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The form factors of the semileptonic Bc ! SðAVÞ‘� (‘ ¼ �, �, e) transitions, where S and AV denote

the scalar Xc0 and axial-vector ðXc1; hcÞ mesons, are calculated within the framework of the three-point

QCD sum rules. The heavy quark effective theory limit of the form factors is also obtained and compared

with the values of the original transition form factors. The results of form factors are used to estimate the

total decay widths and branching ratios of these transitions. A comparison of our results on branching

ratios with the predictions of other approaches is also presented.
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I. INTRODUCTION

The Bc meson is the only known meson composed of
two heavy quarks of different flavor and charge; a charm
quark and a bottom antiquark. It was discovered by the
collider detector at Fermilab (CDF Collaboration) in p �p
collision via the decay mode Bc ! J=c l�� at

ffiffiffi
s

p ¼ 1,
8 TeV [1]. Discovery of the Bc meson has demonstrated the
possibility of the experimental study of the charm-beauty
system and has created considerable interest in its spec-
troscopy [2–6]. When the Large Hadron Collider (LHC)
runs, an abundant number of Bc mesons, which are ex-
pected to be about 108 � 1010 per year with the luminosity
values of L ¼ 1034 cm�2 s�1 and

ffiffiffi
s

p ¼ 14 TeV, will be
produced [7,8]. Therefore, not only experimental but also
theoretical study on Bc mesons will be of great interest in
many respects.

Among the B mesons, the Bc carries a distinctive sig-
nature and has attracted great interest recently for the
following reasons: First, the Bc meson decay channels
are expected to be very rich in comparison with other B
mesons, so investigation of such types of decays can be
used in the calculation of the Cabibbo-Kabayashi-
Maskawa (CKM) matrix elements, leptonic decay con-
stant, as well as the origin of the CP and T violation.
Second, the Bc meson, because it contains the heavy
quarks, provides more accuracy and confidence in the
understanding of the QCD dynamics.

The Bc meson can decay via the b ! u, d, s, c and also
the c ! u, d, s transitions. Among those transitions at
quark level, the tree-level b ! c transition, governing the
Bc to P-wave charmonia, plays a significant role, because
this is the most dominant transition. In the literature, there
are several studies on the Bc mesons in different models.
Some possible Bc meson decays such as Bc ! l ���, Bc !
�þ�, Bc ! K�þ� and Bc ! B�

ul
þl�, Bc ! B�

u�, B
�
c !

D�0‘�, Bc ! PðD;DsÞlþl�=� ��, Bc ! D�
s;dl

þl�, Bc !
X� �� and Bc ! D�

s� have been studied in the frame of
light-cone QCD and three-point QCD sum rules [9–17].
The weak productions of new charmonium in semileptonic
decays of Bc were also studied in the framework of light-
cone QCD sum rules in [18]. In [19], a larger set of
exclusive nonleptonic and semileptonic decays of the Bc

meson were investigated in the relativistic constituent
quark model. Weak decays of the Bc meson to charmonium
and D mesons in the relativistic quark model have been
discussed in [20,21]. Moreover, the Bc ! ðD�; D�

sÞ� ��
transitions were also studied within the relativistic con-
stituent quark model in [22].
Present work is devoted to the study of the Bc !

SðAVÞ‘�. The long-distance dynamics of such transitions
can be parametrized in terms of some form factors, which
play a fundamental role in analyzing such transitions. For
evaluation of the form factors, the QCD sum rules as a
nonperturbative approach based on the fundamental QCD
Lagrangian is used. The obtained results for the form
factors are used to estimate the total decay rate and branch-
ing fractions for the related transitions. The heavy quark
effective theory (HQET) limit of the form factors is also
calculated and compared with their values. In these tran-
sitions, the main contribution comes from the perturbative
part since the heavy quark condensates are suppressed by
the inverse of the heavy quark masses and can be safely
omitted and two-gluon condensate contributions are very
small and we will ignore them. Note that the Bc to P-wave
charmonia transitions have also been investigated in the
framework of the covariant light-front quark model
(CLQM), the renormalization group method (RGM), rela-
tivistic constituent quark model (RCQM), and nonrelativ-
istic constituent quark model (NRCQM) in [23–27]. For
more about those transitions see also [28–35].
The outline of the paper is as follows: In Sec. II, the

same rules for the transition form factors relevant to the
Bc ! SðAVÞ‘� decays are obtained. Section III encom-
passes the calculation of the HQET limit of the form
factors and, Sec. IV is devoted to the numerical analysis
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of the form factors and their HQET limits, decay rates,
branching ratios, conclusion and comparison of our results
with the other approaches.

II. SUM RULES FOR THE Bc ! SðAVÞ‘�
TRANSITION FORM FACTORS

The Bc ! Xc0ðXc1; hcÞ‘� decays proceed via the b ! c
transition at the quark level. The effective Hamiltonian
responsible for these transitions can be written as

Heff ¼ GFffiffiffi
2

p Vcb ����ð1� �5Þl �c��ð1� �5Þb: (1)

We need to sandwich Eq. (1) between initial and final
meson states in order to obtain the matrix elements of
Bc ! SðAVÞ‘�. Hence, the amplitude of this decay is
written as follows:

M ¼ GFffiffiffi
2

p Vcb ����ð1� �5ÞlhSðAVÞðp0Þ

� j �c��ð1� �5ÞbjBcðpÞi: (2)

It is necessary to calculate the matrix elements hSðAVÞ�
ðp0Þ j �c��ð1� �5Þb j BcðpÞi appearing in Eq. (2). In the S
case in the final state, the only axial-vector part of the
transition current, �c��ð1� �5Þb, can contribute to the

matrix element stated above. However, in the AV case,
both vector and axial-vector parts have contributions.
Considering the parity and Lorentz invariances, the afore-
mentioned matrix element can be parametrized in terms of
the form factors in the following way:

hSðp0Þj �c���5bjBcðpÞi ¼ f1ðq2ÞP� þ f2ðq2Þq�; (3)

hAVðp0; "Þj �c���5bjBcðpÞi

¼ i
fVðq2Þ

ðmBc
þmXc1

Þ"����"
��p�p0�; (4)

hAVðp0; "Þj �c��bjBcðpÞi

¼ i

�
f0ðq2ÞðmBc

þmXc1
Þ"�� � fþðq2Þ

ðmBc
þmXc1

Þ ð"
�pÞP�

� f�ðq2Þ
ðmBc

þmXc1
Þ ð"

�pÞq�
�
; (5)

where f1ðq2Þ, f2ðq2Þ, fVðq2Þ, f0ðq2Þ, fþðq2Þ, and f�ðq2Þ
are transition form factors and P� ¼ ðpþ p0Þ�, q� ¼
ðp� p0Þ�.

From the general philosophy of the QCD sum rules, we
see a hadron from two different windows. First, we see it

from the outside, so we have a hadron with hadronic
parameters such as its mass and leptonic decay constant.
Second, we see the internal structure of the hadron,
namely, quarks and gluons and their interactions in a
QCD vacuum. In technical language, we start with the
main object in QCD sum rules called the correlation func-
tion. The correlation function is calculated in two different
ways: From one side, it is saturated by a tower of hadrons
called the phenomenological or physical side. On the other
hand, in the QCD or theoretical side, it is calculated in
terms of quark and gluons interacting in a QCD vacuum
with the help of the operator product expansion (OPE),
where the short- and long-distance effects are separated.
The former is calculated using the perturbation theory
(perturbative contribution); however, the latter is parame-
trized in terms of vacuum condensates with different mass
dimensions. In the present work there are no light quarks,
and the heavy quark condensate contributions are sup-
pressed by the inverse of the heavy quark mass and can
be safely removed. The two-gluon contributions are also
very small, and here we will ignore those contributions.
Hence, the only contribution comes from the perturbative
part. Equating two representations of the correlation func-
tion and applying double Borel transformation with respect
to the momentum of the initial and final states to suppress
the contribution of the higher states and continuum, sum
rules for the physical quantities, form factors, are obtained.
To proceed, we consider the following correlation func-
tions:

��ðp2; p02Þ ¼ i2
Z

d4xd4ye�ipxeip
0yh0jT

� ½JSðyÞJV;A� ð0ÞJBc
ðxÞ�j0i; (6)

���ðp2; p02Þ ¼ i2
Z

d4xd4ye�ipxeip
0yh0jT

� ½J�AVðyÞJV;A� ð0ÞJBc
ðxÞ�j0i; (7)

where JSðyÞ ¼ �cUc, J�AVðyÞ ¼ �c���5c, JBc
ðxÞ ¼ �b�5c

are the interpolating currents of the S, AV, and Bc mesons,
respectively, and JV�ð0Þ ¼ �c��b, JA� ¼ �c���5b are the

vector and axial-vector parts of the transition current. In
order to calculate the phenomenological or physical part of
the correlator given in Eq. (6), two complete sets of inter-
mediate states with the same quantum numbers as the
interpolating currents JSðAVÞ and JBc

are inserted. As a

result, the following representations of the above-
mentioned correlators are obtained:

��ðp2; p02Þ ¼ h0jJSð0ÞjSðp0ÞihSðp0ÞjJV;A� ð0ÞjBcðpÞihBcðpÞjJBc
ð0Þj0i

ðp02 �m2
SÞðp2 �m2

Bc
Þ þ � � � ; (8)
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���ðp2; p02Þ ¼ h0jJ�AVð0ÞjAVðp0; "ÞihAVðp0; "ÞjJV;A� ð0ÞjBcðpÞihBcðpÞjJBc
ð0Þj0i

ðp02 �m2
AVÞðp2 �m2

Bc
Þ þ � � � ; (9)

where � � � represents the contributions coming from higher states and the continuum. The vacuum to the hadronic state
matrix elements in Eq. (8) can be parametrized in terms of the leptonic decay constants as

h0jJSjSðp0Þi ¼ �ifS; hBcðpÞjJBc
j0i ¼ �i

fBc
m2

Bc

mb þmc

; h0jJ�AVjAVðp0; "Þi ¼ fAVmAV"
�: (10)

Using Eqs. (3)–(10), the final expressions of the phenomenological side of the correlation functions are obtained as

��ðp2; p02Þ ¼ � fS
ðp02 �m2

SÞðp2 �m2
Bc
Þ

fBc
m2

Bc

mb þmc

½f1ðq2ÞP� þ f2ðq2Þq�� þ excited states;

���ðp2; p02Þ ¼ fBc
m2

Bc

ðmb þmcÞ
fAVmAV

ðp02 �m2
AVÞðp2 �m2

Bc
Þ
�
f0ðq2Þg��ðmBc

þmAVÞ �
fþðq2ÞP�p�

ðmBc
þmAVÞ �

f�ðq2Þq�p�

ðmBc
þmAVÞ

þ "����p
�p0� fVðq2Þ

ðmBc
þmAVÞ

�
þ excited states; (11)

where we will choose the structures P�, q�, "����p
0�p�,

g�� and 1
2 ðp�p� � p0

�p�Þ to evaluate the form factors f1,
f2, fV , f0 and f�, respectively.

On the QCD side, the aforementioned correlation func-
tions can be calculated with the help of the OPE in the deep
spacelike region where p2 � ðmb þmcÞ2 and p02 �
ð2mcÞ2. As we mentioned before, the main contributions
to the theoretical part of the correlation functions come
from bare-loop (perturbative) diagrams. To calculate those
contributions, the correlation functions are written in terms
of the selected structures as follows:

�� ¼ �per
1 P� þ�per

2 q�;

��� ¼ �per
V "����p

0�p� þ�per
0 g��

þ 1

2
�

per
þ ðp�p� þ p0

�p�Þ

þ 1

2
�per� ðp�p� � p0

�p�Þ;

(12)

where each �per
i function is written in terms of the double

dispersion representation in the following way:

�
per
i ¼ � 1

ð2�Þ2
Z

ds
Z

ds0
�iðs; s0; q2Þ

ðs� p2Þðs0 � p02Þ
þ subtraction terms; (13)

where the functions �iðs; s0; q2Þ are called the spectral
densities. Using the usual Feynman integral for the bare-
loop diagram, the spectral densities can be calculated with
the help of Cutkosky rules, i.e., by replacing the quark
propagators with Dirac delta functions: 1

p2�m2 !
�2�	ðp2 �m2Þ, which implies that all quarks are real.
After some straightforward calculations, the spectral den-
sities are obtained as follows:

�1ðs; s0; q2Þ ¼ NcI0ðs; s0; q2Þ½2ðmb � 3mcÞmc þ 2Af2ðmb �mcÞmc � sg þ 2Bf2ðmb �mcÞmc � s0g�;
�2ðs; s0; q2Þ ¼ NcI0ðs; s0; q2Þ½�2ðmb þmcÞmc þ 2Af2ðmb �mcÞmc þ sg � 2Bf2ðmb �mcÞmc þ s0g�;
�Vðs; s0; q2Þ ¼ 4NcI0ðs; s0; q2Þ½ðmc �mbÞAþ 2mcBþmc�;
�0ðs; s0; q2Þ ¼ 2NcI0ðs; s0; q2Þ½4ðm2

c � CÞðmc �mbÞ þmcuþ fmcð4sþ uÞ �mbugAþ 2½�mbs
0 þmcðs0 þ uÞ�B�;

�þðs; s0; q2Þ ¼ 2NcI0ðs; s0; q2Þ½�mc þ ðmb � 3mcÞA� 2mcBþ 2ðmb �mcÞDþ 2ðmb �mcÞE�;
��ðs; s0; q2Þ ¼ 2NcI0ðs; s0; q2Þ½mc � ðmc þmbÞAþ 2mcBþ 2ðmb �mcÞDþ 2ðmc �mbÞE�;

(14)
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where

I0ðs; s0; q2Þ ¼ 1

4
1=2ðs; s0; q2Þ ;


ða; b; cÞ ¼ a2 þ b2 þ c2 � 2ac� 2bc� 2ab;

� ¼ m2
b �m2

c � s;

�0 ¼ �s0;

u ¼ sþ s0 � q2;

A ¼ 1


ðs; s0; q2Þ ð�
0u� 2�s0Þ;

B ¼ 1


ðs; s0; q2Þ ð�u� 2�0sÞ;

C ¼ 1

2
ðs; s0; q2Þ ½�
02sþ �2s0 � ��0u

þm2
cð�4ss0 þ u2Þ�;

D ¼ 1


ðs; s0; q2Þ2 ½�6��0s0uþ �02ð2ss0 þ u2Þ

þ 2s0ð3�2s0 þm2
cð�4ss0 þ u2ÞÞ�;

E ¼ 1


ðs; s0; q2Þ2 ½�3�2s0uþ 2��0ð2ss0 þ u2Þ

� uð3�02sþm2
cð�4ss0 þ u2ÞÞ�; (15)

and Nc ¼ 3 is the number of colors. The integration region
for the perturbative contribution in Eq. (13) is determined
requiring that the arguments of the three 	 functions vanish
simultaneously. Therefore, the physical region in the s and
s0 plane is described by the following nonequality:

�1 	 fðs; s0Þ ¼ 2ss0 þ ðsþ s0 � q2Þðm2
b � s�m2

cÞ

1=2ðm2

b; s; m
2
cÞ
1=2ðs; s0; q2Þ

	 þ1: (16)

Equating the coefficient of the selected structures from
the phenomenological and the OPE expressions and apply-
ing double Borel transformations with respect to the vari-
ables p2 and p02 (p2 ! M2

1, p
02 ! M2

2) in order to suppress
the contributions of the higher states and continuum, the
QCD sum rules for the form factors f1ðq2Þ and f2ðq2Þ for
the Bc ! Xc0‘� decay can be acquired:

f1;2ðq2Þ ¼ ðmb þmcÞ
fBc

m2
Bc

1

fXc0

em
2
Bc
=M2

1e
m2

Xc0
=M2

2

�
�

1

ð2�Þ2
Z s0

ðmbþmcÞ2
ds

Z s0
0

ð2mcÞ2
ds0�1;2ðs; s0; q2Þ

� �½1� f2ðs; s0Þ�e�s=M2
1e�s0=M2

2

�
: (17)

The form factors fV , f0, fþ, and f� for Bc ! AV‘�
decays are also obtained as

fiðq2Þ ¼ �
ðmb þmcÞ
fBc

m2
Bc




fAVmAV

em
2
Bc
=M2

1
þm2

AV
=M2

2

�
�

1

ð2�Þ2
Z s0

0

4m2
c

ds0
Z s0

ðmbþmcÞ2
ds�iðs; s0; q2Þ

� �½1� f2ðs; s0Þ�e�s=M2
1
�s0=M2

2

�
; (18)

where i ¼ V, 0,�, and 
 ¼ mBc
þmAV for i ¼ V,� and


 ¼ 1
mBcþmAV

for i ¼ 0 are considered. Here � ¼ þ1 for

i ¼ � and � ¼ �1 for i ¼ 0 and V. In the above equa-
tions, the s0 and s00 are continuum thresholds in s and s0
channels, respectively.
In order to subtract the contributions of the higher states

and continuum, the quark-hadron duality assumption is
used, i.e., it is assumed that

�higher statesðs; s0Þ ¼ �OPEðs; s0Þ�ðs� s0Þ�ðs0 � s00Þ: (19)

Note that the double Borel transformation used in cal-
culations is written as

B̂
1

ðp2 �m2
1Þm

1

ðp02 �m2
2Þn

! ð�1Þmþn 1

�ðmÞ
1

�ðnÞ e
�m2

1=M
2
1e�m2

2=M
2
2

1

ðM2
1Þm�1ðM2

2Þn�1
:

(20)

Now, we would like to explain our reason for ignoring the
contributions of the gluon condensates to the QCD side of
the correlation function. These contributions for the related
form factors are obtained as the following orders:

fhG
2i

1;2 �
�
�s

�
G2

�
mn1

b mm1
c

M2k1
1 M2l1

2

; n1 þm1 ¼ 2k1 þ 2l1;

fhG
2i

V;þ;� �
�
�s

�
G2

�
mn2

b mm2
c

M2k2
1 M2l2

2

; n2 þm2 ¼ 2k2 þ 2l2 � 1;

fhG
2i

0 �
�
�s

�
G2

�
m

n3
b m

m3
c

M
2k3
1 M

2l3
2

; n3 þm3 ¼ 2k3 þ 2l3 þ 1;

(21)

where �s is the strong coupling constant and M2
1 and M2

2

are Borel mass parameters. Recalling the magnitude of the
h�s

� G2i ¼ 0:012 GeV4 [36] and considering the working

region of the Borel parameters (see numerical analysis
section), the gluon condensate contributions become very
small, and here we ignore those small contributions (maxi-

mum contribution is obtained for fhG
2i

0 , which is not more

than few percent).
At the end of this section, we would like to present the

differential decay rates of the Bc ! SðAVÞ‘� in terms of
the transition form factors. The differential decay width for
Bc ! S‘� is obtained as follows:
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d�

dq2
¼ 1

192�3m3
Bc

G2
FjVcbj2
1=2ðm2

Bc
; m2

S; q
2Þ
�
q2 �m2

‘

q2

	
2
�
� 1

2
ð2q2 þm2

‘Þ½jf1ðq2Þj2ð2m2
Bc

þ 2m2
S � q2Þ

þ 2ðm2
Bc

�m2
SÞRe½f1ðq2Þf�2ðq2Þ� þ jf2ðq2Þj2q2� þ ðq2 þm2

‘Þ
q2

½jf1ðq2Þj2ðm2
Bc

�m2
SÞ2 þ 2ðm2

Bc
�m2

SÞq2

� Re½f1ðq2Þf�2ðq2Þ� þ jf2ðq2Þj2q4�
�
; (22)

and also the differential decay width corresponding to Bc ! AV‘� decays are acquired as

d�

dq2
¼ 1

16�4m2
Bc

j ~p0jG2
FjVcbj2

�
4fð2A1 þ A2q

2Þ½jfV j2ð4m2
Bc
j ~p0j2Þ þ jf0j2�g

þ
�
ð2A1 þ A2q

2Þ
�
jfV j2

�
4m2

Bc
j ~p0j2 þm2

Bc

~jp0j2
m2

AV

ðm2
Bc

�m2
AV � q2Þ

	
þ jf0j2

� jfþj2
m2

Bc
j ~p0j2

m2
AV

ð2m2
Bc

þ 2m2
AV � q2Þ � jf�j2

m2
Bc
j ~p0j2

m2
AV

q2

� 2
m2

Bc
j ~p0j2

m2
AV

ðReðf00fþ þ f00f� þ ðm2
Bc

�m2
AVÞfþf�ÞÞ

�

� 2A2

m2
Bc
j ~p0j2

m2
AV

�
jf0j2 þ ðm2

Bc
�m2

AVÞ2jfþj2 þ q4jf�j2 þ 2ðm2
Bc

�m2
AVÞReðf0fþÞ þ 2q2f0f�

þ 2q2ðm2
Bc

�m2
AVÞReðfþf�Þ

��	
; (23)

where

jp0j ¼ 
1=2ðm2
Bc
; m2

AV; q
2Þ

2mBc

; A1 ¼ 1

12q2
ðq2 �m2

l Þ2I00;

A2 ¼ 1

6q4
ðq2 �m2

l Þðq2 þ 2m2
l ÞI00; I00 ¼

�

2

�
1�m2

l

q2

	
:

(24)

III. HEAVY QUARK EFFECTIVE THEORY LIMIT
OF THE FORM FACTORS

In this section, we calculate the heavy quark effective
theory (HQET) limits of the transition form factors for
Bc ! SðAVÞ‘�. For this aim, following Refs. [37–40],
we use the parametrization

y ¼ ��0 ¼ m2
Bc

þm2
SðAVÞ � q2

2mBc
mSðAVÞ

; (25)

where � and �0 are the four-velocities of the initial and final
meson states, respectively. Next, we try to find the y
dependent expressions of the form factors by taking mb !
1, mc ¼ mbffiffi

z
p , where z is given by

ffiffiffi
z

p ¼ yþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � 1

p
. In

this limit, the new Borel parameters T1 ¼ M2
1=2ðmb þmcÞ

and T2 ¼ M2
2=4mc are defined. The new continuum thresh-

olds �0, and �0
0 are also parametrized as

�0 ¼ s0 � ðmb þmcÞ2
mb þmc

; �0
0 ¼

s00 � 4m2
c

2mc

; (26)

and the new integration variables take the following form:

� ¼ s� ðmb þmcÞ2
mb þmc

; �0 ¼ s0 � 4m2
c

2mc

: (27)

The leptonic decay constants are rescaled:

f̂ Bc
¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mb þmc

p
fBc

; f̂SðAVÞ ¼
ffiffiffiffiffiffiffiffiffi
2mc

p
fSðAVÞ: (28)

To evaluate the form factors in HQET, we also need to
redefine the form factors in the following form:

f01;2 ¼
f1;2

ðmBc
þmSÞ2

f0V;0;þ;� ¼ fV;0;þ;�
mBc

þmAV

: (29)

After standard calculations, we obtain the y-dependent
expressions of the form factors for Bc ! S‘� transition as
follows:
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f01 ¼
3ð�1þ y2Þ½3þ zþ yð�3� 2

ffiffiffi
z

p þ zÞ�
8

ffiffiffi
2

p
�2f̂Sf̂Bc

z13=4ð1þ yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

z
p

q �
ð�1þy2Þð1þ ffiffi

z
p Þ2

z2

�
3=2

� eðð�=T1Þþð ��=T2ÞÞ
�Z �0

0
d�

Z �0
0

0
d�0e�ð�=ð2T1ÞÞ�ð�0=ð2T2ÞÞ�½1� lim

mb!1f
2ðv; v0Þ�

�
; (30)

f02 ¼
�3ð�1þ y2Þ½�1þ yð1þ ffiffiffi

z
p Þ2 þ 4

ffiffiffi
z

p þ zÞ�
8

ffiffiffi
2

p
�2f̂Sf̂Bc

z13=4ð1þ yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

z
p

q
½ð�1þy2Þð1þ ffiffi

z
p Þ2

z2
�3=2

� eðð�=T1Þþð ��=T2ÞÞ
�Z �0

0
d�

Z �0
0

0
d�0e�ð�=ð2T1ÞÞ�ð�0=ð2T2ÞÞ�½1� lim

mb!1f
2ðv; v0Þ�

�
; (31)

and for Bc ! AV‘� decay, the y-dependent expressions of the form factors are acquired as

f0V ¼ 3ð3þ ffiffiffi
z

p Þ½�1þ yþ ffiffiffi
z

p þ y
ffiffiffi
z

p �
8

ffiffiffi
2

p
�2f̂AVf̂Bc

z5=4ð1þ yÞð1þ ffiffiffi
z

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

z
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1þy2Þð1þ ffiffi
z

p Þ2
z2

q

� eðð�=T1Þþð ��=T2ÞÞ
�Z �0

0
d�

Z �0
0

0
d�0e�ð�=ð2T1ÞÞ�ð�0=ð2T2ÞÞ�½1� lim

mb!1f
2ðv; v0Þ�

�
; (32)

f00 ¼
3ð�1þ yÞ½1þ 2yð1þ ffiffiffi

z
p Þ þ 3

ffiffiffi
z

p �
8

ffiffiffi
2

p
�2f̂AVf̂Bc

z5=4ð1þ yÞð3þ ffiffiffi
z

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

z
p

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1þy2Þð1þ ffiffi

z
p Þ2

z2

q

� eðð�=T1Þþð ��=T2ÞÞ
�Z �0

0
d�

Z �0
0

0
d�0e�ð�=ð2T1ÞÞ�ð�0=ð2T2ÞÞ�½1� lim

mb!1f
2ðv; v0Þ�

�
; (33)

f0þ ¼ 3ð�1þ y2Þð3þ ffiffiffi
z

p Þ½2þ 2y2ð1þ ffiffiffi
z

p Þ2 þ 5yð�1þ zÞ � 10
ffiffiffi
z

p �
32

ffiffiffi
2

p
�2f̂AVf̂Bc

z13=4ð1þ yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

z
p

q
½ð�1þy2Þð1þ ffiffi

z
p Þ2

z2
�3=2

� eðð�=T1Þþð ��=T2ÞÞ
�Z �0

0
d�

Z �0
0

0
d�0e�ð�=ð2T1ÞÞ�ð�0=ð2T2ÞÞ�½1� lim

mb!1f
2ðv; v0Þ�

�
; (34)

f0� ¼ �3ð�1þ y2Þð3þ ffiffiffi
z

p Þ½�2þ 2y2ð1þ ffiffiffi
z

p Þ2 þ yð3þ 8
ffiffiffi
z

p þ 5zÞ þ 10
ffiffiffi
z

p �
32

ffiffiffi
2

p
�2f̂AVf̂Bc

z13=4ð1þ yÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1ffiffi

z
p

q
½ð�1þy2Þð1þ ffiffi

z
p Þ2

z2
�3=2

� eðð�=T1Þþð ��=T2ÞÞ
�Z �0

0
d�

Z �0
0

0
d�0e�ð�=ð2T1ÞÞ�ð�0=ð2T2ÞÞ�½1� lim

mb!1f
2ðv; v0Þ�

�
; (35)

where � ¼ mBc
� ðmb þmcÞ and �� ¼ mSðAVÞ � 2mc.

IV. NUMERICAL ANALYSIS

This section is devoted to the numerical analysis of the
form factors, their HQET limit, and branching ratios. The
sum rules expressions for the form factors depict that they
mainly depend on the leptonic decay constants, continuum
thresholds s0 and s00, and Borel parameters M2

1 and M2
2. In

calculations, the quark masses are taken to be mcð� ¼
mcÞ ¼ 1:275� 0:015 GeV, mb ¼ ð4:7� 0:1Þ GeV [41],
and the meson masses are chosen as mBc

¼ 6:286 GeV,

mhc ¼ 3:52528 GeV, mXc0
¼ 3:41476 GeV, mXc1

¼
3:51066 GeV [42]. For the values of the leptonic decay
constants, we use fBc

¼ ð400� 40Þ MeV and

fXc0
¼ fXc1

¼ fhc ¼ ð340þ119
�101Þ MeV[23]. The two-point

QCD sum rules are used to determine the continuum
thresholds s0 and s00. These thresholds are not completely

arbitrary and they are related to the energy of the exited
states. The result of the physical quantities, form factors,
should be stable with respect to the small variation of these
parameters. Generally, the s0 are obtained to be ðmhadron þ
0:5Þ2 [36]. Here, we use s0 ¼ ð45� 5Þ GeV2 and s00 ¼
ð16� 2Þ GeV2. Since the Borel parameters M2

1 and M2
2

are not physical quantities, the form factors should not
depend on them. The reliable regions for the Borel parame-
ters M2

1 and M2
2 can be determined by requiring that not

only the contributions of the higher states and continuum
are effectively suppressed, but the contribution of the
operator with the highest dimension be small. As a result
of the above-mentioned requirements, the working regions
are determined to be 15 GeV2 	 M2

1 	 35 GeV2 and
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10 GeV2 	 M2
2 	 20 GeV2. The numerical values of the

form factors at q2 ¼ 0 for Bc ! Xc0‘� and Bc ! AV‘�
transitions are given in the Tables I and II, respectively.

In order to estimate the decay width of the Bc !
SðAVÞ‘� transitions, we need to know the q2 dependent
form factors in the whole physical region, m2

l 	 q2 	
ðmBc

�mSðAVÞÞ2. Our form factors are truncated at about

q2 ¼ 4 GeV2. To extend our results to the full physical
region, we search for parametrization of the form factors in
such a way that in the region 0 	 q2 	 4 GeV2, this
parametrization coincides with the sum rules predictions.
The following fit parametrization is chosen for the form
factors with respect to q2:

fiðq2Þ ¼ a

ð1� q2

m2
fit

Þ
þ b

ð1� q2

m2
fit

Þ2
; (36)

where the values of the parameters a, b, and mfit for the
Bc ! Xc0‘� and Bc ! ðXc1; hcÞ‘� are given in Tables III
and IV, respectively.
To calculate the numerical values of the form factors at

HQET limit, the values of � ¼ 0:31 GeV and �� ¼
0:86 GeV (0.96 GeV) are used for Bc ! S‘� (Bc !
AV‘�) transitions, respectively (see [43,44]). In
Tables, V, VI, and VII, we compare the values of the
form factors and their HQET limits for considered transi-
tions in the interval 0 	 q2 	 7 and corresponding values
of the y. Comparing the form factors and their HQET
values in those tables, we see that all form factors and their
HQET limits have the same behavior with respect to the q2,
i.e., they both grow or fail by increasing the values of q2.
The HQET limit of the form factors is comparable with
their original values, and in large q2 those form factors and
their HQET values become very close to each other. The
results presented in Tables, VI and VII also indicate that
the form factors and their HQET limits for Bc ! Xc1‘�
and Bc ! hc‘� have values very close to each other since

TABLE III. Parameters appearing in the form factors of the
Bc ! Xc0‘� decay at M2

1 ¼ 25 GeV2 and M2
2 ¼ 15 GeV2.

a b mfit

f1ðBc ! Xc0‘�Þ 0.218 0.455 5.043

f2ðBc ! Xc0‘�Þ �0:721 �0:738 4.492

TABLE I. The values of the form factors for the Bc ! Xc0‘� decay at M2
1 ¼ 25 GeV2, M2

2 ¼
15 GeV2, and q2 ¼ 0.

f1ð0Þ f2ð0Þ
Bc ! Xc0‘� 0:673� 0:195 �1:458� 0:437

TABLE II. The values of the form factors for the Bc ! AV‘� decays at M2
1 ¼ 25 GeV2,

M2
2 ¼ 15 GeV2, and q2 ¼ 0.

f0ð0Þ fV ð0Þ fþð0Þ f�ð0Þ
Bc ! Xc1‘� 0:084� 0:025 0:949� 0:261 0:211� 0:061 �0:586� 0:179
Bc ! hc‘� 0:084� 0:025 0:954� 0:282 0:211� 0:061 �0:588� 0:181

TABLE IV. Parameters appearing in the form factors of the
Bc ! Xc1‘� and Bc ! hc‘� decays at M2

1 ¼ 25 GeV2 and

M2
2 ¼ 15 GeV2.

a b mfit

f0ðBc ! Xc1‘�Þ 0.211 �0:126 5.241

fVðBc ! Xc1‘�Þ 0.512 0.438 4.711

fþðBc ! Xc1‘�Þ 0.279 �0:068 3.872

f�ðBc ! Xc1‘�Þ �0:594 0.008 3.735

f0ðBc ! hc‘�Þ 0.211 �0:127 5.256

fVðBc ! hc‘�Þ 0.498 0.456 4.735

fþðBc ! hc‘�Þ 0.282 �0:702 3.839

f�ðBc ! hc‘�Þ �0:620 0.031 3.686

TABLE V. Values of the form factors and their HQET limits for the Bc ! Xc0‘� at M2
1 ¼ 25 GeV2, M2

2 ¼ 15 GeV2, T1 ¼
2:09 GeV, and T2 ¼ 2:94 GeV.

q2 (GeV2) 0 1 2 3 4 5 6 7

y 1.1920 1.1687 1.1454 1.1221 1.0988 1.0755 1.0522 1.0289

f1 0.6735 0.7204 0.7732 0.8326 0.9001 0.9771 1.0656 1.1680

f1ðHQETÞ 0.3423 0.3614 0.4087 0.4637 0.5483 0.6523 0.7833 0.9432

f2 �1:4594 �1:5760 �1:7102 �1:8658 �2:0480 �2:2636 �2:5218 �2:8354
f2ðHQETÞ �0:8921 �0:9432 �1:0824 �1:1841 �1:3682 �1:6112 �2:0571 �2:4633
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the Xc1 and hc mesons are both axial vectors, i.e., JP ¼ 1þ
and have nearly the same mass.

At the end of this section, we would like to calculate the
values of the branching ratios for these decays. Taking into
account the q2 dependency of the form factors and per-
forming integration over q2 from the differential decay

rates in Eqs. (22) and (23) in the interval m2
l 	 q2 	

ðmBc
�mSðAVÞÞ2 and also using the total lifetime of the

Bc meson �Bc
¼ 0:46� 0:07� 10�12 s [42], we obtain

the branching ratios of the related transitions as presented
in Table VIII. This table also contains the predictions of the
other approaches such as the covariant light-front quark

TABLE VII. Values of the form factors and their HQET limits for the Bc ! hc‘� at M2
1 ¼ 25 GeV2, M2

2 ¼ 15 GeV2, T1 ¼
2:09 GeV, and T2 ¼ 2:94 GeV.

q2 (GeV2) 0 1 2 3 4 5 6 7

y 1.1745 1.1518 1.1292 1.1065 1.0838 1.0612 1.0385 1.0159

f0 0.0842 0.0824 0.0801 0.0771 0.0733 0.0685 0.0625 0.0550

f0ðHQETÞ 0.0692 0.0683 0.0665 0.0653 0.0641 0.0629 0.0604 0.0561

fV 0.9545 1.0213 1.0970 1.1833 1.2824 1.3970 1.5310 1.6890

fVðHQETÞ 0.4781 0.5483 0.6383 0.7627 0.9061 1.0922 1.1633 1.3948

f� �0:5891 �0:6332 �0:6845 �0:7448 �0:8167 �0:9038 �1:0114 �1:1477
f�ðHQETÞ �0:2983 �0:3291 �0:3704 �0:4457 �0:5404 �0:6487 �0:7671 �1:0102
fþ 0.2117 0.2217 0.2322 0.2433 0.2547 0.2659 0.2758 0.2823

fþðHQETÞ 0.1043 0.1166 0.1314 0.1557 0.1783 0.2017 0.2163 0.2314

TABLE VI. Values of the form factors and their HQET limits for the Bc ! Xc1‘� at M2
1 ¼ 25 GeV2, M2

2 ¼ 15 GeV2, T1 ¼
2:09 GeV, and T2 ¼ 2:94 GeV.

q2 (GeV2) 0 1 2 3 4 5 6 7

y 1.1745 1.1518 1.1292 1.1065 1.0838 1.0612 1.0385 1.0159

f0 0.0841 0.0823 0.0800 0.0770 0.0732 0.0684 0.0624 0.0548

f0ðHQETÞ 0.0683 0.0675 0.0664 0.0652 0.0641 0.0628 0.0604 0.0559

fV 0.9506 1.0171 1.0925 1.1784 1.2771 1.3915 1.5252 1.6833

fVðHQETÞ 0.4739 0.5421 0.6331 0.7566 0.9054 1.0872 1.1543 1.3421

f� �0:5862 �0:6309 �0:6828 �0:7442 �0:8176 �0:9071 �1:0185 �1:1612
f�ðHQETÞ �0:2954 �0:3264 �0:3682 �0:4448 �0:5412 �0:6518 �0:7839 �1:0173
fþ 0.2108 0.2207 0.2312 0.2424 0.2539 0.2654 0.2761 0.2841

fþðHQETÞ 0.1032 0.1157 0.1302 0.1545 0.1771 0.1998 0.2152 0.2305

TABLE VIII. Branching ratios of the semileptonic Bc ! ðXc0; Xc1; hcÞ‘� (‘ ¼ e, �, �)
transitions in different approaches.

Bc ! Xc0‘� Bc ! Xc1‘� Bc ! hc‘�

Present work 0:182� 0:051 0:146� 0:042 0:142� 0:040
CLQM [23] 0:21þ0:02þ0:01

�0:04�0:01 0:14þ0:00þ0:01
�0:01�0:01 0:31þ0:05þ0:01

�0:08�0:01

RGM [24] 0.12 0.15 0.18

RCQM [25] 0.17 0.092 0.27

RCQM [26] 0.18 0.098 0.31

NRCQM [27] 0.11 0.066 0.17

Bc ! Xc0�� Bc ! Xc1�� Bc ! hc��

Present work 0:049� 0:016 0:0147� 0:0044 0:0137� 0:0038
CLQM [23] 0:024þ0:001þ0:001

�0:003�0:001 0:015þ0:000þ0:001
�0:001�0:002 0:022þ0:002þ0:000

�0:004�0:000

RGM [24] 0.017 0.024 0.025

RCQM [25] 0.013 0.0089 0.017

RCQM [26] 0.018 0.012 0.027

NRCQM [27] 0.013 0.0072 0.015
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model, renormalization group method, relativistic constitu-
ent quark model, and nonrelativistic constituent quark
model [23–27]. These results can be tested in future
experiments.

In conclusion, using the QCD sum rules approach, we
investigated the semileptonic Bc ! SðAVÞ‘� decays. The
q2 dependencies of the transition form factors were calcu-
lated. The HQET limits of the form factors were also
evaluated and compared with original form factors. The
obtained results were used to estimate the total decay

widths and branching ratios of these transitions. A com-
parison of the results for branching fractions was also
presented.
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