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We consider the impact of imposing generalized CP symmetries on the Higgs sector of the two-Higgs-

doublet model, and identify three classes of symmetries. Two of these classes constrain the scalar potential

parameters to an exceptional region of parameter space, which respects either a Z2 discrete flavor

symmetry or a Uð1Þ symmetry. We exhibit a basis-invariant quantity that distinguishes between these two

possible symmetries. We also show that the consequences of imposing these two classes of CP symmetry

can be achieved by combining Higgs family symmetries, and that this is not possible for the usual CP

symmetry. We comment on the vacuum structure and on renormalization in the presence of these

symmetries. Finally, we demonstrate that the standard CP symmetry can be used to build all the models

we identify, including those based on Higgs family symmetries.

DOI: 10.1103/PhysRevD.79.116004 PACS numbers: 11.30.Er, 11.30.Ly, 12.60.Fr, 14.80.Cp

I. INTRODUCTION

Despite the fantastic successes of the standard model
(SM) of electroweak interactions, its scalar sector remains
largely untested [1]. An alternative to the single Higgs
doublet of the SM is provided by the two-Higgs-doublet
model (THDM), which can be supplemented by symmetry
requirements on the Higgs fields �1 and �2. Symmetries
leaving the kinetic terms unchanged1 may be of two types.
On the one hand, one may relate �a with some unitary
transformation of �b. These are known as Higgs family
symmetries, or HF symmetries. On the other hand, one
may relate �a with some unitary transformation of ��

b.

These are known as generalized CP symmetries, or GCP
symmetries. In this article we consider all such symmetries
that are possible in the THDM, according to their impact
on the Higgs potential. We identify three classes of GCP
symmetries.

The study is complicated by the fact that one may
perform a basis transformation on the Higgs fields, thus
hiding what might otherwise be an easily identifiable sym-

metry. The need to seek basis-invariant observables in
models with many Higgs was pointed out by Lavoura
and Silva [5], and by Botella and Silva [6], stressing
applications to CP violation. References [6,7] indicate
how to construct basis-invariant quantities in a systematic
fashion for any model, including multi-Higgs-doublet
models. Work on basis invariance in the THDM was
much expanded upon by Davidson and Haber [8], by
Gunion and Haber [9,10], by Haber and O’Neil [11], and
by other authors [12]. The previous approaches highlight
the role played by the Higgs fields. An alternative ap-
proach, spearheaded by Nishi [13,14], by Ivanov [3,4],
and by Maniatis et al. [15], highlights the role played by
field bilinears, which is very useful for studies of the
vacuum structure of the model [16,17]. In this paper, we
describe all classes of HF and GCP symmetries in both
languages.
One problem with two classes of GCP identified here is

that they lead to an exceptional region of parameter space
(ERPS) previously identified as problematic by Gunion
and Haber [9] and by Davidson and Haber [8]. Indeed,
no basis-invariant quantity exists in the literature that dis-
tinguishes between the Z2 and Uð1Þ HF symmetries in the
ERPS.
If evidence for THDM physics is revealed in future

experiments, then it will be critical to employ analysis
techniques that are free from model-dependent assump-
tions. It is for this reason that a basis-independent formal-
ism for the THDM is so powerful. Nevertheless, current
experimental data already impose significant constraints
on the most general THDM. In particular, we know that
custodial-symmetry breaking effects, flavor changing neu-
tral current (FCNC) constraints, and (to a lesser extent)

1It has been argued by Ginsburg [2] and by Ivanov [3,4] that
one should also consider the effect of nonunitary global sym-
metry transformations of the two Higgs fields, as the most
general renormalizable Higgs Lagrangian allows for kinetic
mixing of the two Higgs fields. In this work, we study the
possible global symmetries of the effective low-energy Higgs
theory that arise after diagonalization of the Higgs kinetic
energy terms. The nonunitary transformations that diagonalize
the Higgs kinetic mixing terms also transform the parameters of
the Higgs potential, and thus can determine the structure of the
remnant Higgs flavor symmetries of effective low-energy Higgs
scalar potential. It is the latter that constitutes the main focus of
this work.
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CP-violating phenomena impose some significant restric-
tions on the structure of the THDM (including the Higgs-
fermion interactions). For example, the observed suppres-
sion of FCNCs implies that either the two heaviest neutral
Higgs bosons of the THDM have masses above 1 TeV, or
certain Higgs-fermion Yukawa couplings must be absent
[18]. The latter can be achieved by imposing certain dis-
crete symmetries on the THDM. Likewise, in the most
general THDM, mass splittings between charged and neu-
tral Higgs bosons can yield custodial-symmetry breaking
effects at one-loop that could be large enough to be in
conflict with the precision electroweak data [19]. Once
again, symmetries can be imposed on the THDM to alle-
viate any potential disagreement with data. The implica-
tions of such symmetries for THDM phenomenology has
recently been explored by Gerard and collaborators [20]
and by Haber and O’Neil [21].

Thus, if THDM physics is discovered, it will be impor-
tant to develop experimental methods that can reveal the
presence or absence of underlying symmetries of the most
general THDM. This requires two essential pieces of input.
First, one must identify all possible Higgs symmetries of
interest. Second, one must relate these symmetries to basis-
independent observables that can be probed by experiment.
In this paper, we primarily address the first step, although
we also provide basis-independent characterizations of
these symmetries. Our analysis focuses the symmetries of
the THDM scalar potential. In principle, one can extend
our study of these symmetries to the Higgs-fermion
Yukawa interactions, although this lies beyond the scope
of the present work.

This paper is organized as follows. In Sec. II, we in-
troduce our notation and define an invariant that does
distinguish the Z2 and Uð1Þ HF symmetries in the ERPS.
In Sec. III, we explain the role played by the vacuum
expectation values (vevs) in preserving or breaking the
Uð1Þ symmetry, and we comment briefly on renormaliza-
tion. In Sec. IV, we introduce the GCP transformations and
explain why they are organized into three classes. We
summarize our results and set them in the context of the
existing literature in Sec. V, and in Sec. VI, we prove a
surprising result: multiple applications of the standard CP
symmetry can be used to build all the models we identify,
including those based on HF symmetries. We draw our
conclusions in Sec. VII.

II. THE SCALAR SECTOR OF THE THDM

A. Three common notations for the scalar potential

Let us consider a SUð2Þ �Uð1Þ gauge theory with two
Higgs-doublets �a, with the same hypercharge 1=2, and
with vevs

h�ai ¼ 0
va=

ffiffiffi
2

p
� �

: (1)

The index a runs from 1 to 2, and we use the standard

definition for the electric charge, whereby the upper com-
ponents of the SUð2Þ doublets are charged and the lower
components neutral.
The scalar potential may be written as

VH ¼ m2
11�

y
1�1 þm2

22�
y
2�2 � ½m2

12�
y
1�2 þ H:c:�

þ 1
2�1ð�y

1�1Þ2 þ 1
2�2ð�y

2�2Þ2 þ �3ð�y
1�1Þ

� ð�y
2�2Þ þ �4ð�y

1�2Þð�y
2�1Þ þ ½12�5ð�y

1�2Þ2
þ �6ð�y

1�1Þð�y
1�2Þ þ �7ð�y

2�2Þð�y
1�2Þ þ H:c:�;

(2)

where m2
11, m

2
22, and �1; � � � ; �4 are real parameters. In

general,m2
12, �5, �6, and �7 are complex. ‘‘H.c.’’ stands for

Hermitian conjugation.
An alternative notation, useful for the construction of

invariants and championed by Botella and Silva [6] is

VH ¼ Yabð�y
a�bÞ þ 1

2Zab;cdð�y
a�bÞð�y

c�dÞ; (3)

where Hermiticity implies

Yab ¼ Y�
ba; Zab;cd � Zcd;ab ¼ Z�

ba;dc: (4)

The extremum conditions are

½Yab þ Zab;cdv
�
dvc�vb ¼ 0 ðfor a ¼ 1; 2Þ: (5)

Multiplying by v�
a leads to

Yabðv�
avbÞ ¼ �Zab;cdðv�

avbÞðv�
dvcÞ: (6)

One should be very careful when comparing Eqs. (2) and
(3) among different authors, since the same symbol may be
used for quantities, which differ by signs, factors of two, or
complex conjugation. Here, we follow the definitions of
Davidson and Haber [8]. With these definitions

Y11 ¼ m2
11; Y12 ¼ �m2

12;

Y21 ¼ �ðm2
12Þ� Y22 ¼ m2

22;
(7)

and

Z11;11 ¼ �1; Z22;22 ¼ �2;

Z11;22 ¼ Z22;11 ¼ �3; Z12;21 ¼ Z21;12 ¼ �4;

Z12;12 ¼ �5; Z21;21 ¼ ��
5;

Z11;12 ¼ Z12;11 ¼ �6; Z11;21 ¼ Z21;11 ¼ ��
6;

Z22;12 ¼ Z12;22 ¼ �7; Z22;21 ¼ Z21;22 ¼ ��
7:

(8)

The previous two notations look at the Higgs fields �a

individually. A third notation is used by Nishi [13,14] and
Ivanov [3,4], who emphasize the presence of field bilinears

ð�y
a�bÞ [17]. Following Nishi [13] we write

VH ¼ M�r� þ���r�r�; (9)

where � ¼ 0, 1, 2, 3 and
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r0 ¼ 1

2
½ð�y

1�1Þ þ ð�y
2�2Þ�;

r1 ¼ 1

2
½ð�y

1�2Þ þ ð�y
2�1Þ� ¼ Reð�y

1�2Þ;

r2 ¼ � i

2
½ð�y

1�2Þ � ð�y
2�1Þ� ¼ Imð�y

1�2Þ;

r3 ¼ 1

2
½ð�y

1�1Þ � ð�y
2�2Þ�:

(10)

In Eq. (9), summation of repeated indices is adopted with
Euclidean metric. This differs from Ivanov’s notation [3,4],

who pointed out that r� parametrizes the gauge orbits of

the Higgs fields, in a space equipped with a Minkowski
metric.
In terms of the parameters of Eq. (2), the 4-vector M�

and 4� 4 matrix ��� are written, respectively, as

M� ¼ ðm2
11þm2

22; �2Rem2
12; 2Imm2

12; m2
11�m2

22 Þ;
(11)

and

��� ¼
ð�1 þ �2Þ=2þ �3 Reð�6 þ �7Þ �Imð�6 þ �7Þ ð�1 � �2Þ=2

Reð�6 þ �7Þ �4 þ Re�5 �Im�5 Reð�6 � �7Þ
�Imð�6 þ �7Þ �Im�5 �4 � Re�5 �Imð�6 � �7Þ
ð�1 � �2Þ=2 Reð�6 � �7Þ �Imð�6 � �7Þ ð�1 þ �2Þ=2� �3

0
BBB@

1
CCCA: (12)

Equation (9) is related to Eq. (3) through

M� ¼ ��
abYba; (13)

��� ¼ 1
2Zab;cd�

�
ba�

�
dc; (14)

where the matrices �i are the three Pauli matrices, and �0

is the 2� 2 identity matrix.

B. Basis transformations

We may rewrite the potential in terms of new fields �0
a,

obtained from the original ones by a simple (global) basis
transformation

�a ! �0
a ¼ Uab�b; (15)

where U 2 Uð2Þ is a 2� 2 unitary matrix. Under this
unitary basis transformation, the gauge-kinetic terms are
unchanged, but the coefficients Yab and Zab;cd are trans-

formed as

Yab ! Y0
ab ¼ Ua�Y��U

�
b�; (16)

Zab;cd ! Z0
ab;cd ¼ Ua�Uc�Z��;��U

�
b�U

�
d�; (17)

and the vevs are transformed as

va ! v0
a ¼ Uabvb: (18)

Thus, the basis transformations U may be utilized in order
to absorb some of the degrees of freedom of Y and/or Z,
which implies that not all parameters of Eq. (3) have
physical significance.

C. Higgs family symmetries

Let us assume that the scalar potential in Eq. (3) has
some explicit internal symmetry. That is, we assume that
the coefficients of VH stay exactly the same under a trans-
formation

�a ! �S
a ¼ Sab�b: (19)

S is a unitary matrix, so that the gauge-kinetic couplings
are also left invariant by this HF symmetry. As a result of
this symmetry,

Yab ¼ YS
ab ¼ Sa�Y��S

�
b�; (20)

Zab;cd ¼ ZS
ab;cd ¼ Sa�Sc�Z��;��S

�
b�S

�
d�: (21)

Notice that this is not the situation considered in Eqs. (15)–
(17). There, the coefficients of the Lagrangian do change
(although the quantities that are physically measurable are
invariant with respect to any change of basis). In contrast,
Eqs. (19)–(21) imply the existence of a HF symmetry S of
the scalar potential that leaves the coefficients of VH

unchanged.
The Higgs family symmetry group must be a subgroup

of the full Uð2Þ transformation group of 2� 2 unitary
matrices employed in Eq. (15). Given the most general
THDM scalar potential, there is always aUð1Þ subgroup of
Uð2Þ under which the scalar potential is invariant. This is
the global hypercharge Uð1ÞY symmetry group

Uð1ÞY : �1 ! ei	�1; �2 ! ei	�2; (22)

where 	 is an arbitrary angle (mod 2
). The invariance
under the global Uð1ÞY is trivially guaranteed by the in-
variance under the SUð2Þ �Uð1Þ electroweak gauge sym-
metry. Since the global hypercharge Uð1ÞY is always
present, we shall henceforth define the HF symmetries as
those Higgs family symmetries that are orthogonal to
Uð1ÞY .
We now turn to the interplay between HF symmetries

and basis transformations. Let us imagine that, when writ-
ten in the basis of fields�a, VH has a symmetry S. We then
perform a basis transformation from the basis �a to the
basis�0

a, as given by Eq. (15). Clearly, when written in the
new basis, VH does not remain invariant under S. Rather, it
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will be invariant under

S0 ¼ USUy: (23)

As we change basis, the form of the potential changes in a
way that may obscure the presence of a HF symmetry. In
particular, two HF symmetries that naively look distinct
will actually yield precisely the same physical predictions
if a unitary matrix U exists such that Eq. (23) is satisfied.

HF symmetries in the THDM have a long history. In
papers by Glashow and Weinberg and by Paschos [18], the
discrete Z2 symmetry was introduced,

Z2: �1 ! �1; �2 ! ��2; (24)

in order to preclude flavor-changing neutral currents [18].
This is just the interchange

�2: �1 $ �2; (25)

seen in a different basis, as shown by applying Eq. (23) in
the form

0 1
1 0

� �
¼ 1ffiffiffi

2
p 1 1

1 �1

� �
1 0
0 �1

� �
1ffiffiffi
2

p 1 1
1 �1

� �
: (26)

Peccei and Quinn [22] introduced the continuous Uð1Þ
symmetry

Uð1Þ: �1 ! e�i	�1; �2 ! ei	�2; (27)

true for any value of 	, in connection with the strong CP
problem. Of course, a potential invariant underUð1Þ is also
invariant under Z2.

Finally, we examine the largest possible Higgs family
symmetry group of the THDM, namely, Uð2Þ. In this case,
a basis transformation would have no effect on the Higgs
potential parameters. Since �ab is the only Uð2Þ-invariant
tensor, it follows that

Yab ¼ c1�ab; (28)

Zab;cd ¼ c2�ab�cd þ c3�ad�bc; (29)

where c1, c2, and c3 are arbitrary real numbers.2 One can
easily check from Eqs. (16) and (17) that the unitarity of U
implies that Y0 ¼ Y and Z0 ¼ Z for any choice of basis, as
required by the Uð2Þ invariance of the scalar potential.
Equations (28) and (29) impose the following constraints
on the parameters of the THDM scalar potential (indepen-
dently of the choice of basis):

m2
22 ¼ m2

11; m2
12 ¼ 0;

�1 ¼ �2 ¼ �3 þ �4; �5 ¼ �6 ¼ �7 ¼ 0:
(30)

As there are no nonzero potentially complex scalar poten-
tial parameters, the Uð2Þ-invariant THDM is clearly CP
invariant.

As previously noted, the Uð2Þ symmetry contains the
global hypercharge Uð1ÞY as a subgroup. Thus, in order to
identify the corresponding HF symmetry that is orthogonal
to Uð1ÞY , we first observe that

Uð2Þ ffi SUð2Þ �Uð1ÞY=Z2 ffi SOð3Þ �Uð1ÞY: (31)

To prove the above isomorphism, simply note that any

Uð2Þ matrix can be written as U ¼ ei	Û, where Û 2
SUð2Þ. To cover the full Uð1ÞY group, we must take 0 	
	 < 2
. But since both Û and �Û are elements of SUð2Þ,
whereasþ1 and�1 ¼ ei
 are elements ofUð1ÞY , we must

identify Û and�Û as the same group element in order not

to double cover the fullUð2Þ group. The identification of Û
with �Û in SUð2Þ is isomorphic to SOð3Þ, using the well-
known isomorphism SOð3Þ ffi SUð2Þ=Z2. Consequently,
we have identified SOð3Þ as the HF symmetry that con-
strains the scalar potential parameters as indicated in
Eq. (30).
The impact of these symmetries on the potential parame-

ters in Eq. (2) is shown in Sec. V. As mentioned above, if
one makes a basis change, the potential parameters change
and so does the explicit form of the symmetry and of its
implications. For example, Eq. (26) shows that the sym-
metries Z2 and�2 are related by a basis change. However,
they have a different impact on the parameters in their
respective basis. This can be seen explicitly in Table I of
Sec. V. One can also easily prove that the existence of
either the Z2, �2 or Peccei-Quinn Uð1Þ symmetry is suffi-
cient to guarantee the existence of a basis choice in which
all scalar potential parameters are real. That is, the corre-
sponding scalar Higgs sectors are explicitly CP
conserving.
Basis-invariant signs of HF symmetries were discussed

extensively in Ref. [8]. Recently, Ferreira and Silva [23]
extended these methods to include Higgs models with
more than two Higgs doublets.
Consider first the THDM scalar potentials that are in-

variant under the so-called simple HF symmetries of
Ref. [23]. We define a simple HF symmetry to be a
symmetry group G with the following property: the re-
quirement that the THDM scalar potential is invariant
under a particular element g 2 G (where g � e and e is
the identity element) is sufficient to guarantee invariance
under the entire group G. The discrete cyclic group Zn ¼
fe; g; g2; . . . ; gn�1g, where gn ¼ e, is an example of a
possible simple HF symmetry group. If we restrict the
TDHM scalar potential to include terms of dimension
four or less (e.g., the tree-level scalar potential of the
THDM), then one can show that the Peccei-Quinn Uð1Þ
symmetry is also a simple HF symmetry. For example,
consider the matrix

S ¼ e�2i
=3 0
0 e2i
=3

 !
: (32)2Note that there is no �ac�bd term contributing to Zab;cd, as

such a term is not invariant under the transformation of Eq. (17).
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Note that S is an element of the cyclic subgroup Z3 ¼
fS; S2; S3 ¼ 1g of the Peccei-Quinn Uð1Þ group. As shown
in Ref. [23], the invariance of the tree-level THDM scalar
potential under �a ! Sab�b automatically implies the
invariance of the scalar potential under the full Peccei-
Quinn Uð1Þ group. In contrast, the maximal HF symmetry,
SOð3Þ, introduced above is not a simple HF symmetry, as
there is no single element of S 2 SOð3Þ such that invari-
ance under�a ! Sab�b guarantees invariance of the tree-
level THDM scalar potential under the full SOð3Þ group of
transformations.

Typically, the simple HF symmetries take on a simple
form for a particular choice of basis for the Higgs fields.
We summarize here a few of the results of Ref. [23]:

(1) In the THDM, there are only two independent
classes of simple symmetries: a discrete Z2 flavor
symmetry, and a continuous Peccei-Quinn Uð1Þ fla-
vor symmetry.

(2) Other discrete flavor symmetry groups G that are
subgroups of Uð1Þ are not considered independent.
That is, if S 2 G (where S � e), then invariance
under the discrete symmetry � ! S� makes the
scalar potential automatically invariant under the
full Peccei-Quinn Uð1Þ group;

(3) In most regions of parameter space, one can build
quantities invariant under basis transformations that
detect these symmetries;

(4) There exists a so-called ERPS characterized by

m2
22 ¼ m2

11; m2
12 ¼ 0;

�2 ¼ �1; �7 ¼ ��6:
(33)

As shown by Davidson and Haber [8], a theory
obeying these constraints does have a Z2 symmetry,
but it may or not have a Uð1Þ symmetry. Within the
ERPS, the invariants in the literature cannot be used
to distinguish the two cases.

The last statement above is a result of the following
considerations: In order to distinguish between Z2 and
Uð1Þ, Davidson and Haber [8] construct two invariant
quantities given by Eqs. (46) and (50) of Ref. [8].
Outside the ERPS, these quantities are zero if and only if
Uð1Þ holds. Unfortunately, in the ERPS these quantities
vanish automatically independently of whether or notUð1Þ
holds. Similarly, Ferreira and Silva [23] have constructed
invariants detecting HF symmetries. But their use requires
the existence of a matrix, obtained by combining Yab and
Zab;cd, which has two distinct eigenvalues. This does not

occur when the ERPS is due to a symmetry. Finally, in the
ERPS, Ivanov [3] states that the symmetry might be ‘‘ðZ2Þ2
or Oð2Þ’’ [our Z2 or our Uð1Þ] and does not provide a way
to distinguish the two possible flavor symmetries [24].

Gunion and Haber [9] have shown that the ERPS con-
ditions of Eq. (33) are basis independent; if they hold in
one basis, then they hold in any basis. Moreover, for a
model in the ERPS, a basis may be chosen such that all

parameters are real.3 Having achieved such a basis,
Davidson and Haber [8] demonstrate that one may make
one additional basis transformation such that

m2
22 ¼ m2

11; m2
12 ¼ 0; �2 ¼ �1;

�7 ¼ �6 ¼ 0; Im�5 ¼ 0:
(34)

These conditions express the ERPS for a specific basis
choice.
One might think that since this is such a special region of

parameter space that it lacks any relevance. However, the
fact that the conditions in Eq. (33) hold in any basis is a
good indication that a symmetry may lie behind this con-
dition. Indeed, as pointed out by Davidson and Haber [8],
combining the two symmetries Z2 and �2 in the same
basis one is lead immediately to the ERPS in the basis of
Eq. (34). Up to now, we considered the impact of imposing
on the Higgs potential only one symmetry. This was
dubbed a simple symmetry. Now we are considering the
possibility that the potential must remain invariant under
one symmetry and also under a second symmetry; this
implies further constraints on the parameters of the Higgs
potential. We refer to this possibility as a multiple symme-
try. As seen from Table I of Sec. V, imposing Z2 and�2 in
the same basis leads to the conditions in Eq. (34).
Incidentally, this example shows that a model that lies in
the ERPS, is automatically invariant under Z2.
In Sec. IV, we will show that all classes of nontrivial CP

transformations lead directly to the ERPS, reinforcing the
importance of this particular region of parameter space.

D. Requirements for Uð1Þ invariance
In the basis in which the Uð1Þ symmetry takes the form

of Eq. (27), the coefficients of the potential must obey

m02
12 ¼ 0; �0

5 ¼ �0
6 ¼ �0

7 ¼ 0: (35)

Imagine that we have a potential of Eq. (2) in the ERPS:
m2

11 ¼ m2
22, m

2
12 ¼ 0, �2 ¼ �1, and �7 ¼ ��6. We now

wish to know whether a transformation U may be chosen
such that the potential coefficients in the new basis satisfy
the Uð1Þ conditions in Eq. (35). Using the transformation
rules in Eqs. (A13)–(A23) of Davidson and Haber [8], we
find that such a choice of U is possible if and only if the
coefficients in the original basis satisfy

2�3
6 � �5�6ð�1 � �3 � �4Þ � �2

5�
�
6 ¼ 0; (36)

subject to the condition that ��
5�

2
6 is real.

3Given a scalar potential whose parameters satisfy the ERPS
conditions with Imð��

5�
2
6Þ � 0, the unitary matrix required to

transform into a basis in which all the scalar potential parameters
are real can be determined only by numerical means.
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E. The D invariant

Having established the importance of the ERPS (as it
can arise from a symmetry), we will now build a basis-
invariant quantity that can be used to detect the presence of
a Uð1Þ symmetry in this special case.

The quadratic terms of the Higgs potential are always
insensitive to the difference between Z2 and Uð1Þ.
Moreover, the matrix Y is proportional to the unit matrix
in the ERPS. One must thus look at the quartic terms. We
were inspired by the expression of ��� in Eq. (12), which

appears in the works of Nishi [13,14] and Ivanov [3,4]. In
the ERPS of Eq. (33),��� breaks into a 1� 1 block (�00),

and a 3� 3 block (~� ¼ f�ijg; i, j ¼ 1, 2, 3). A basis

transformation U belonging to SUð2Þ on the �a fields
corresponds to an orthogonal SOð3Þ transformation in the
ri bilinears, given by

Oij ¼ 1
2 Tr½Uy�iU�j�: (37)

Any matrix O of SOð3Þ can be obtained by considering an
appropriate matrixU of SUð2Þ (unfortunately this property
does not generalize for models with more than two Higgs
doublets). A suitable choice of O can be made that diag-

onalizes the 3� 3 matrix ~�, thus explaining Eq. (34). In
this basis, the difference between the usual choices for
Uð1Þ and Z2 corresponds to the possibility that Re�5 might
vanish or not, respectively.

We will now show that, once in the ERPS, the condition

for the existence of Uð1Þ is that ~� has two eigenvalues,
which are equal. The eigenvalues of a 3� 3 matrix are the
solutions to the secular equation

x3 þ a2x
2 þ a1xþ a0 ¼ 0; (38)

where

a0 ¼ det ~� ¼ �1
3 Trð~�3Þ � 1

6ðTr~�Þ3 þ 1
2ðTr~�ÞTrð~�2Þ

¼ �1
3Zab;cdðZdc;ghZhg;ba � 3

2Z
ð2Þ
dcZ

ð2Þ
baÞ

þ 1
2Zab;cdZdc;ba TrðZð1Þ � 1

2Z
ð2ÞÞ � 1

6ðTrZð1ÞÞ3
þ 1

4ðTrZð1ÞÞ2 TrZð2Þ � 1
2 TrZ

ð1ÞðTrZð2ÞÞ2; (39)

a1 ¼ 1
2ðTr~�Þ2 � 1

2 Trð~�2Þ
¼ 1

2½ðTrZð1ÞÞ2 � TrZð1Þ TrZð2Þ þ ðTrZð2ÞÞ2
� Zab;cdZdc;ba�; (40)

a2 ¼ �Tr~� ¼ 1
2 TrZ

ð2Þ � TrZð1Þ; (41)

and

Zð1Þ
ab � Za�;�b ¼ �1 þ �4 �6 þ �7

��
6 þ ��

7 �2 þ �4

� �
; (42)

Zð2Þ
ab � Z��;ab ¼ �1 þ �3 �6 þ �7

��
6 þ ��

7 �2 þ �3

� �
: (43)

The cubic equation, Eq. (38), has at least two degenerate
solutions if [25]

D � ½12a1 � 1
9a

2
2�3 þ ½16ða1a2 � 3a0Þ � 1

27a
3
2�2 (44)

vanishes.
The expression ofD in terms of the parameters in Eq. (2)

is rather complicated, even in the ERPS. But one can show
by direct computation that if the Uð1Þ-symmetry condition
of Eq. (36) holds (subject to ��

5�
2
6 being real), then D ¼ 0.

We can simplify the expression for D by changing to a
basis where all parameters are real [9], where we get

D ¼ � 1
27½�5ð�1 � �3 � �4 þ �5Þ � 2�2

6�2
� ½ð�1 � �3 � �4 � �5Þ2 þ 16�2

6�: (45)

If �6 � 0, then D ¼ 0 means

2�2
6 ¼ �5ð�1 � �3 � �4 þ �5Þ: (46)

If �6 ¼ 0, thenD ¼ 0 corresponds to one of three possible
conditions:

�5 ¼ 0; �5 ¼ 
ð�1 � �3 � �4Þ: (47)

Notice that Eqs. (46) and (47) are equivalent to Eq. (36) in
any basis where the coefficients are real.
Although D can be defined outside the ERPS, the con-

dition D ¼ 0 only guarantees that the model is invariant
underUð1Þ inside the ERPS of Eq. (33). Outside this region
one can detect the presence of a Uð1Þ symmetry with the
invariants proposed by Davidson and Haber [8]. This
closes the last breach in the literature concerning basis-
invariant signals of discrete symmetries in the THDM.
Thus, in the ERPS D ¼ 0 is a necessary and sufficient
condition for the presence of a Uð1Þ symmetry.

III. VACUUM STRUCTURE AND
RENORMALIZATION

The presence of a Uð1Þ symmetry in the Higgs potential
may (or not) imply the existence of a massless scalar, the
axion, depending on whether (or not) theUð1Þ is broken by
the vevs. In the previous section we related the basis-
invariant condition D ¼ 0 in the ERPS with the presence
of a Uð1Þ symmetry. In this section we will show that,
whenever the basis-invariant condition D ¼ 0 is satisfied
in the ERPS, there is always a stationary point for which a
massless scalar, other than the usual Goldstone bosons,
exists.
We start by writing the extremum conditions for the

THDM in the ERPS. For simplicity, we will be working
in a basis where all the parameters are real [9]. From
Eqs. (5) and (8), we obtain

0 ¼ Y11v1 þ 1
2½�1v

3
1 þ �345v1v

2
2 þ �6ð3v2

1v2 � v3
2Þ�;

0 ¼ Y11v2 þ 1
2½�1v

3
2 þ �345v2v

2
1 þ �6ðv3

1 � 3v2
2v1Þ�;

(48)
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where we have defined �345 � �3 þ �4 þ �5. We now
compute the mass matrices. As we will be considering
only vacua with real vevs, there will be no mixing between
the real and imaginary parts of the doublets. As such, we
can define the mass matrix of the CP-even scalars as given
by

½M2
h�ij ¼

1

2

@2V

@Reð�0
i Þ@Reð�0

j Þ
; (49)

where �0
i is the neutral (lower) component of the �i

doublet. Thus, we obtain, for the entries of this matrix,
the following expressions:

½M2
h�11 ¼ Y11 þ 1

2ð3�1v
2
1 þ �345v

2
2 þ 6�6v1v2Þ

½M2
h�22 ¼ Y11 þ 1

2ð3�1v
2
2 þ �345v

2
1 þ 6�6v1v2Þ

½M2
h�12 ¼ �345v1v2 þ 3

2�6ðv2
1 � v2

2Þ:
(50)

Likewise, the pseudoscalar mass matrix is defined as

½M2
A�ij ¼

1

2

@2V

@ Imð�0
i Þ@ Imð�0

j Þ
(51)

whose entries are given by

½M2
A�11 ¼ Y11 þ 1

2½�1v
2
1 þ ð�3 þ �4 � �5Þv2

2 þ 2�6v1v2�
½M2

A�22 ¼ Y11 þ 1
2½�1v

2
2 þ ð�3 þ �4 � �5Þv2

1 � 2�6v1v2�
½M2

A�12 ¼ �5v1v2 þ 1
2�6ðv2

1 � v2
2Þ: (52)

The expressions (50) and (52) are valid for all the particular
cases we will now consider.

A. Case �6 ¼ 0, fv1; v2g � 0

Let us first study the case �6 ¼ 0, wherein we may solve
the extremum conditions in an analytical manner. It is
trivial to see that Eqs. (48) have three types of solutions:
both vevs different from zero, one vev equal to zero (say,
v2) and both vevs zero (trivial noninteresting solution). For
a solution with fv1; v2g � 0, a necessary condition must be
obeyed so that there is a solution to Eqs. (48):

�2
1 � �2

345 � 0: (53)

If we use the extremum conditions to evaluate ½M2
h�, we

obtain

½M2
h� ¼ �1v

2
1 �345v1v2

�345v1v2 �1v
2
2

� �
; (54)

which only has a zero eigenvalue if Eq. (53) is broken.
Thus, there is no axion in this matrix in this case. As for
½M2

A�, we get

½M2
A� ¼ ��5

v2
1 v1v2

v1v2 v2
2

� �
; (55)

which clearly has a zero eigenvalue corresponding to the Z

Goldstone boson. Further, this matrix will have an axion if
�5 ¼ 0, which is the first condition of Eq. (47).

B. Case �6 ¼ 0, fv1 � 0; v2 ¼ 0g
Returning to Eq. (48), this case gives us

Y11 ¼ �1
2�1v

2
1; (56)

which implies Y11 < 0. With this condition, the mass ma-
trices become considerably simpler:

½M2
h� ¼

�1v
2
1 0

0 1
2 ð�345 � �1Þv2

1

 !
(57)

and

½M2
A� ¼

1

2

0 0
0 ð�3 þ �4 � �5 � �1Þv2

1

� �
: (58)

So, we can have an axion in the matrix (57) if

�345 � �1 ¼ 0 , �5 ¼ �1 � �3 � �4 (59)

or an axion in matrix (58) if

�5 ¼ ��1 þ �3 þ �4: (60)

That is, we have an axion if the second or third conditions
of Eq. (47) are satisfied. The other possible case, fv1 ¼
0; v2 � 0g, produces exactly the same conclusions.

C. Case �6 � 0

This is the hardest case to treat, since we cannot obtain
analytical expressions for the vevs. Nevertheless a full
analytical treatment is still possible. First, notice that
with �6 � 0 Eqs. (48) imply that both vevs have to be
nonzero. At the stationary point of Eqs. (48), the pseudo-
scalar mass matrix has a Goldstone boson and an eigen-
value given by

� �5ðv2
1 þ v2

2Þ � �6

v4
1 � v4

2

2v1v2

: (61)

So, an axion exists if we have

v2
1 � v2

2

v1v2

¼ � 2�5

�6

: (62)

On the other hand, after some algebraic manipulation, it is
simple to obtain from (48) the following condition:

�1 � �345 ¼ �6

�
v2
1 � v2

2

v1v2

� 4v1v2

v2
1 � v2

2

�
: (63)

Substituting Eq. (62) into (63), we obtain

�1 � �345 ¼ �6

�
� 2�5

�6

þ 2�6

�5

�
, 2�2

6

¼ �5ð�1 � �3 � �4 þ �5Þ: (64)
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Thus, we have shown that all of the conditions stemming
from the basis-invariant condition D ¼ 0 guarantee the
existence of some stationary point for which the scalar
potential yields an axion. Notice that, however, this sta-
tionary point need not coincide with the global minimum
of the potential.

D. Renormalization group invariance

We now briefly examine the renormalization group (RG)
behavior of our basis-invariant condition D ¼ 0. It would
be meaningless to say thatD ¼ 0 implies aUð1Þ symmetry
if that condition were only valid at a given renormalization
scale. That is, it could well be that a numerical accident
forces D ¼ 0 at only a given scale. To avoid such a con-
clusion, we must verify if D ¼ 0 is a RG-invariant condi-
tion (in addition to being basis invariant). For a given
renormalization scale�, the � function of a given parame-
ter x is defined as �x ¼ �@x=@�. For simplicity, let us
rewrite D in Eq. (45) as

D ¼ � 1
27D

2
1D2; (65)

with

D1 ¼ �5ð�1 � �3 � �4 þ �5Þ � 2�2
6

D2 ¼ ð�1 � �3 � �4 � �5Þ2 þ 16�2
6:

(66)

If we apply the operator �@=@� to D, we obtain

�D ¼ � 1
27ð2D1D2�D1

þD2
1�D2

Þ: (67)

If D1 ¼ 0 (which corresponds to three of the conditions
presented in Eqs. (46) and (47)) then we immediately have
�D ¼ 0. That is, if D ¼ 0 at a given scale, it is zero at all
scales.

If D2 ¼ 0 and D1 � 0 we will only have �D ¼ 0 if
�D2

¼ 0, or equivalently,

2ð�1 � �3 � �4 � �5Þð��1
� ��3

� ��4
� ��5

Þ
þ 32��6

�6 ¼ 0: (68)

Given that D2 ¼ 0 implies that �6 ¼ 0 and �5 ¼
�1 � �3 � �4, we once again obtain �D ¼ 0.

Thus, the condition D ¼ 0 is RG invariant. A direct
verification of the RG invariance of Eqs. (46) and (47),
and of the conditions that define the ERPS itself, would
require the explicit form of th e � functions of the THDM
involving the �6 coupling. That verification will be made
elsewhere [26].

IV. GENERALIZED CP SYMMETRIES

It is common to consider the standardCP transformation
of the scalar fields as

�aðt; ~xÞ ! �CP
a ðt; ~xÞ ¼ ��

aðt;� ~xÞ; (69)

where the reference to the time (t) and space ( ~x) coordi-
nates will henceforth be suppressed. However, in the pres-
ence of several scalars with the same quantum numbers,
basis transformations can be included in the definition of
the CP transformation. This yields GCP transformations

�GCP
a ¼ Xa��

�
� � Xa�ð�y

�Þ>;
�yGCP

a ¼ X�
a��

>
� � X�

a�ð�y
�Þ�;

(70)

where X is an arbitrary unitary matrix [27,28].4

Note that the transformation �a ! �GCP
a , where �GCP

a

is given by Eq. (70), leaves the kinetic terms invariant. The
GCP transformation of a field bilinear yields

�yGCP
a �GCP

b ¼ X�
a�Xb�ð���

y
�Þ>: (71)

Under this GCP transformation, the quadratic terms of the
potential may be written as

Yab�
yGCP
a �GCP

b ¼ YabX
�
a�Xb��

y
���

¼ Xb�Y
�
baX

�
a��

y
���

¼ X�aY
�
��X

�
�b�

y
a�b ¼ ðXyYXÞ�ab�y

a�b:

(72)

We have used the Hermiticity condition Yab ¼ Y�
ba in

going to the second line; and changed the dummy indices
a $ � and b $ � in going to the third line. A similar
argument can be made for the quartic terms. We conclude
that the potential is invariant under the GCP transformation
of Eq. (70) if and only if the coefficients obey

Y�
ab ¼ X�

�aY��X�b ¼ ðXyYXÞab;
Z�
ab;cd ¼ X�

�aX
�
�cZ��;��X�bX�d:

(73)

Introducing

�Yab ¼ Yab � X�aY
�
��X

�
�b ¼ ½Y � ðXyYXÞ��ab;

�Zab;cd ¼ Zab;cd � X�aX�cZ
�
��;��X

�
�bX

�
�d; (74)

we may write the conditions for invariance under GCP as

�Yab ¼ 0; (75)

�Zab;cd ¼ 0: (76)

Given Eqs. (4), it is easy to show that

4Equivalently, one can consider a generalized time-reversal
transformation proposed in Ref. [29] and considered further in
Appendix A of Ref. [9].
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�Yab ¼ �Y�
ba; �Zab;cd � �Zcd;ab ¼ �Z�

ba;dc: (77)

Thus, we need only consider the real coefficients �Y11,
�Y22, �Z11;11, �Z22;22, �Z11;22, �Z12;21, and the complex

coefficients �Y12, �Z11;12, �Z22;12, and �Z12;12.

A. GCP and basis transformations

We now turn to the interplay between GCP transforma-
tions and basis transformations. Consider the potential of
Eq. (3) and call it Vð�Þ. Now consider the potential
obtained from Vð�Þ by the basis transformation �a !
�0

a ¼ Uab�b:

Vð�0Þ ¼ Y0
abð�0y

a �0
bÞ þ 1

2Z
0
ab;cdð�0y

a �0
bÞð�0y

c �0
dÞ; (78)

where the coefficients in the new basis are given by
Eqs. (16) and (17). We will now prove the following
theorem: If Vð�Þ is invariant under the GCP transforma-
tion of Eq. (70) with the matrix X, then Vð�0Þ is invariant
under a new GCP transformation with matrix

X0 ¼ UXU>: (79)

By hypothesis Vð�Þ is invariant under the GCP transfor-
mation of Eq. (70) with the matrix X. Equation (73)
guarantees that Y� ¼ XyYX. Now, Eq. (16) relates the
coefficients in the two basis through Y ¼ UyY0U.
Substituting gives

U>Y0�U� ¼ XyðUyY0UÞX; (80)

or

Y0� ¼ ðU�XyUyÞY0ðUXU>Þ ¼ X0yY0X0; (81)

as required. A similar argument holds for the quartic terms
and the proof is complete.

The fact that the transposeU> appears in Eq. (79) rather
than Uy is crucial. In Eq. (23), applicable to HF symme-
tries, Uy appears. Consequently, a basis may be chosen
where the HF symmetry is represented by a diagonal
matrix S. The presence of U> in Eq. (79) implies that,
contrary to popular belief, it is not possible to reduce all
GCP transformations to the standardCP transformation of
Eq. (69) by a basis transformation. What is possible, as we
shall see below, is to reduce an invariance of the THDM
potential under any GCP transformation, to an invariance
under the standard CP transformation plus some extra
constraints.

To be more specific, the following result is easily estab-
lished. If the unitary matrix X is symmetric, then it follows
that5 a unitary matrix U exists such that X0 ¼ UXU> ¼ 1,
in which case Y0� ¼ Y0. In this case, a basis exists in which

the GCP is a standard CP transformation. In contrast, if the
unitary matrix X is not symmetric, then no basis exists in
which Y and Z are real for generic values of the scalar
potential parameters. Nevertheless, as we shall demon-
strate below, by imposing the GCP symmetry on the scalar
potential, the parameters of the scalar potential are con-
strained in such a way that for an appropriately chosen
basis change, Y0� ¼ X0yY0X0 ¼ Y0 (with a similar result for
Z0).
GCP transformations were studied in Refs. [27,28]. In

particular, Ecker, Grimus, and Neufeld [28] proved that for
every matrix X there exists a unitary matrix U such that X0
can be reduced to the form

X0 ¼ UXU> ¼ cos	 sin	
� sin	 cos	

� �
; (82)

where 0 	 	 	 
=2. Notice the restricted range for 	. The
value of 	 can be determined in either of two ways: (i) the
eigenvalues of ðX þ X>ÞyðXþ X>Þ=2 are cos	, each of
which is twice degenerate; or (ii) XX� has the eigenvalues
e
2i	.

B. The three classes of GCP symmetries

Having reached the special form of X0 in Eq. (82), we
will now follow the strategy adopted by Ferreira and Silva
[23] in connection with HF symmetries. We substitute
Eq. (82) for X in Eq. (73), in order to identify the con-
straints imposed by this reduced form of the GCP trans-
formations on the quadratic and quartic couplings. For
each value of 	, certain constraints will be forced upon
the couplings. If two different values of 	 enforce the same
constraints, we will say that they are in the same class
(since no experimental distinction between the two will
then be possible). We will start by considering the special
cases of 	 ¼ 0 and 	 ¼ 
=2, and then turn our attention to
0< 	< 
=2.

1. CP1: 	 ¼ 0

When 	 ¼ 0, X0 is the unit matrix, and we obtain the
standard CP transformation

�1 ! ��
1; �2 ! ��

2; (83)

under which Eqs. (73) take the very simple form

Y�
ab ¼ Yab; Z�

ab;cd ¼ Zab;cd: (84)

We denote this CP transformation by CP1. It forces all
couplings to be real. Since most couplings are real by the
Hermiticity of the Higgs potential, the only relevant con-
straints are Imm2

12 ¼ Im�5 ¼ Im�6 ¼ Im�7 ¼ 0.

5Here, we make use of a theorem in linear algebra that states
that for any unitary symmetric matrix X, a unitary matrix V
exists such that X ¼ VV>. A proof of this result can be found,
e.g., in Appendix B of Ref. [9].
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2. CP2: 	 ¼ 
=2

When 	 ¼ 
=2,

X0 ¼ 0 1
�1 0

� �
; (85)

and we obtain the CP transformation

�1 ! ��
2; �2 ! ���

1; (86)

which we denote by CP2. This was considered by
Davidson and Haber [8] in their Eq. (37), who noted that
if this symmetry holds in one basis, it holds in all basis
choices. Under this transformation, Eq. (75) forces the
matrix of quadratic couplings to obey

0 ¼ �Y ¼ m2
11 �m2

22 �2m2
12

�2m2�
12 m2

22 �m2
11;

� �
; (87)

leading to m2
22 ¼ m2

11 and m2
12 ¼ 0. Similarly, we may

construct a matrix of matrices containing all coefficients
�Zab;cd. The uppermost-leftmost matrix corresponds to

�Z11;cd. The next matrix along the same line corresponds

to�Z12;cd, and so on. To enforce invariance under CP2, we
equate it to zero,

0 ¼
�1 � �2 �6 þ �7

��
6 þ ��

7 0

� �
�6 þ �7 0

0 �6 þ �7

� �
��
6 þ ��

7 0
0 ��

6 þ ��
7

� �
0 �6 þ �7

��
6 þ ��

7 �2 � �1

� �
0
BBB@

1
CCCA:
(88)

We learn that invariance under CP2 forces m2
22 ¼ m2

11 and
m2

12 ¼ 0, �2 ¼ �1, and �7 ¼ ��6, leading precisely to the
ERPS of Eq. (33). Recall that Gunion and Haber [9] found
that, under these conditions we can always find a basis
where all parameters are real. As a result, if the potential is
invariant under CP2, there is a basis where CP2 still holds
and in which the potential is also invariant under CP1.

3. CP3: 0< 	< 
=2

Finally, we turn to the cases where 0< 	<
=2.
Imposing Eq. (75) yields

0 ¼ �Y11 ¼ ½ðm2
11 �m2

22Þs� 2Rem2
12c�s;

0 ¼ �Y22 ¼ ��Y11;

0 ¼ �Y12

¼ Rem2
12ðc2 � 1Þ � 2i Imm2

12 þ 1
2ðm2

22 �m2
11Þs2;

(89)

where we have used c ¼ cos	, s ¼ sin	, c2 ¼ cos2	, and
s2 ¼ sin2	. Since 	 � 0, 
=2, the conditions m2

22 ¼ m2
11

and m2
12 ¼ 0 are imposed, as in CP2. Similarly, Eq. (76)

yields

0 ¼ �Z11;11 ¼ �1ð1� c4Þ � �2s
4 � 1

2�345s
2
2

þ 4Re�6c
3sþ 4Re�7cs

3;

0 ¼ �Z22;22 ¼ �2ð1� c4Þ � �1s
4 � 1

2�345s
2
2

� 4Re�7c
3s� 4Re�6cs

3;

0 ¼ �Z11;22 ¼ �1
4s2½4Reð�6 � �7Þc2

þ ð�1 þ �2 � 2�345Þs2�;
0 ¼ �Z12;21 ¼ �Z11;220 ¼ Re�Z11;12

¼ 1
4s½ð�3�1 þ �2 þ 2�345Þc
� ð�1 þ �2 � 2�345Þc3
þ 4Re�6ð2sþ s3Þ � 4Re�7s3�;

0 ¼ Re�Z22;12 ¼ 1
4s½ð��1 þ 3�2 � 2�345Þc
þ ð�1 þ �2 � 2�345Þc3 � 4Re�6s3

þ 4Re�7ð2sþ s3Þ�;
0 ¼ Re�Z12;12 ¼ �Z11;22

(90)

0 ¼ Im�Z11;12

¼ 1
2½Im�6ð3þ c2Þ þ Im�7ð1� c2Þ � Im�5s2�;

0 ¼ Im�Z22;12

¼ 1
2½Im�6ð1� c2Þ þ Im�7ð3þ c2Þ þ Im�5s2�;

0 ¼ Im�Z12;12 ¼ 2c½Im�5cþ Imð�6 � �7Þs�;

(91)

where �345 ¼ �3 þ �4 þ Re�5, c3 ¼ cos3	, and s3 ¼
sin3	.
The last three equations may be written as

0 ¼
�s2 ð3þ c2Þ ð1� c2Þ
s2 ð1� c2Þ ð3þ c2Þ

ð1þ c2Þ s2 �s2

2
64

3
75 Im�5

Im�6

Im�7

2
64

3
75: (92)

The determinant of this homogeneous system of three
equations in three unknowns is 32c2, which can never be
zero since we are assuming that 	 � 
=2. As a result, �5,
�6, and �7 are real, whatever the value of 0< 	< 
=2
chosen for the GCP transformation. Since m2

12 ¼ 0, all
potentially complex parameters must be real. We conclude
that a potential invariant under any GCP with 0< 	< 
=2
is automatically invariant under CP1. Combining this with
what we learned from CP2, we conclude the following: if a
potential is invariant under some GCP transformation, then
a basis may be found in which it is also invariant under the
standard CP transformation, with some added constraints
on the parameters.
The other set of five independent homogeneous equa-

tions in five unknowns has a determinant equal to zero,
meaning that not all parameters must vanish. We find that
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0 ¼ �Z11;11 � �Z22;22

¼ 2s½sð�1 � �2Þ þ c2Reð�6 þ �7Þ�;
0 ¼ Re�Z11;12 � Re�Z22;12

¼ s½�cð�1 � �2Þ þ s2Reð�6 þ �7Þ�:

(93)

Since s � 0, we obtain the homogeneous system

0 ¼ s c
�c s

� �
�1 � �2

2 Reð�6 þ �7Þ
� �

; (94)

whose determinant is unity. We conclude that �2 ¼ �1 and
�7 ¼ ��6. Thus, GCP invariance with any value of 0<
	 	 
=2 leads to the ERPS of Eq. (33). Substituting back
we obtain �Z11;11 ¼ �Z22;22 ¼ ��Z11;22 and

Re�Z11;12 ¼ �Re�Z22;12, leaving only two independent

equations:

0 ¼ �Z11;11 ¼ 1
2s2½ð�1 � �345Þs2 þ 4�6c2�;

0 ¼ Re�Z22;12 ¼ 1
2s2½ð�1 � �345Þc2 � 4�6s2�;

(95)

where we have used cþ c3 ¼ 2cc2 and sþ s3 ¼ 2cs2.
Since s2 � 0, the determinant of the system does not
vanish, forcing �1 ¼ �345 and �6 ¼ 0.

Notice that our results do not depend on which exact
value of 0< 	< 
=2 in Eq. (82) we have chosen. If we
require invariance of the potential under GCP with some
particular value of 0< 	< 
=2, then the potential is
immediately invariant under GCP with any other value of
0< 	< 
=2. We name this class of CP invariances CP3.
Combining everything, we conclude that invariance under
CP3 implies

m2
11 ¼ m2

22; m2
12 ¼ 0; �2 ¼ �1;

�7 ¼ �6 ¼ 0; Im�5 ¼ 0; Re�5 ¼ �1 � �3 � �4:

(96)

The results of this section are all summarized in Table I of
Sec. V.

C. The square of the GCP transformation

If we apply a GCP transformation twice to the scalar
fields, we will have, from Eq. (70), that

ð�GCP
a ÞGCP ¼ Xa�ð�GCP

� Þ� ¼ Xa�X
�
�b�b; (97)

so that the square of a GCP transformation is given by

ðGCPÞ2 ¼ XX�: (98)

In particular, for a generic unitary matrix X, ðGCPÞ2 is a
Higgs family symmetry transformation.

Usually, only GCP transformations with ðGCPÞ2 ¼ 1
(where 1 is the unit matrix) are considered in the literature.
For such a situation, X ¼ Xy ¼ X�, and one can always
find a basis in which X ¼ 1. In this case, a GCP trans-
formation is equivalent to a standard CP transformation in
the latter basis choice. For example, the restriction that

ðGCPÞ2 ¼ 1 (or equivalently, requiring the squared of the
corresponding generalized time-reversal transformation to
equal the unit matrix) was imposed in Ref. [9] and more
recently in Ref. [15]. However, as we have illustrated in
this section, the invariance under a GCP transformation, in
which ðGCPÞ2 � 1 (corresponding to a unitary matrix X
that is not symmetric) is a stronger restriction on the
parameters of the scalar potential than the invariance under
a standard CP transformation.
As we see from the results in the previous sections, X is

not symmetric for the symmetries CP2 and CP3. In fact,
this feature provides a strong distinction among the three
GCP symmetries previously introduced. Let us briefly
examine ðGCPÞ2 for the three possible cases CP1, CP2,
and CP3.

1. ðCP1Þ2
Comparing Eqs. (70) and (83), we come to the immedi-

ate conclusion that XCP1 ¼ 1, so that Eq. (98) yields

ðCP1Þ2 ¼ 1: (99)

This implies that a CP1-invariant scalar potential is invari-
ant under the symmetry group Z2 ¼ f1; CP1g.

2. ðCP2Þ2
The matrix XCP2 is shown in Eq. (85) so that, by

Eq. (98), we obtain

ðCP2Þ2 ¼ �1: (100)

Although this result significantly distinguished CP2 from
CP1, the authors of Ref. [15] noted (in considering their

CPðiÞ
g symmetries) that the transformation law for�a under

ðCP2Þ2 can be reduced to the identity by a global hyper-
charge transformation. That is, if we start with the sym-
metry group Z4 ¼ f1; CP2;�1;�CP2g, we can impose an
equivalence relation by identifying two elements of Z4

related by multiplication by �1. If we denote ðZ2ÞY ¼
f1;�1g as the two-element discrete subgroup of the global
hypercharge Uð1ÞY , then the discrete symmetry group that
is orthogonal to Uð1ÞY is given by Z4=ðZ2ÞY ffi Z2. Hence,
the CP2-invariant scalar potential exhibits a Z2 symmetry
orthogonal to the Higgs flavor symmetries of the potential.

3. ðCP3Þ2
The matrix XCP3 is given in Eq. (82), with 0< 	< 
=2,

so that, by Eq. (98), we obtain

ðCP3Þ2 ¼ cos2	 sin2	
� sin2	 cos2	

� �
; (101)

which once again is not the unit matrix. However, the
transformation law for�a under ðCP3Þ2 cannot be reduced
to the identity by a global hypercharge transformation.
This is the reason why Ref. [15] did not consider CP3.
However, ðCP3Þ2 is a nontrivial HF symmetry of the
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CP3-invariant scalar potential.6 Thus, one can always
reduce the square of CP3 to the identity by applying a
suitable HF symmetry transformation. In particular, a
CP3-invariant scalar potential also exhibits a Z2 symmetry
that is orthogonal to the Higgs flavor symmetries of the
potential.

In this paper, we prove that there are three and only three
classes of GCP transformations. Of course, within each
class, one may change the explicit form of the scalar
potential by a suitable basis transformation; but that will
not alter its physical consequences. Similarly, one can set
some parameters to zero in some ad hoc fashion, not rooted
in a symmetry requirement. But, as we have shown, the
constraints imposed on the scalar potential by a single GCP
symmetry can be grouped into three classes: CP1, CP2,
and CP3.

V. CLASSIFICATION OF THE HFAND GCP
TRANSFORMATION CLASSES IN THE THDM

A. Constraints on scalar potential parameters

Suppose that one is allowed one single symmetry re-
quirement for the potential in the THDM. One can choose
an invariance under one particular Higgs family symmetry.
We know that there are only two independent classes of
such simple symmetries: Z2 and Peccei-Quinn Uð1Þ. One
can also choose an invariance under a particular GCP
symmetry. We have proved that there are three classes of
GCP symmetries, named CP1,CP2, andCP3. If any of the
above symmetries is imposed on the THDM scalar poten-
tial (in a specified basis), then the coefficients of the
scalar potential are constrained, as summarized in
Table I. For completeness, we also exhibit the constraints
imposed by SOð3Þ, the largest possible continuous HF
symmetry that is orthogonal to the global hypercharge
Uð1ÞY transformation.

Empty entries in Table I correspond to a lack of con-
straints on the corresponding parameters. Table I has been

constructed for those basis choices in which Z2 and Uð1Þ
have the specific forms in Eqs. (24) and (27), respectively.
If, for example, the basis is changed and Z2 acquires the
form �2 in Eqs. (25), then the constraints on the coeffi-
cients are altered, as shown explicitly on the fourth line of
Table I. However, this does not correspond to a new model.
All physical predictions are the same since the specific
forms of Z2 and �2 differ only by the basis change in
Eq. (26). The constraints for CP1, CP2, and CP3 shown in
Table I apply to the basis in which the GCP transformation
of Eq. (70) is used where X has been transformed into X0
given by Eq. (82), with 	 ¼ 0, 	 ¼ 
=2, and 0< 	< 
=2,
respectively.

B. Multiple symmetries and GCP

We now wish to consider the possibility of simulta-
neously imposing more than one symmetry requirement
on the Higgs potential. For example, one can require that
Z2 and �2 be enforced within the same basis. In what
follows, we shall indicate that the two symmetries are
enforced simultaneously by writing Z2 ��2. Combining
the constraints from the appropriate rows of Table I, we
conclude that, under these two simultaneous requirements

m2
22 ¼ m2

11; m2
12 ¼ 0; �2 ¼ �1;

�7 ¼ �6 ¼ 0; Im�5 ¼ 0:
(102)

This coincides exactly with the conditions of the ERPS in a
very special basis, as shown in Eq. (34). SinceCP2 leads to
the ERPS of Eq. (33), we conclude that

Z2 ��2 � CP2 in some specific basis: (103)

This was noted previously by Davidson and Haber [8].
Now that we know what all classes of HF and CP symme-
tries can look like, we can ask whether all GCP symmetries
can be written as the result of some multiple HF symmetry.
This is clearly not possible for CP1 because of parame-

ter counting. Table I shows that CP1 reduces the scalar

TABLE I. Impact of the symmetries on the coefficients of the Higgs potential in a specified
basis.

Symmetry m2
11 m2

22 m2
12 �1 �2 �3 �4 �5 �6 �7

Z2 0 0 0

Uð1Þ 0 0 0 0

SOð3Þ m2
11 0 �1 �1 � �3 0 0 0

�2 m2
11 real �1 real ��

6

CP1 real real real real

CP2 m2
11 0 �1 ��6

CP3 m2
11 0 �1 �1 � �3 � �4 (real) 0 0

6In Sec. VB, we shall identify ðCP3Þ2 with the Peccei-Quinn Uð1Þ symmetry defined as in Eq. (27) and then transformed to a new
basis according to the unitary matrix defined in Eq. (105).
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potential to ten real parameters. We can still perform an
orthogonal basis change while keeping all parameters real.
This freedom can be used to remove one further parameter;
for example, setting m2

12 ¼ 0 by diagonalizing the Y ma-
trix. No further simplification is allowed. As a result, CP1
leaves nine independent parameters. The smallest HF sym-
metry is Z2. Table I shows that Z2 reduces the potential to
six real and one complex parameter. The resulting eight
parameters could never account for the nine needed to fully
describe the most general model with the standard CP
invariance CP1.7

But one can utilize two HF symmetries in order to obtain
the same constraints obtained by invariance under CP3.
Let us impose both Uð1Þ and �2 in the same basis. From
Table I, we conclude that, under these two simultaneous
requirements

m2
22 ¼ m2

11; m2
12 ¼ 0; �2 ¼ �1;

�7 ¼ �6 ¼ 0; �5 ¼ 0:
(104)

This does not coincide with the conditions for invariance
under CP3 shown in Eq. (96). However, one can use the
transformation rules in Eqs. (A13)–(A23) of Davidson and
Haber [8], in order to show that a basis transformation

U ¼ 1ffiffiffi
2

p 1 �i
�i 1

� �
(105)

may be chosen, which takes us from Eqs. (96), where
Re�5 ¼ �1 � �3 � �4, to Eqs. (104), where �5 ¼ 0 (while
maintaining the other relations among the scalar potential
parameters). We conclude that

Uð1Þ ��2 � CP3 in some specific basis: (106)

Note that in the basis in which theCP3 relations of Eq. (96)
are satisfied with �5 � 0, the discrete HF symmetry �2 is
still respected. However, using Eq. (105), it follows that the
Uð1Þ-Peccei-Quinn symmetry corresponds to the invari-
ance of the scalar potential under �a ! Oab�b, where
O is an arbitrary SOð2Þ matrix.

The above results suggest that it should be possible to
distinguish CP1, CP2, and CP3 in a basis-invariant fash-
ion. Botella and Silva [6] have built three so-called J
invariants that detect any signal of CP violation (either
explicit or spontaneous) after the minimization of the
scalar potential. However, in this paper we are concerned
about the symmetries of the scalar potential independently
of the choice of vacuum. Thus, we shall consider the four
so-called I invariants built by Gunion and Haber [9] in
order to detect any signal of explicit CP violation present
(before the vacuum state is determined). If any of these
invariants is nonzero, then CP is explicitly violated, and
neither CP1, nor CP2, nor CP3 hold. Conversely, if all I

invariants are zero, then CP is explicitly conserved, but we
cannot tell a priori which GCP applies. Equations (103)
and (106) provide the crucial hint. If we have CP conser-
vation, Z2 ��2 holds, and Uð1Þ does not, then we have
CP2. Alternatively, if we have CP conservation, and
Uð1Þ ��2 also holds, then we have CP3. We recall that
both CP2 and CP3 lead to the ERPS, and that the general
conditions for the ERPS in Eq. (33) are basis independent.
This allows us to distinguish CP2 and CP3 from CP1. But,
prior to the present work, no basis-independent quantity
had been identified in the literature that could distinguish
Z2 and Uð1Þ in the ERPS. The basis-independent quantity
D introduced in Sec. II E is precisely the invariant required
for this task. That is, in the ERPS D � 0 implies CP2,
whereas D ¼ 0 implies CP3.
One further consequence of the results of Table I can be

seen by simultaneously imposing the Uð1Þ-Peccei-Quinn
symmetry and the CP3 symmetry in the same basis. The
resulting constraints on the scalar potential parameters are
precisely those of the SOð3Þ HF symmetry. Thus, we
conclude that

Uð1Þ � CP3 � SOð3Þ: (107)

In particular, SOð3Þ is not a simple HF symmetry, as the
invariance of the scalar potential under a single element of
SOð3Þ is not sufficient to guarantee invariance under the
full SOð3Þ group of transformations.

C. Maximal symmetry group of the scalar potential
orthogonal to Uð1ÞY

The standard CP symmetry CP1 is a discrete Z2 sym-
metry that transforms the scalar fields into their complex
conjugates, and hence is not a subgroup of the Uð2Þ trans-
formation group of Eq. (15). We have previously noted that
THDM scalar potentials that exhibit any nontrivial HF
symmetry G is automatically CP conserving. Thus, the
actual symmetry group of the scalar potential is in fact the
semidirect product8 of G and Z2, which we write as G 2Z2.
Noting that Uð1Þ 2Z2 ffi SOð2Þ 2Z2 ffi Oð2Þ, and SOð3Þ �
Z2 ffi Oð3Þ, we conclude that the maximal symmetry
groups of the scalar potential orthogonal to Uð1ÞY for the
possible choices of HF symmetries are given in Table II.9

Finally, we reconsider CP2 and CP3. Equation (103)
implies that the CP2 symmetry is equivalent to a ðZ2Þ2 HF
symmetry. To prove this statement, we note that in the two-
dimensional flavor space of Higgs fields, the Z2 and �2

discrete symmetries defined by Eqs. (24) and (25) are given
by

7In Ivanov’s language, this is clear since CP1 corresponds to a
Z2 transformation of the vector ~r, which is the simplest trans-
formation on ~r one could possibly make. See Sec. VD.

8In general, the nontrivial element of Z2 will not commute
with all elements of G, in which case the relevant mathematical
structure is that of a semidirect product. In cases where the
nontrivial element of Z2 commutes with all elements of G, we
denote the corresponding direct product as G � Z2.

9For ease of notation, we denote Z2 � Z2 by ðZ2Þ2 and Z2 �
Z2 � Z2 by ðZ2Þ3.
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Z2 ¼ fS0; S1g; �2 ¼ fS0; S2g; (108)

where S0 � 1 is the 2� 2 identity matrix and

S1 ¼ 1 0
0 �1

� �
; S2 ¼ 0 1

1 0

� �
: (109)

If we impose the Z2 and �2 symmetry in the same basis,
then the scalar potential is invariant under the dihedral
group of eight elements

D4 ¼ fS0; S1; S2; S3;�S0;�S1;�S2;�S3g; (110)

where S3 ¼ S1S2 ¼ �S2S1. As before, we identify
ðZ2ÞY � fS0;�S0g as the two-element discrete subgroup
of the global hypercharge Uð1ÞY . However, we have de-
fined the HF symmetries to be orthogonal to Uð1ÞY . Thus,
to determine the HF symmetry group of CP2, we identify
as equivalent those elements of D4 that are related by
multiplication by �S0. Grouped theoretically, we identify
the HF symmetry group of CP2 as

D4=ðZ2ÞY ffi Z2 � Z2: (111)

The HF symmetry group of CP2 is not the maximally
allowed symmetry group. In particular, the constraints of
CP2 on the scalar potential imply the existence of a basis in
which all scalar potential parameters are real. Thus, the
scalar potential is explicitly CP conserving. The Z2 sym-
metry associated with this CP transformation is orthogonal
to the HF symmetry as previously noted. (This is easily
checked explicitly by employing a four-dimensional real
representation of the two complex scalar fields.) Thus, the
maximal symmetry group of the CP2-symmetric scalar

potential is ðZ2Þ3. Similarly, Eq. (106) implies that the
CP3 symmetry is equivalent to a Uð1Þ 2Z2 HF symmetry.
This is isomorphic to an Oð2Þ HF symmetry, which is a
subgroup of the maximally allowed SOð3Þ HF symmetry
group. However, the constraints of CP3 on the scalar
potential imply the existence of a basis in which all scalar
potential parameters are real. Thus, the scalar potential is
explicitly CP conserving. Once again, the Z2 symmetry
associated with this CP transformation is orthogonal to the
HF symmetry noted above. Thus, the maximal symmetry
group of the CP3-symmetric scalar potential is Oð2Þ � Z2.
The above results are also summarized in Table II. In all

cases, the maximal symmetry group is a direct product of
the HF symmetry group and the Z2 corresponding to the
standard CP transformation, whose square is the identity
operator.
One may now ask whether Table II exhausts all possible

independent symmetry constraints that one may place on
the Higgs potential. Perhaps one can choose other combi-
nations, or maybe one can combine three, four, or more
symmetries. We know of no way to answer this problem
based only on the transformations of the scalar fields �a.
Fortunately, Ivanov has solved this problem [3] by looking
at the transformation properties of field bilinears, thus
obtaining for the first time the list of symmetries given in
the last column of Table II.

D. More on multiple symmetries

We start by looking at the implications of the symme-
tries we have studied so far on the vector ~r ¼ fr1; r2; r3g,
whose components were introduced in Eq. (10). Notice that
a unitary transformation U on the fields �a induces an
orthogonal transformation O on the vector of bilinears ~r,
given by Eq. (37). For every pair of unitary transformations

U of SUð2Þ, one can find some corresponding trans-
formation O of SOð3Þ, in a two-to-one correspondence.
We then see what these symmetries imply for the coeffi-
cients of Eq. (9) [recall the ��� is a symmetric matrix].

Below, we list the transformation of ~r under which the
scalar potential is invariant, followed by the corresponding
constraints on the quadratic and quartic scalar potential
parameters M� and ���.

Using the results of Table I, we find that Z2 implies

~r !
�r1
�r2
r3

2
64

3
75;

M0

0
0
M3

2
6664

3
7775;

�00 0 0 �03

0 �11 �12 0
0 �12 �22 0

�03 0 0 �33

2
6664

3
7775; (112)

Uð1Þ implies

TABLE II. Maximal symmetry groups [orthogonal to global
Uð1ÞY hypercharge] of the scalar sector of the THDM.

Designation

HF symmetry

group

Maximal symmetry

group

Z2 Z2 ðZ2Þ2
Peccei-Quinn Uð1Þ Oð2Þ
SOð3Þ SOð3Þ Oð3Þ
CP1 - Z2

CP2 ðZ2Þ2 ðZ2Þ3
CP3 Oð2Þ Oð2Þ � Z2
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~r !
c2 �s2 0
s2 c2 0
0 0 1

2
64

3
75~r;

M0

0
0
M3

2
6664

3
7775;

�00 0 0 �03

0 �11 0 0
0 0 �11 0

�03 0 0 �33

2
6664

3
7775; (113)

and SOð3Þ implies

~r ! O~r;

M0

0
0
0

2
6664

3
7775;

�00 0 0 0
0 �11 0 0
0 0 �11 0
0 0 0 �11

2
6664

3
7775; (114)

where O is an arbitrary 3� 3 orthogonal matrix of unit determinant. In the language of bilinears, a basis-invariant
condition for the presence of SOð3Þ is that the three eigenvalues of ~� are equal. (Recall that ~� ¼ f�ijg; i, j ¼ 1, 2, 3.)

As for the GCP symmetries, CP1 implies

~r !
r1
�r2
r3

2
64

3
75;

M0

M1

0
M3

2
6664

3
7775;

�00 �01 0 �03

�01 �11 0 �13

0 0 �22 0
�03 �13 0 �33

2
6664

3
7775; (115)

CP2 implies

~r !
�r1
�r2
�r3

2
64

3
75;

M0

0
0
0

2
6664

3
7775;

�00 0 0 0
0 �11 �12 �13

0 �12 �22 �23

0 �13 �23 �33

2
6664

3
7775; (116)

and CP3 implies

~r !
c2 0 s2
0 �1 0

�s2 0 c2

2
64

3
75~r;

M0

0
0
0

2
6664

3
7775;

�00 0 0 0
0 �11 0 0
0 0 �22 0
0 0 0 �11

2
6664

3
7775: (117)

Notice that inCP3 two of the eigenvalues of� are equal, in
accordance with our observation that D can be used to
distinguish between CP2 and CP3.

Because each unitary transformation on the fields �a

induces an SOð3Þ transformation on the vector of bilinears
~r, and because the standardCP transformation corresponds
to an inversion of r2 (a Z2 transformation on the vector ~r),
Ivanov [3] considers all possible proper and improper
transformations of Oð3Þ acting on ~r. He identifies the
following six classes of transformations: (i) Z2; (ii) ðZ2Þ2;
(iii) ðZ2Þ3; (iv) Oð2Þ; (v) Oð2Þ � Z2; and (vi) Oð3Þ. Note
that these symmetries are all orthogonal to the global
Uð1ÞY hypercharge symmetry, as the bilinears r0 and ~r
are all singlets under a Uð1ÞY transformation. The six
classes above identified by Ivanov correspond precisely
to the six possible maximal symmetry groups identified
in Table II. No other independent symmetry transforma-
tions are possible.

Our work permits one to identify the abstract transfor-
mation of field bilinears utilized by Ivanov in terms of
transformations on the scalar fields themselves, as needed
for model building. Combining our work with Ivanov’s, we
conclude that there is only one new type of symmetry

requirement that one can place on the Higgs potential via
multiple symmetries. Combining this with our earlier re-
sults, we conclude that all possible symmetries on the
scalar sector of the THDM can be reduced to multiple
HF symmetries, with the exception of the standard CP
transformation (CP1).

VI. BUILDING ALL SYMMETRIES WITH THE
STANDARD CP

We have seen that there are only six independent sym-
metry requirements, listed in Table II, that one can impose
on the Higgs potential. We have shown that all possible
symmetries of the scalar sector of the THDM can be
reduced to multiple HF symmetries, with the exception
of the standard CP transformation (CP1). Now we wish to
show a dramatic result: all possible symmetries on the
scalar sector of the THDM can be reduced to multiple
applications of the standard CP symmetry.
Using Eq. (79), we see that the basis transformation of

Eq. (15), changes the standard CP symmetry of Eq. (69)
into the GCP symmetry of Eq. (70), with

X ¼ UU>: (118)
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In particular, an orthogonal basis transformation does not
affect the form of the standard CP transformation. Since
we wish to generate X � 1, we will need complex matrices
U.

Now we wish to consider the following situation: We
have a basis (call it the original basis) and impose the
standard CP symmetry CP1 on that original basis. Next
we consider the same model in a different basis (call it M)
and impose the standard CP symmetry on that basis M. In
general, this procedure of imposing the standard CP sym-
metry in the original basis and also in the rotated basis M
leads to two independent impositions. The first imposition
makes all parameters real in the original basis. One way to
combine the second imposition with the first is to consider
the basis transformation UM taking us from basis M into
the original basis. As we have seen, the standard CP
symmetry in basis M turns, when written in the original
basis, into a symmetry under

�CP
a ¼ ðXMÞa���

�; �yCP
a ¼ ðXMÞ�a�ð�y

�Þ�; (119)

with XM ¼ UMU
>
M. Next we consider several such

possibilities.
We start with

UA ¼ c
=4 �is
=4
�is
=4 c
=4

� �
; XA ¼ 0 �i

�i 0

� �
:

(120)

Here and henceforth c (s) with a subindex indicates the
cosine (sine) of the angle given in the subindex. We denote
by CP1A the imposition of the CP symmetry in Eq. (119)
with XM ¼ XA (which coincides with the imposition of the
standard CP symmetry in the basis M ¼ A).

Next we consider

UB ¼ e�i
=4 0
0 ei
=4

 !
; XB ¼ �i 0

0 i

� �
: (121)

We denote by CP1B the imposition of the CP symmetry in
Eq. (119) with XM ¼ XB (which coincides with the impo-
sition of the standard CP symmetry in the basis M ¼ B).

A third possible choice is

UC ¼ ei�=2 0
0 e�i�=2

 !
; XC ¼ ei� 0

0 e�i�

� �
; (122)

where � � n
=2 with n integer. We denote by CP1C the
imposition of the CP symmetry in Eq. (119) with XM ¼
XC (which coincides with the imposition of the standard
CP symmetry in the basis M ¼ C).
Finally, we consider

UD ¼ c�=2 is�=2
is�=2 c�=2

� �
; XD ¼ c� is�

is� c�

� �
; (123)

where � � n
=2 with n integer. We denote by CP1D the
imposition of the CP symmetry in Eq. (119) with XM ¼
XD (which coincides with the imposition of the standard
CP symmetry in the basis M ¼ D).
The impact of the first three symmetries on the coeffi-

cients of the Higgs potential are summarized in Table III.
Imposing CP1D on the Higgs potential leads to the more

complicated set of equations

2 Imðm2
12Þc� þ ðm2

22 �m2
11Þs� ¼ 0;

2 Imð�6 � �7Þc2� þ �12345s2� ¼ 0;

2 Imð�6 þ �7Þc� þ ð�1 � �2Þs� ¼ 0;

Im�5c� þ Reð�6 � �7Þs� ¼ 0;

(124)

where

�12345 ¼ 1

2
ð�1 þ �2Þ � �3 � �4 þ Re�5: (125)

Combining these results with those in Table I, we have
shown that

CP1 � CP1B ¼ Z2 in some specific basis;

CP1 � CP1C ¼ Uð1Þ;
CP1 � CP1A � CP1B ¼ CP2 in some specific basis;

CP1 � CP1A � CP1C ¼ CP3 in some specific basis;

CP1 � CP1C � CP1D ¼ SOð3Þ: (126)

Let us comment on the ‘‘specific basis choices’’ needed.
Imposing CP1 � CP1B leads to m2

12 ¼ �6 ¼ �7 ¼ 0 and
Im�5 ¼ 0, while imposing Z2 leads tom

2
12 ¼ �6 ¼ �7 ¼ 0

with no restriction on �5. However, when Z2 holds, one
may rephase �2 by the exponential of �i argð�5Þ=2, thus
making �5 real. In this basis, the restrictions of Z2 coincide
with the restrictions of CP1 � CP1B. Similarly, imposing
CP1 � CP1A � CP1C leads to m2

12 ¼ �5 ¼ �6 ¼ �7 ¼ 0,

TABLE III. Impact of the CP1M symmetries on the coefficients of the Higgs potential. The
notation ‘‘imag’’ means that the corresponding entry is purely imaginary. CP1 in the original
basis has been included for reference.

Symmetry m2
11 m2

22 m2
12 �1 �2 �3 �4 �5 �6 �7

CP1 real real real real

CP1A m2
11 �1 �6

CP1B imag real imag imag

CP1C jm2
12jei� j�5je2i� j�6jei� j�7jei�
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m2
22 ¼ m2

11, and �2 ¼ �1. We see from Table I that CP3
has these features, except that �5 need not vanish; it is real
and Re�5 ¼ �1 � �3 � �4. Starting from the CP3 condi-
tions and using the transformation rules in Eqs. (A13)–
(A23) of Davidson and Haber [8], we find that a basis
choice is possible such thatRe�5 ¼ 0.10 Perhaps it is easier
to prove the equality

CP1 � CP1B � CP1D ¼ CP3 in some specific basis:

(127)

In this case, the only difference between the impositions
from the two sides of the equality come from the sign of
Re�5, which is trivial to flip through the basis change
�2 ! ��2. Finally, imposing CP1 � CP1A � CP1B we
obtain m2

12 ¼ Im�5 ¼ �6 ¼ �7 ¼ 0, m2
22 ¼ m2

11, and
�2 ¼ �1. This does not coincide with the conditions of
CP2, which lead to the ERPS of Eq. (33). Fortunately, and
as we mentioned before, Davidson and Haber [8] proved
that one may make a further basis transformation such that
Eq. (34) holds, thus coinciding with the conditions im-
posed by CP1 � CP1A � CP1B.

Notice that our description of CP2 in terms of several
CP1 symmetries is in agreement with the results found by
the authors of Ref. [15]. These authors also showed a very
interesting result, concerning spontaneous symmetry
breaking in 2HDM models possessing a CP2 symmetry.
Namely, they prove (their Theorem 4) that electroweak
symmetry breaking will necessarily spontaneously break
CP2. However, they also show that the vacuumwill respect
at least one of the CP1 symmetries, which compose CP2.
Which is to say, in a model that has a CP2 symmetry,
spontaneous symmetry breaking necessarily respect the
CP1 symmetry.

In summary, we have proved that all possible symme-
tries on the scalar sector of the THDM, including Higgs
family symmetries, can be reduced to multiple applications
of the standard CP symmetry.

VII. CONCLUSIONS

We have studied the application of generalized CP
symmetries to the THDM, and found that there are only

two independent classes (CP2 and CP3), in addition to the
standardCP symmetry (CP1). These two classes lead to an
exceptional region of parameter, which exhibits either a Z2

discrete symmetry or a larger Uð1Þ-Peccei-Quinn symme-
try. We have succeeded in identifying a basis-independent
invariant quantity that can distinguish between the Z2 and
Uð1Þ symmetries. In particular, such an invariant is re-
quired in order to distinguish between CP2 and CP3, and
completes the description of all symmetries in the THDM
in terms of basis-invariant quantities. Moreover, CP2 and
CP3 can be obtained by combining two Higgs family
symmetries and that this is not possible for CP1.
We have shown that all symmetries of the THDM pre-

viously identified by Ivanov [3] can be achieved through
simple symmetries, with the exception of SOð3Þ. However,
the SOð3Þ Higgs family symmetry can be achieved by
imposing a Uð1Þ-Peccei-Quinn symmetry and the CP3
symmetry in the same basis. Finally, we have demonstrated
that all possible symmetries of the scalar sector of the
THDM can be reduced to multiple applications of the
standard CP symmetry. Our complete description of the
symmetries on the scalar fields can be combined with
symmetries in the quark and lepton sectors, to aid in model
building.
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