ¼ 150:2 MeV and 	0 ¼
�6:0	 assuming the values of f8 and 	8 as given by the
P88
L ðq2Þ- sum rule.
It is instructive to compare the results for the 
0ðq2Þ=q2,

P00
L ðq2Þ and 
ðq2Þ=q2 as given in Figs. 5, 8, and 10. First,

although the addition of small DI with a negative coeffi-
cient �0:074 is ad hoc, the same factor fits both Eqs. (45)
and (50) reasonably. Moreover,� and�0 residues are in the
ratio 4:4:8:5 in Eqs. (51b) and (51c), that is, roughly a
factor of 2. In the P00

L ðq2Þ sum rule, the � residue is very
small compared to �0 residue as seen in Eqs. (49b) and
(49c), with values 7:2� 10�5 GeV4 and 1:812�
10�2 GeV4 respectively; that is, differing roughly by a
factor of 250. Despite this, the estimates for f0 and 	0
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FIG. 8 (color online). Plots of two sides of Eq. (45) (called
BT½�P00

L 
): OPE side with DI contribution (fraction ¼ �0:074)
included is curve B. Curve C is a three-parameter fit with K00 ¼
�9:22� 10�4 GeV4 as a constant and 7:2� 10�5 GeV4 and
1:812� 10�2 GeV4 as residues at �- and �0-poles.
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FIG. 9 (color online). Plots of BT½
ðq2Þ=q2
, DI contribution
to BT½
ðq2Þ=q2
 and the combination of the two with the DI
contribution appearing with a factor of �0:074 as a function of
Borel mass squared. All the quantities are in GeV units. The last
curve is plotted separately in Fig. 10 also. Note the scale is
different in Fig. 10.
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from the two sum rules are close in values. Let us now
compare the residue results of 
0ðq2Þ and 
ðq2Þ. In the
former we have discarded the DI and screening assuming
them to cancel each other, while in the latter, the screening
is slightly larger as reflected by the factor�0:074. We have
from Eqs. (44b) and (44c)

1

24
ðf8 cos	8 �

ffiffiffi
2

p
f0 sin	0Þ2 ¼ 1:47� 10�3 GeV4;

1

24
ðf8 sin	8 þ

ffiffiffi
2

p
f0 cos	0Þ2 ¼ 9:67� 10�4 GeV4;

while from Eqs. (51b) and (51c)

1

24
ðf8 cos	8 �

ffiffiffi
2

p
f0 sin	0Þ2 ¼ 1:47� 10�3 GeV4;

1

24
ðf8 sin	8 þ

ffiffiffi
2

p
f0 cos	0Þ2 ¼ 9:26� 10�4 GeV4:

which are remarkably close to values from Eqs. (44b) and
(44c). It therefore appears to conclude: a) screening cor-
rections to DI are vital to obtain consistent results from
sum rules and b) for the derivative of the topological
susceptibility, the screening is almost complete, at least
given the uncertainties inherent in the sum rule approach. It
is useful to compare the coefficients F2

� ¼ 0:0886 GeV6

and F2
�0 ¼ 0:543 GeV6 used by Forkel [25] with the matrix

element of the anomaly between the vacuum and pseudo-
scalar states. From the equations [28]

h0j 3�s

4�
G ~Gj�i ¼

ffiffiffi
3

2

s
m2

�ðf8 cos	8 �
ffiffiffi
2

p
f0 sin	0Þ;

h0j 3�s

4�
G ~Gj�0i ¼

ffiffiffi
3

2

s
m2

�0 ðf8 sin	8 þ
ffiffiffi
2

p
f0 cos	0Þ;

we have from Eq. (44b) and (44c)

h0j�sG ~Gj�ih�j�sG ~Gj0i ¼ 0:083 GeV6

and

h0j�sG ~Gj�0ih�0j�sG ~Gj0i ¼ 0:515 GeV6

which are close to the numbers of Forkel [25] used by us in
our Eqs. (46) and (47) above. We must also add that since u

and d quark masses are different, h0j�sG ~Gj�0i � 0 and
pion exchange contributes to screening. In Figs. 7 and 11,
we have displayed the specific values of Forkel [25], who
ignores the pion. While accepting the general picture, we
can not be quantitatively accurate. We emphasize that
screening effects require more study.

VI. SUMMARYAND CONCLUDING REMARKS

We have considered seven functions consisting of axial
current correlators and pseudoscalar current correlators:

P88
L ðq2Þ, Sðq2Þ, P08

L ðq2Þ, �P00
L ðq2Þ � 12 
ðq2Þ

q2
, 
0ðq2Þ

q2
,

P00
L ðq2Þ, and 
ðq2Þ

q2
and corresponding sum rules. The first

four have no contributions from direct instantons, while the
last three would have possible contributions. The octet
current couplings are well determined by the first two
functions, and as expected, P88

L ðq2Þ sum rule works better
with a better 
2 than Sðq2Þ. As displayed in Table II, both
sum rules give nearly the same values for the octet cou-
pling and the mixing angle. With the knowledge of the
octet couplings, we have seen that the octet-singlet corre-
lator P08

L ðq2Þ works better than the hybrid function F.
While the feature that the sign of both angles is negative
and that singlet coupling and the magnitude of the singlet
angle are smaller than the octet counterparts is true,
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FIG. 10 (color online). Plots of BT½
ðq2Þ=q2
 and a three-
parameter fit with a constant �
ð0Þ ¼ �4:3� 10�4 GeV4 and
residues 4:4� 10�4 GeV4 and 8:5� 10�4 GeV4 at �- and
�0-poles as a function of Borel mass squared.
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P08
L ðq2Þ sum rule results are closer to phenomenological

values than the F sum rule results.
As noted in our earlier work [20], we have that the sum

rule for 

0ðq2Þ
q2

without any direct instantons works very well.

We used this observation and a semiquantitative discussion
of the screening of the direct instanton to find a simple
multiplicative factor to get reasonable fits of P00

L ðq2Þ and

ðq2Þ
q2

sum rules. We have pointed out that while division by

q2 improves asymptotic behavior and therefore gives better
sum rules, it can introduce a spurious pole at q2 ¼ 0 and
should be accounted for in the analysis. We found that
constants K88, K08, etc. are not zero as demanded by low-
energy theorems. This caveat also applies to 
0ð0Þ.
However, as discussed in the Introduction, the 
0ðq2Þ

q2
sum

rule value is close to values of three other determinations,
namely, axial current sum rules [21], Bjorken sum rule
[17,21], and chiral perturbation theory [23].

As pointed out earlier, sum rule determinations are sub-
ject to errors arising from the uncertainties in the vacuum
expectation values of various operators, the values of W2,
the continuum threshold, variation in match region of the
Borel mass variable, and the ignored higher dimensional
terms in the OPE and higher order terms in the Wilson
coefficients. It is usual to expect that the errors are in the
(10–15)% range. Nevertheless, we can rely on our results
since these are mutually consistent and are also in agree-
ment with phenomenological values as seen from Table III.
We emphasize that we stayed with the rules for the Borel
mass range, which is limited at the lower end by the
contribution of the highest dimensional terms on OPE,
and at the higher end by the contributions of the excited
states which we have limited by about 32% or less. We
have uniformly used a value of 2:3 GeV2 forW2, except in
the sum rules for 
 and P00

L , where we have used W2 ¼
2:5 GeV2, a slightly higher value to get a better fit. There

are suggestions [33,34] that the increase in W2 is neces-
sitated for richer crops of resonances in the singlet channel
as compared to the octet. Alternatively, violations of dual-
ity for singlet continuum states may be more important
compared to the octet.
We summarize our results as follows. As noted in

Table II, the values of f8 and 	8 obtained from
Eqs. (34a) and (37a) listed in the first two rows are close
and certainly within the errors of the sum rule method. In
Table II, we have given in the fifth and sixth columns the
values for f0 cos	0 ¼ f0

�0 and �f0 sin	0 ¼ f0� obtained

from using the results of the equations listed in the first
column. We note that the value of f0 cos	0 is better deter-
mined than f0 sin	0. Part of the reason is due to the differ-
ent functional relations of the couplings at the � and �0
poles as seen from Eqs. (40), (42), (44b), and (44c).
Despite this, the general feature that f0 is smaller than f8
and the numerical values of 	0 are significantly smaller
than 	8 clearly emerges. In Table III we have listed the
values of f8, 	8, f0, and 	0 from our work, the simple
average of Eqs. (34a) and (37a) for f8 and 	8 namely
172.6 MeV and �19:8	 and these numbers are, in turn,
used in Eqs. (40), (42), (44b), and (44c) to obtain the
average values for f0 ¼ 149:1 MeV and 	0 ¼ �10:9	.
In Table III, we have listed some of the results obtained

in the current literature. Feldman and Kroll [30,31], using
two-angle parametrization, have achieved a simultaneous
description of the two-photon decays of � and �0 and the
transition form factors of �� and �0� at large momentum
transfer. Shore [13] has derived the QCD formula for the
two-photon decays of � and �0 and the corresponding
DGMOR relations by generalizing conventional PCAC to
include the effect of the anomaly in a way which is con-
sistent with the renormalization group and 1=NC expan-
sion. In Refs. [11,12], the reader will find 1=NC expansion
results in the context of chiral perturbation theory. It will be

TABLE III. Comparison of our results on couplings and mixing angles with those obtained by other authors. The values in the first
row give the average of Eqs. (34a) and (37a) for f8 and 	8. This, in turn, is used in Eqs. (40), (42), (44b), and (44c) to obtain the
average values of f0 and 	0.

Ref. Specification f8 (MeV) f0 (MeV) 	8 (Degree) 	0 (Degree)

This work Sum rules,

averaged results

172.6 149.1 �19:8 �10:9

[29] f8 from [11]

f8 from [10]

best fit phen.

1:28f� ¼ 167:3
1:34f� ¼ 175:5

ð1:51� 0:05Þf� ¼ 197:4� 6:5

154:23� 5:2
156:84� 5:2
168:60� 5:2

�ð22:2� 1:8Þ
�ð22:9� 1:8Þ
�ð23:8� 1:4Þ

�ð8:7� 2:1Þ
�ð6:9� 2:0Þ
�ð2:4� 1:9Þ

[30,31] Theory 155:53� 7:8 143:77� 5:2 �ð19:4� 1:4Þ �ð6:8� 1:4Þ
Phen. 164:68� 7:8 152:92� 5:2 �ð21:2� 1:4Þ �ð9:2� 1:4Þ

[11] ChPT 167.30 143.77 �20:5 �4:0
[32] ChPT 172.53 164.05 �20:0 �1:0� 1:5
[19] Sum rules 188.21 176.45 �8:4 �13:8
[18] Sum rules 178� 17 �ð17:0� 5:0Þ
[13] Extended current

algebra

148.0 150.7 �20:1 �12:3
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interesting to study the comparison of sum rule results with
chiral perturbation theory. To conclude the discussion of
Table III, we comment briefly on the results of
Refs. [13,18,19] which are listed on the last three rows of
Table III. De Fazio and Pennington [19] had used a some-
what oversimplified approach to sum rules. To calculate �
couplings they use the perturbative term without radiative
corrections and only the h �qqi for the nonperturbative term
with a low-energy value for W2. Moreover, to find the �0
coupling they simply increase the value of W2. No details
of combined fits to � and �0 are given by them. Their
results for the octet and singlet angles, which we have
listed in Table III, are in disagreement with the earlier
rows in Table III. We may add that the results of
Ref. [19] is also internally inconsistent as the value ob-
tained for 	8 from pseudoscalar densities is �23	 (not
mentioned by them) is different from �8:4	 quoted and
obtained by them using axial vector current correlators,
unlike our results displayed in the first two rows of Table II.
Turning to Ref. [18], we have already commented exten-
sively in Ref. [20]. Briefly, the authors in Ref. [18] erro-
neously use physical �0 mass instead of its value in the
chiral limit, besides the fact that in their sum rule, the two
sides hardly match with each other. Coming to the work of
Shore in Ref. [13], we note that it is based on generalized
current algebra and is different from others listed in
Table III. Reference [13] has used the De Vechhia-
Veneziano [35] formula (their Eq. (A4))


ðq2Þ ¼ �aF2
�

2Nc

�
1� a

Nc

X
i

1

q2 ��2
i

��1
(52)

where the Goldstone boson mass squared �2
i is related to

the quark condensate by

�2
i ¼ �2mi

1

F2
�

h0j �qqj0i (53)

and a is some constant. Shore [13] uses Eq. (52) to get


ð0Þ ¼ �A

�
1� A

X
q¼u;d;s

1

mqh �qqi
��1

where the constant A is

A ¼ aF2
�

2Nc

(54)

and uses it in the DGMOR relation for the singlet sector to
obtain

ðf0�m�Þ2 þ ðf0
�0m�0 Þ2 ¼ � 2

3
ðmuh �uui þmdh �ddi

þmsh�ssiÞ þ 6A: (55)

Ioffe has correctly pointed out that Eq. (52) has a wrong
pole structure at the Goldstone states. The reader can easily
check that Eq. (52) used by Shore [13] has zeros at the

Goldstone states while 
ðq2Þ should have poles at the
Goldstone states (cf. Leutwyler [23]). Consequently
Eqs. (6.1), (6.4) and (6.5) of Ref. [13] used by Shore [13]
cannot be trusted.
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APPENDIX: LOW-ENERGY THEOREMS AND
REGULARITY OF FUNCTIONS USED IN SUM

RULES AT q2 ¼ 0

We first note that the anomaly-anomaly correlator or the
topological susceptibility


ðq2Þ ¼ i
Z

d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0i (A1)

satisfies a low-energy theorem. It was pointed out by
Crewther [4] that 
ð0Þ vanishes in any theory which has
at least one massless quark. The large NC (number of
colors) limit was considered by Veneziano [5]. They
showed that in a theory with Nf light quarks with masses

mi � M, where M is the mass of strong interaction


ð0Þ ¼ h0j �qqj0i
�XNf

i¼1

1

mi

��1
: (A2)

Here h0j �qqj0i is the flavor symmetric value of the quark
condensate and corrections of the order (mi=M) have been
neglected in Eq. (A2). Clearly the reduced mass

mred ¼
�XNf

i¼1

1

mi

��1
(A3)

vanishes when any one of the mi is zero, consistent with
Crewther’s theorem [4]. Leutwyler and Smilga [36] were
able to show that for the case of two light quarks Eq. (A2)
is valid at any Nc. This was further extended for three
flavors by Smilga [37].
Ioffe [17] has derived the result (A2) above from yet

another perspective; we briefly outline his derivation since
it is useful in the context of understanding the regularity of
the functions used for sum rules at q2 ¼ 0. Consider the
singlet-singlet current correlator �00

��ðqÞ. Since there are

no poles at q2 ¼ 0 in the physical correlator, we have

lim
q�!0

q��00
��ðqÞq� ¼ lim

q�!0
� P00

L ðq2Þq2 (A4)

¼ 0 (A5)

which implies that P00
L ðq2Þ is regular at q2 ¼ 0. On the

other hand
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lim
q�!0

q��00
��ðqÞq� ¼ i12

Z
d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0i � i2

Z
d4xeiqxh0jTfQ5ðxÞ; Dð0Þgj0i

� i2
Z

d4xeiqxh0jTfDðxÞ; Q5ð0Þgj0i þ i
1

3

Z
d4xeiqxh0jTfDðxÞ; Dð0Þgj0i

þ 4

3

X
i¼u;d;s

mih0j �qiqij0i ¼ 0: (A6)

A plausible Schwinger term ½J005ðxÞ; Q5ð0Þ
�ðx0Þ can be
shown to be zero [17]. Similarly by considering the corre-
lator

P�ðqÞ ¼ i
Z

d4xeiqxh0j½J0�5ðxÞ; Q5ð0Þ
j0i (A7)

and the fact that
lim
q�!0

q�P�ðqÞ ¼ 0; (A8)

one derives

i
Z

d4xh0jTf2Q5ðxÞ; Q5ð0Þgj0i

� i
1

3

Z
d4xh0jTfDðxÞ; Q5ð0Þgj0i ¼ 0: (A9)

Combining (A6) and (A9) one gets [17]

i12
Z

d4xh0jTfQ5ðxÞ; Q5ð0Þgj0i

� i
1

3

Z
d4xh0jTfDðxÞ; Dð0Þgj0i

� 4

3

X
i¼u;d;s

mih0j �qiqij0i ¼ 0: (A10)

Ioffe rewrites Eq. (A10) in the form

i12
Z

d4xh0jTfQ5ðxÞ; Q5ð0Þgj0i

¼ i
1

3

Z
d4xh0jTfDðxÞ; Dð0Þgj0i þ 4

3

X
i¼u;d;s

mih0j �qiqij0i:

(A11)

The term linear in the quark masses in the first term in the
right-hand side of Eq. (A11) can be found from the matrix
elements of h0jDðxÞj�0i and h0jDðxÞj�i and leads back to
Eq. (A2). Complete details can be found in Ioffe [17]. For
the purpose of the present paper, the important question is
how the various terms in the right-hand side of Eq. (A6)
conspire to keep their sum zero, so that P00

L ðq2Þ is regular
at q2 ¼ 0. We have seen above that the low-energy
theorem (A2), j�0i and j�i contributions and the
equal time commutator add to give the zero. On the other
hand, to derive the QCD sum rule for P00

L ðq2Þ we have
operator product expansion for various terms like
i
R
d4xeiqxh0jTfQ5ðxÞ; Q5ð0Þgj0i and i

R
d4xeiqx�

h0jTfQ5ðxÞ; Dð0Þgj0i as given in Eqs. (24) and (27) respec-
tively, which is a good approximation at high q2. We
cannot, therefore, expect q2P00

L ðq2Þ ¼ OPEþ ETCR to
vanish at q2 ¼ 0 as demanded by the low-energy theorem.
So in dividing by q2 to derive an expression for P00

L ðq2Þ
valid at large q2, we introduce a spurious pole at q2 ¼ 0.

We can explicate this by considering the octet-octet
correlator in some detail. To simplify matters we set mu ¼
md ¼ 0 but keep ms � 0. Isospin is exact in this limit, so
that the current J8�5ðxÞ does not couple to the pion and

therefore the correlator �88
��ðqÞ is still regular at q2 ¼ 0.

Consider now the analog of Eq. (A6). We have

lim
q�!0

q��88
��ðqÞq� ¼ i

4

6

Z
d4xh0jTfDsðxÞ; Dsð0Þgj0i

þ 8

3
msh0j�ssj0i: (A12)

HereDsðxÞ ¼ 2ims �sðxÞ�5sðxÞ. To see how the two terms in
Eq. (A12) cancel up to linear order in ms we note

h0jDsj�i ¼ �
ffiffiffi
3

2

s
f�m

2
� (A13)

so that

4

6
i
Z

d4xh0jTfDsðxÞ; Dsð0Þg ¼ f2�m
2
�

þ higher order terms:

(A14)

Now by GMOR relation

f2�m
2
� ¼ � 8

3
msh0j�ssj0i; (A15)

so the right-hand side of Eq. (A12) adds to zero, thus
preserving the regularity of P88

L ðq2Þ at q2 ¼ 0. Returning
to the QCD sum rule for P88

L ðq2Þ, we have from Eq. (30)

�q2P88
L ðq2Þ ¼ 4

6
i
Z

d4xeiqxh0jTfDsðxÞ; Dsð0Þgj0i

þ 8

3
msh0j�sð0Þsð0Þj0i (A16)

jq2j ! 1

�
�
� 1

�2
m2

sq
2

�
ln

��q2

�2

�
� 2

�
þ . . .

�
þ 8

3
msh0j�ssj0i

(A17)

where we have used the operator expansion for
TfDsðxÞ; Dsð0Þg. Unlike the right-hand side of Eq. (A16)
which vanishes as q� ! 0, we cannot expect the right-

hand side of Eq. (A17) to vanish at q2 ¼ 0. Apart from the
fact that in Eq. (A17) we are using large q2 approximation
in the actual sum rule evaluation we also use numerical
estimates for ms and h0j�ssj0i while in Eq. (A16) we used
an algebraic identity using current algebra. Therefore in
the process of dividing by q2 in Eq. (A17) we introduce a
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spurious pole at q2 ¼ 0 in P88
L ðq2Þ which must be ac-

counted for. On Borel transformation the spurious pole at
q2 ¼ 0 becomes an M2 independent constant term which
we have denoted by K88 in our sum rule analysis.

Similar considerations hold for P08
L ðq2Þ. We have again

taken mu ¼ md ¼ 0, ms � 0, the Ward identity

lim
q�!0

q��08
��ðqÞq� ¼ i

12ffiffiffiffiffiffi
18

p
Z

d4xh0jTfQ5ðxÞ; Dsð0Þgj0i

� 2ffiffiffiffiffiffi
18

p
Z

d4xh0jTfDsðxÞ; Dsð0Þgj0i

� 8

3
ffiffiffi
2

p msh0j�ssj0i: (A18)

Now from Eq. (A9) we have

i
Z

d4xh0jTfDsðxÞ; Q5ð0Þgj0i ¼ 0ðmu ¼ md ¼ 0Þ (A19)

since 
ð0Þ ¼ 0 and DðxÞ ¼ DsðxÞ when mu ¼ md ¼ 0.
We can then drop the first term in the right-hand side of
Eq. (A18), in which case, neglecting higher order terms

and apart from an overall factor of � ffiffiffi
2

p
, it is identical to

Eqs. (A14) and (A15). Thus we see that the sum rules for
P00
L ðq2Þ, P08

L ðq2Þ, and P88
L ðq2Þ can have spurious poles and

must be accounted for while extracting the coefficients of
the � and �0 poles.
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