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We consider a simple class of models in which the relic density of dark matter is determined by the

baryon asymmetry of the Universe. In these models a B� L asymmetry generated at high temperatures is

transferred to the dark matter, which is charged under B� L. The interactions that transfer the asymmetry

decouple at temperatures above the dark matter mass, freezing in a dark matter asymmetry of order the

baryon asymmetry. This explains the observed relation between the baryon and dark matter densities for

the dark matter mass in the range 5–15 GeV. The symmetric component of the dark matter can annihilate

efficiently to light pseudoscalar Higgs particles a or via t-channel exchange of new scalar doublets. The

first possibility allows for h0 ! aa decays, while the second predicts a light charged Higgs-like scalar

decaying to ��. Direct detection can arise from Higgs exchange in the first model or a nonzero magnetic

moment in the second. In supersymmetric models, the would-be lightest supersymmetric partner can

decay into pairs of dark matter particles plus standard model particles, possibly with displaced vertices.
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I. INTRODUCTION

There is compelling evidence from astrophysical and
cosmological data that the dominant contribution of the
matter in the Universe is in the form of ‘‘dark matter’’ that
interacts very weakly with ordinary matter [1]. One of the
striking features of this picture is that the dark matter
density today is rather close to the baryon density: �DM ’
4:5�baryon in the standard cosmological model [2], suggest-

ing that these relic densities have a common origin.
However, in the standard paradigm for dark matter, the
dark matter and baryon relic densities arise by completely
different mechanisms, and the fact that they have the same
order of magnitude is a ‘‘cosmic coincidence.’’

In the standard cosmology the baryon relic density arises
from a tiny baryon-antibaryon asymmetry of order 10�10 at
temperatures above 10 MeV. This paradigm is strongly
supported by the success of big-bang nucleosynthesis.
The baryon asymmetry can be generated starting from
an initially symmetric universe (‘‘baryogenesis’’) if the
baryon number and CP are violated out of equilibrium
in the early Universe [3]. Nonperturbative effects in the
standard model efficiently violate baryon and lepton
number at temperatures above the electroweak phase tran-
sition (T * 100 GeV), so the simplest possibility is that a
B� L asymmetry is generated at high scales, e.g. by
leptogenesis.

In contrast with the baryon relic density, the origin of
the dark matter abundance is not strongly constrained by

cosmological data. The most popular model is a weakly
interacting massive particle (WIMP) whose relic density
is determined by the freeze-out of its annihilations to
standard model particles. This naturally explains the ob-
served order of magnitude of the dark matter relic abun-
dance, but not why this is close to the baryon abundance.
In this paper we consider a simple explanation for

�DM � �baryon, namely, that the dark matter density arises

from a dark matter particle-antiparticle asymmetry related
to the B� L asymmetry. Previous models based on this
idea are described in [4–12]. In our models, the B� L and
dark matter asymmetries can be related by interactions in
equilibrium that transfer the B� L asymmetry (assumed
to arise from a standard baryogenesis mechanism) to the
dark matter. Any interaction that forces the dark matter to
carry a nonzero B� L charge will accomplish this. Unlike
most previous models where the B� L number in the dark
and standard model sectors were equal and opposite so that
the total B� L number of the Universe is zero, in our
models there is a net nonzero B� L number that is dis-
tributed between sectors. Since the dark matter relic den-
sity is set by the baryon asymmetry and not by the
properties of thermal freeze-out, we term this class of
models asymmetric dark matter (ADM).
This mechanism predicts nDM � nB, and therefore

�DM � ðmDM=mBÞ�B. We therefore obtain the observed
dark matter abundance for mDM � 5 GeV. The precise
dark matter mass is calculable in a given model, and the
models we construct give values in the range from 5 to
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15 GeV. These values are close to the electroweak scale,
suggesting that the dark matter mass is generated by elec-
troweak symmetry breaking. This also gives a possible
mechanism for the annihilation of the symmetric compo-
nent of the dark matter as well as a direct detection
mechanism.

Dark matter masses in this range may give an explana-
tion of the DAMA observations [13–16]. The DAMA
experiment has observed an annual modulation with 8:2�
significance consistent with WIMP scattering. Other direct
detection experiments are sensitive to lower cross sections,
but have higher energy thresholds, so a WIMP in the
10 GeV mass range may explain the DAMA signal while
still being consistent with other null results [16,17]. There
remains some controversy, however, since the region con-
sistent with the DAMA signal depends on the choice of
binning [18]. The fit is particularly sensitive to the 2–
2.5 keV nuclear recoil bin; this bin taken by itself tends
to shift the fit to larger dark matter masses [19]. We there-
fore emphasize that the models discussed here are interest-
ing independently of the motivation from the DAMA
observation.

The main features of our models are as follows.
(i) At a high temperature, a B� L asymmetry is gen-

erated. Below this temperature B� L is preserved,
but new higher-dimension effective interactions that
exchange the B� L number between the standard
model and dark matter are in thermal equilibrium.

(ii) The interactions that exchange the B� L asymmetry
decouple at lower temperatures, and a dark matter
asymmetry is frozen in. There may still be couplings
in equilibrium between the dark matter and the stan-
dard model that do not transfer the asymmetry.

(iii) At temperatures below the mass of the dark matter
particle, particle-antiparticle annihilations eliminate
the symmetric component of the dark matter density,
leaving behind a relic density proportional to the
particle-antiparticle asymmetry. These annihilations
may occur either through the interactions that gen-
erate the dark matter mass or via the operator that
transfers the asymmetry.

(iv) Direct detection of dark matter may occur, also
through the interactions that generate the dark matter
mass or via the operator that transfers the asym-
metry.

(v) In supersymmetric models, the dark matter particle
is naturally the lightest particle charged under a
discrete R symmetry, and the would-be lightest
supersymmetric partner (LSP) decays into pairs of
dark matter particles plus standard model particles.
These decays may have a macroscopically displaced
vertex.

This paper is organized as follows. In Sec. II, we de-
scribe concrete models and explain in detail how they give
rise to the observed dark matter density. In Sec. III, we
discuss direct detection signals. In Sec. IV, we discuss

novel collider signals in this class of models. Section V
contains our conclusions.

II. MODELS

It is simple to construct specific models that generate
ADM, and we will give three examples below. We find it
simplest to explain the details of the mechanism in terms of
a specific ‘‘reference’’ model. The remaining models will
be described more briefly.

A. Reference model: L ¼ 1
2 ADM

We begin with a supersymmetric model in which the
dark matter carries the lepton number. Supersymmetry
(SUSY) is not necessary for the dark matter mechanism
we are studying, but it allows a direct connection to a
realistic and compelling model of electroweak physics
and leads to very interesting collider phenomenology.
Before going into the details of the model, we outline its
general features:
(i) The dark matter sector consists of a pair of gauge

singlet chiral superfields X, �X with L ¼ � 1
2 . This

allows a supersymmetric mass term of the form �XX.
There may be�L ¼ 2 breaking of the lepton number
from Majorana neutrino masses, but a Z4 subgroup
of Uð1ÞL remains unbroken. This forbids Majorana
mass terms of the form X2 and �X2 that can efficiently
wipe out the asymmetry, and also guarantees that the
lightest component of X is a stable dark matter
candidate.

(ii) A B� L asymmetry generated at high scales is
transferred to the dark matter via the effective inter-
action

�Weff ¼ 1

Mi

�X2LiHu; (2.1)

whereMi is a high mass scale parametrizing the new
physics that generates the interaction. The lowest-
dimension interactions allowed by the unbroken Z4

subgroup of Uð1ÞL are dimension-5 operators of the
form �W � X4. As long as these drop out of equi-
librium at a temperature where Eq. (2.1) is still in
equilibrium, the asymmetry will be transferred to the
visible sector. The interaction in Eq. (2.1) naturally
goes out of equilibrium as the temperature drops
further, and the dark matter asymmetry freezes in.

(iii) The dark matter mass is close to the electroweak
scale, suggesting that it arises from electroweak
symmetry breaking. This can occur in the next-to-
minimal supersymmetric standard model (NMSSM),
where the X mass arises from the coupling to a
singlet S that gets a vacuum expectation value
(VEV) at the weak scale.

(iv) The annihilation of the symmetric component of the
dark matter thermal density can occur through Higgs
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exchange in the NMSSM, or via the interaction that
transfers the asymmetry.

(v) Direct detection can occur through the same inter-
actions that are responsible for the annihilation.
Either can give a signal in upcoming experiments.

(vi) The operator in Eq. (2.1) violates the usual R parity,
but preserves a Z4 R symmetry under which the
minimal supersymmetric standard model (MSSM)
fields have the usual R parity assignments of �1
while

Xð�Þ � iXð��Þ; �Xð�Þ � �i �Xð��Þ; (2.2)

where � is the superspace coordinate. The would-be
LSP can therefore decay into pairs of X particles via
the operator in Eq. (2.1). The Z4 R symmetry forbids
R-parity violating operators from being generated in
the visible sector.

We now describe the model and the mechanism in more
detail.

We begin by briefly discussing the UV completion of
this model. The effective interaction in Eq. (2.1) can be
obtained from a theory with a heavy pair of chiral multip-
lets N, �N with L ¼ �1, i.e. vectorlike sterile neutrinos:

�W ¼ M �NN þ �0N �X2 þ y0i �NLiHu: (2.3)

Another possibility is a vectorlike pair of electroweak
doublets D and �D with L ¼ � 1

2 :

�W ¼ M �DDþ �0 �XDHu þ y0iLi
�D �X : (2.4)

Either model generates Eq. (2.1) with Mi ¼ M=ð�0y0iÞ.
Note that in the second model in Eq. (2.4), the Higgs
VEV gives a mixing between X and the neutral component
of D; this can be treated as a small perturbation as long as
M � �0vu. The second model is more natural if Majorana
neutrino masses are generated from a standard seesaw
mechanism. The reason is that the sterile neutrino
Majorana mass in the standard seesaw naturally arises
from the VEV of a field with L ¼ 2. Such a field has no
renormalizable couplings to the fields in Eq. (2.4), and
therefore the lepton number can be an accidental symmetry
in the dark matter sector. This also allows the B� L
asymmetry to be generated by standard leptogenesis.

We now discuss the generation of the dark matter asym-
metry in this model. In the early Universe, nonrenormaliz-
able effective interactions such as Eq. (2.1) give rise to
interactions whose rate drops faster than the expansion rate
as the temperature of the Universe drops. It is therefore
natural for this operator to have been in equilibrium in the
early Universe, but to be out of equilibrium today. This is
exactly what is required to distribute a B� L asymmetry in
the early Universe to the X fields. This goes out of equi-
librium for T * 100 GeV provided that M * 109 GeV.
For this coupling strength, the bounds on induced lepton
flavor violation such as� ! e� are well below the experi-
mental limits.

It is also possible for the interactions that transfer the
asymmetry to go out of equilibrium at temperatures below
the electroweak scale but above the dark matter mass even
if M � 109 GeV. This is a small temperature range
(roughly 10 to 100 GeV), but we will see this arises
naturally for a wide range of parameters. The component
interactions arising from Eq. (2.1) contain at most two
fermion fields, so the only interactions that change the X
fermion number arising directly from Eq. (2.1) involve
sneutrino and/or Higgs particles, e.g. ~� $ �X �X . These
interactions become ineffective at temperatures below the
sneutrino mass because of the exponentially small abun-
dance of sneutrinos. The rate is

�ð~� $ XXÞ � n~�

nX

1

16	

�
vu

M

�
2
m~�: (2.5)

This freezes out when the rate drops below the Hubble
expansion rate, which occurs for T & m~�=40 for M�
TeV. In addition, there are transitions between light parti-
cles generated by integrating out virtual heavy particles.
Since all light particles are neutral under the Z4 R symme-
try, we need two insertions of the operator in Eq. (2.1). The
leading contribution arises from integrating out virtual
sneutrinos and neutralinos, and gives rise to an effective
operator

L eff � v2
u

M2m4
~�m ~B

ð �X �XÞ2��: (2.6)

The asymmetry-transferring processes mediated by this
interaction (e.g. �X �X $ XX �� �� ) have a rate that falls rap-
idly as the Universe cools,

�� 1

16	

�
1

8	2

�
2
�

v2
u

M2m4
~�m ~B

�
2
T11; (2.7)

where the prefactor is an estimate of 4-body phase space.
This goes out of equilibrium for

T & 20 GeV

�
M

TeV

�
4=9

�
m

100 GeV

�
10=9

; (2.8)

where m�m~� �m ~B. We see that for mX � 10 GeV, the
temperature where the interactions decouple can be above
mX even if M is near the weak scale. In this case, the
interactions in Eq. (2.6) fall out of equilibrium before the
dark matter becomes nonrelativistic, and the dark matter
asymmetry is not washed out.1

For low values ofM, bounds from lepton flavor violation
such as� ! e� can be satisfied if the coupling in Eq. (2.1)
is dominant to third generation leptons. This is what we

1Sphaleron transitions may fall out of equilibrium in this
temperature range, but this does not have a large effect on the
dark matter asymmetry. Below the sphaleron decoupling tem-
perature B and L are effectively separately conserved, but this
does not prevent the operator in Eq. (2.1) from transferring the
asymmetry.
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expect if flavor symmetry is most badly broken for the
heavier generations. For these low-scale models, the inter-
action in Eq. (2.1) may provide both an annihilation and a
direct detection mechanism, which will be discussed in
Sec. III below.

We now discuss the calculation of the X particle-
antiparticle asymmetry. Because the asymmetry is trans-
ferred by interactions in equilibrium, we can compute the
X asymmetry in terms of the particle-antiparticle asymme-
tries of the standard model using standard equilibrium
methods [20]. The value of the X asymmetry at low tem-
peratures depends on the temperature where the interac-
tions in Eq. (2.1) drop out of equilibrium. We first discuss
the case where these interactions drop out of equilibrium
above the electroweak phase transition. We then have

X ¼ �11
79ðB� LÞ; (2.9)

where X is the ‘‘X number’’ charge. B� L is preserved by
the electroweak phase transition, so the present baryon
asymmetry is proportional to B� L.2 Sphaleron transi-
tions that violate B and L are in equilibrium below the
electroweak phase transition [21]. The precise relation
between B and B� L depends on finite mass effects, e.g.
for the top quark. Numerically, however, these do not make
a large difference, and we find

B

B� L
’ 0:31: (2.10)

Assuming the X asymmetry is responsible for the observed
dark matter density results in a prediction for the mass of
the X particle if the interactions fall out of equilibrium
above the electroweak phase transition:

mX ’ 2:4 GeV
�DM

�B

’ 11 GeV: (2.11)

The fact that the X mass is somewhat larger than the naı̈ve
estimate of 5 GeV is due to X < B, which in turn can be
traced to the fact that the model contains more baryons
than X particles: in relativistic equilibrium conserved
charges are proportional to the number of degrees of free-
dom carrying that charge.3

It is also possible that the interactions in Eq. (2.1)
decouple below the electroweak phase transition. In this
case, integrating out both the top and the superpartners, we
obtain

X

B
¼ 13

40
; (2.12)

and therefore

mX ’ 13 GeV: (2.13)

We now discuss the origin of the dark matter mass. This
is a supersymmetric Dirac mass arising from a superpo-
tential term �W ¼ mX

�XX. The question of why mX is
close to the weak scale is similar to the ‘‘� problem’’ of
supersymmetric models, which is explaining the origin of
the supersymmetric Higgs mass term �Weff ¼ �HuHd.
Perhaps the simplest solution is the NMSSM in which
the required mass terms are given by the VEVof a singlet
field S:

�W ¼ �XSX �X þ �HSHuHd þ 


3
S3: (2.14)

This model naturally generates a VEV for S of the order of
the electroweak scale and gives the required mass terms for
Higgs and X particles. Very important for dark matter
phenomenology, it also gives a direct coupling of X to
the standard model, allowing the dark matter to be directly
detected.
The final ingredient is that the thermal abundance of X

particles and antiparticles must efficiently annihilate, so
that the relic density of dark matter is given by the X
particle-antiparticle asymmetry. This requires h�annvi *
pb. In the context of the NMSSM, a simple possibility is
�XX ! aa, where a is the lightest pseudoscalar in the Higgs
sector. This is unsuppressed in the early Universe as long as
ma & mX. It is natural for a to be light if A terms are small,
in which case a is a pseudo-Nambu-Goldstone boson of a
global Uð1ÞR symmetry. The annihiation comes from the
coupling,

�Leff ¼ mX
�XXeia=s þ H:c:; (2.15)

where s=
ffiffiffi
2

p ¼ hSi, which gives an annihilation cross sec-
tion

h�vreli ¼ 1

16	

m2
X

s4
: (2.16)

This is larger than 1 pb for s < 200 GeV. This requires
superpotential couplings �, 
�Oð1Þ to generate the cor-
rect spectrum in the NMSSM, and the resulting theory is
not perturbative up to the grand unified theory scale. This
means that an extension of the Higgs sector is required at
high scales, such as in ‘‘fat’’ Higgs models [22]. The
pseudoscalar a can decay promptly to �bb (for ma *
10 GeV) or �þ�� (for 2 GeV & ma & 10 GeV), so there
are no further cosmological consequences. Interestingly,
this model points to the same region of NMSSM parameter
space where nonstandard Higgs decays such as h0 ! aa
followed by a ! �bb or �þ�� can dominate, which may
alleviate the naturalness problems of supersymmetry [23].
We will also see that this model may give rise to a direct
detection signal.
Another possibility for annihilation is that the singlet

couples weakly to the Higgs fields. In this case the � term
is not explained by the VEV of S; it may arise e.g. by the

2We are assuming that there is no significant baryon asymme-
try generated during the electroweak phase transition.

3We must also impose the condition that the Universe has no
net electric charge. Since X does not carry charge, this condition
restricts only the relative number of standard model particles,
and does not affect the scaling argument above.
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Giudice-Masiero mechanism [24]. The theory can be per-
turbative up to the grand unified theory scale without addi-
tional structure. The light a can result from an approximate
Uð1ÞR symmetry acting only on S, and the decay a ! �bb
or �þ�� need only to be faster than a second to avoid
constraints from nucleosynthesis. This annihilation mecha-
nism does not give any observable direct detection or
collider signals.

Another possibility for annihilation arises from the fields
in the UV completion Eq. (2.4) if the doublets D and �D are
light. Assuming dominance of heavy flavors, we then have
the annihilation channels �XX ! ���, �þ�� from the
t-channel exchange of the scalar component of the doublet
with rate

h�vreli ¼ 1

16	

y04m2
X

m4
~D

: (2.17)

This is larger than a pb for m ~D=y
0 < 190 GeV. The cou-

pling y0 breaks lepton flavor symmetry, and suppressing
lepton flavor-violating processes such as � ! e� requires
nontrivial structure in the lepton flavor sector. For example,
there may be an approximate Uð1Þ3L forbidding lepton
mixing that is broken only by small neutrino masses. The
charged doublet scalar can be pair produced and decays to
�� þ E6 T . LEP bounds give m ~D� > 92 GeV [25]; there is
currently no Tevatron search for this mode. In order for
the operator in Eq. (2.1) that transfers the asymmetry to
decouple at temperatures above mX, we need �0 � 1 in
Eq. (2.4). Note that this also suppresses the mixing between
X and the neutral component of the doublet, which would
otherwise lead to coupling of X to the Z. Having �0 � 1 is
natural, because in the limit �0 ! 0 there is an enhanced
global Uð1Þ symmetry under which X andD have opposite
charges. As we will discuss in Sec. III, this model has a
direct detection cross section via a charge radius interac-
tion that is near the experimental limit, making this version
of the mode phenomenologically very interesting.

There are other possibilities for the annihilation, such as
annihilation into light hidden sector fields or other cou-
plings to standard model fields, e.g. via a Z0. Another
interesting possibility is to explore models where annihi-
lation occurs via new strong dynamics, as in ‘‘hidden
valley’’ [26] or ‘‘quirk’’ [27] models. We leave these
possibilities for future work.

B. B ¼ 1
2 ADM

We now describe a supersymmetric model in which the
dark matter carries the baryon number. The model is a very
simple variation of the previous model, so our discussion
will be very brief. The model consists of the MSSM plus a
pair of gauge singlet chiral superfields X, �X with B ¼ � 1

2 .

The lowest-dimension operator that can transfer the baryon
asymmetry to X is

�Weff ¼ 1

M2
ijk

�X2uidjdk: (2.18)

If this interaction goes out of equilibrium above the elec-
troweak phase transition, we find

X ¼ �11
79ðB� LÞ: (2.19)

Amusingly, this is precisely the same result as in the
previous model, and we again find

mX ’ 11 GeV (2.20)

if the interaction in Eq. (2.18) decouples above the elec-
troweak phase transition. The �XX annihilation and the
generation of the X mass are very similar to the previous
model, and we will not repeat the discussion. A significant
difference between this model and the L ¼ 1

2 model is the

long lifetime of the LSP due to the high dimension of the
transfer operator. As we will see in Sec. IV below, the scale
M in some cases must be of the order of a TeVor smaller in
order to avoid decays on cosmological time scales.

C. L ¼ 1 (sterile neutrino) ADM

We now consider a model in which the dark matter has
L ¼ 1, like a sterile neutrino. The lowest-dimension cou-
pling to the standard model that can transfer the lepton
asymmetry to X is then

�Leff ¼ 1

M4
ij

�X2ðLiHÞðLjHÞ þ H:c: (2.21)

Majorana neturino masses conventionally arise from an
effective operator of the form ðLHÞ2, so any model that
generates the interaction in Eq. (2.21) and Majorana
masses necessarily generates a Majorana mass term for X
at some level. This will efficiently wipe out any X asym-
metry, so this model is most natural with Dirac neutrino
masses.
If the interaction in Eq. (2.21) goes out of equilibrium

above the weak scale, we have

X ¼ �12
49ðB� LÞ; (2.22)

corresponding to a dark matter particle mass mX ’ 6 GeV.
A UV completion of Eq. (2.21) can be obtained by

adding an additional scalar Higgs doublet H0 with cou-
plings

�L ¼ y0iLiH
0 �X � �0

4
½ðHyH0Þ2 þ H:c:� þ � � � : (2.23)

Integrating out H0 generates Eq. (2.21) with 1=M4
ij �

�0y0iy0j=m4
H0 . Note that H0 is odd under the Z2 symmetry

that prevents X decay, so we must assume that hH0i ¼ 0.
Exchange of H0 can give rise to annihilation for the

symmetric component of the X relic density if mH0=y0 &
200 GeV. This is very similar to exchange of the doublet
scalars in the L ¼ 1

2 model. It requires �0 � 1 in order to
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decouple the transfer of the asymmetry above mX, and
nontrivial lepton flavor structure to avoid lepton flavor
violation such as � ! e�. Direct detection signals from
the light H0 will be discussed in Sec. IV below.

This model relies on the existence of light scalars (H0
and the Higgs), and so must be embedded in a framework
that makes such scalars natural. To embed this model into a
supersymmetric model, we add two additional ‘‘Higgs’’
chiral multiplets H0

u;d, as well as SUð2ÞW triplets �u;d with

Y ¼ �1. The relevant terms in the superpotential are

�W � LH0
u
�Xþ �uðH2

u þH02
u Þ þ�dðH2

d þH02
d Þ

þ �XX þHuHd þH0
uH

0
d þ�u�d: (2.24)

Integrating out �u;d then generates Eq. (2.23). The mass

terms may arise from the VEV of a singlet, as discussed
previously. These interactions preserve both an R parity
under which the X fermion is even, and a Z2 symmetry
under which X, �X, and H0

u;d are odd and all other fields are

even. It is therefore possible that this model contains a
stable LSP in addition to the dark matter particle. In this
case, the relic density of the LSP is constrained to be less
than the observed dark matter density. Alternatively, one of
the Z2 symmetries can be broken by interactions such as
�W � XecðHuHdÞðH0

uHdÞ, allowing the LSP to decay.

III. DIRECT DETECTION

Asymmetric dark matter requires only very weak inter-
actions with the visible sector to explain the dark matter
asymmetry, and so there is no guarantee of an observable
direct detection cross section. However, the symmetric
component of the dark matter relic density must be effi-
ciently annihilated away, and if this annihilation goes into
standard model fields, the interactions responsible for the
annihilation can give rise to direct detection similar to
WIMP dark matter.

In the previous section we presented two different mini-
mal possibilities for the interaction that annihilates away
the symmetric part of the dark matter, and each of them
leads to a different possible direct detection mechanism.

(i) The annihilation may go through a singlet Higgs
field whose VEV gives the dark matter mass. In
this case the mixing between the singlet and the
doublet Higgs fields couples the dark matter to nu-
cleons, giving a potential direct detection signal
several orders of magnitude below current bounds.

(ii) The annihilation may proceed via t-channel ex-
change of a doublet scalar at the weak scale that is
part of the UV completion of the interaction that
transfers the asymmetry. In this case, there is a
magnetic moment coupling of the dark matter to
nucleons that is closer to current bounds.

We now discuss these possibilities in turn.
We first discuss singlet Higgs exchange. The coupling in

Eq. (2.14) gives a coupling of the lightest scalar Higgs

g �XXh0 � �X sin�; (3.1)

where � is a Higgs-singlet mixing angle. For a standard
model Higgs coupling to the nucleon, this gives a spin-
independent dark matter-nucleon cross section

�expðXn ! XnÞ ¼ 1

A2

m2
Xn

m2
XN

�ðXN ! XNÞ

’ 5	 10�43 cm2 	 g2�XXh0

�
mh0

100 GeV

��4
:

(3.2)

Here �exp is the experimentally quoted dark matter-

nucleon cross section and mxy is the reduced mass (see

e.g. Ref. [1]). The best bound on this cross section formX ’
15 GeV comes from XENON [28], �exp & 9	
10�44 cm2, with a similar bound from CDMS [29]. Since

�X ¼ ffiffiffi
2

p
mX=s� 0:1 for s� v near the weak scale, the

direct detection rate is about 2 orders of magnitude below
current sensitivity in this mass range.
In this model, the lightest pseudoscalar a is light, and its

exchange gives rise to an effective coupling of dark matter
to quarks,

�Leff ¼ mX

sm2
a

�Xi�5X

�X
u

mu cot�

v
�ui�5u

þX
d

md tan�

v
�di�5d

�
: (3.3)

This gives a spin-dependent coupling to nucleons that is
well below current experimental bounds.
We now turn to direct detection signals from the inter-

action that transfers the asymmetry. For the L ¼ 1
2 and L ¼

1 model, the minimal UV completion involves a scalar
doublet, and if it is light it can give sufficient annihilation.4

In this case, there is a one-loop magnetic moment and
charge radius coupling that can contribute to direct detec-
tion. (For a recent discussion of dark matter detection
through the magnetic moment, see [30].) The magnetic
moment and charge radius (defined in terms of the standard
electromagnetic form factors by F1ðq2Þ ¼ q2r2=6þ � � � ,
F2ðq2Þ ¼ �=2mX þ � � � ) were computed in Ref. [31]:

� ¼ y02

32	2

m2
X

m2
��

; (3.4)

r2 ¼ � y02

288	2

1

m2
��

�
ln
m��

m�

� 3

4

�
; (3.5)

where �� is the charged scalar in the doublet, and we use
their definitions of � and r2. The charge radius contribu-

4The UV completion of the B ¼ 1
2 model also involves electri-

cally charged fields that may be light and lead to annihilation and
direct detection. We will not discuss this possibility here.
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tion to the cross section is IR divergent. This is regulated
using the ‘‘energy transfer’’ nuclear cross section, which is
given by [31]

�ðXN ! XNÞ ¼ 	Z22

m2
X

�
�2 þ

�
mN

mN þmX

�
2

	 ð24r2m2
X ��Þ2

�
; (3.6)

where mN is the nucleus mass. The cross section is nu-
merically dominated by the charge radius term. Note that
� / m2

X, so that �exp
n is independent of mX for mX � mN .

We obtain

�
exp
n ’ 8	 10�44 cm2

�
Z=A

0:4

�
2
�
m��=y0

100 GeV

��4
: (3.7)

This is below current bounds, but may give a signal in
upcoming experiments.

Finally, we mention that it is also possible to have direct
detection from interactions that are not directly motivated
by the physics of generating the dark matter asymmetry.
For example, a Z0 mediator can also produce spin-
independent cross sections of this size,

�exp
n ’ 10�41 cm2

�
g �XXZ0g �uuZ0

10�1

�
2
�
1 TeV

MZ0

�
4
: (3.8)

This corresponds to a WIMP mass detected by DAMA of

 7 GeV [16–18], which results naturally from the models
discussed above.

IV. COLLIDER SIGNALS

The new sector in ADM includes new states at the weak
scale and below, and thus have the potential to affect
collider phenomenology. The most significant possibilities
are:

(i) New Higgs boson decays, both invisible and into
lighter decaying scalars.

(ii) Supersymmetry with NLSP decay resulting in re-
duced missing energy, more leptons, and/or new
displaced vertices. Kinematic shapes in cascade de-
cays will also differ from standard scenarios.

(iii) New charged states at the weak scale and/or colored
states at a TeV.

These signals can coexist in a single model. We now
discuss them in turn.

We begin with Higgs phenomenology. If the NMSSM
explains the dark matter annihilation, then the Higgs has
phenomenologically interesting couplings to both the dark
matter and the light pseudoscalar into which the dark
matter annihilates. The couplings �H and 
 must be Oð1Þ
to allow for efficient enough annihilation. The mixing
angle between the lightest CP even Higgs and the scalar
singlet s is

sin�sh0 ’
2�v

s2
sin2�� sin2�; (4.1)

where � is the effective mu term, and the last approxima-
tion is due to annihilation requirements and chargino
bounds. Thus, the Higgs can decay to X �X by mixing with
s with a decay width

�ðh ! X �XÞ
�ðh ! b �bÞ ’ �2

Xsin
22�v2

3m2
b

: (4.2)

With �X � 0:1 to produce the correct X mass and using the
value of mb at the electroweak scale, we find that this new
decay is competitive at moderate tan�, implying a large
invisible width for the Higgs.
In addition, the Higgs can decay into pairs of light

pseudoscalars in this model. This can dominate the Higgs
width, especially since the couplings �H and 
 are Oð1Þ.
The light pseudoscalar mixes with the heavy CP-odd
Higgs A0 and decays into b �b or � ��, thus producing a
dominant decay of h ! 4b or h ! 4� (for a review, see
[32]). Of course a large partial width into these modes will
suppress the invisible decay mode discussed above.
We now turn to the decay of the would-be LSP in

supersymmetric theories. This occurs in the L ¼ 1
2 and B ¼

1
2 models described above.

There are a large number of possible decay modes
depending on the model and the identity of the LSP.
These have certain common features that we point out
before discussing the individual cases. As discussed above,
in these models the usual LSP is not the lightest particle
charged under a discrete R symmetry. Instead, there is a
discrete Z4 symmetry that allows the would-be LSP
(NLSP) to decay to pairs of dark matter particles. (We
will refer to the would-be LSP as the NLSP.) This means
that LSP-mass reconstruction techniques [33] must be
generalized to determine the mass of the dark matter.
Also, the decays are suppressed both by the scale M in
the higher-dimension operators Eqs. (2.1) and (2.18) and
by the fact that the decays are often many-body decays.
This leads to the possibility of displaced vertices in the
decays. These operators have a nontrivial flavor structure,
and considerations of approximate flavor symmetry sug-
gest that they are largest for heavy flavors; if so, this leads
to LSP decays involving heavy flavors, which may be
tagged. The collider physics of these models is therefore
extremely rich and interesting. In this paper, we will give
only a sample of possible dominant LSP decays, leaving
detailed investigation for future work.
We begin with the L ¼ 1

2 model. There are various

possibilities for the identity of the NLSP. If the NLSP is
a neutralino, it has the decay �0 ! � �X �X or ��XX via a
virtual sneutrino. This is unfortunately completely invis-
ible, and so gives no modification of standard LSP phe-
nomenology even for macroscopic decay length. It is
important to note, however, that the reconstructed LSP is
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not the dark matter particle in this case. If the neutralino is
sufficiently heavy, there are also the 4-body visible decays
�0 ! h0� �X �X , h0 ��XX, hþ‘� �X �X , and h�‘þXX. These
decays proceed through a virtual left-handed slepton like
the dominant decay mode, so the branching ratio is

BR ð�0 ! h0� �X �XÞ � 1

8	2

�
m�0

vu

�
2
: (4.3)

This can easily be �1% or larger and provide a window
into LSP decay in this model. The decay length for the
visible decays is

c�ð�0 ! h0� �X �XÞ �mm

�
M

106 GeV

�
2
�

m~�

200 GeV

�
4

	
�

m�0

100 GeV

��7
: (4.4)

We see that the decay vertex is displaced for M *
104 GeV.

If the X scalars are lighter than theMSSM neutralino, we

have the decays �0 ! � ~X ~X , �� �~X �~X . These proceed di-
rectly through the interaction in Eq. (2.1) without a virtual
intermediate state and are therefore enhanced compared to
�0 ! � �X �X . The decay length is

c�ð�0 ! �� ~X ~XÞ � cm

�
M

108 GeV

�
2
�

m�0

100 GeV

��3
; (4.5)

The X scalars subsequently decay via ~X ! �X�, which is a
completely invisible mode, or the subleading visible decay
mode ~X ! X�h0, ~X ! X‘�h�, assuming it is kinemati-
cally available. The branching ratio for the visible mode is
suppressed only by 3-body phase space, and so it can have
a branching ratio of up to �1% if the 3-body channel is
fully open. The decay length for the visible mode is ap-
proximately the same as Eq. (4.5). The general pattern for
�0 decays is therefore qualitatively the same whether the
scalar decay channel is open or not: the dominant decay is
invisible, possibly with rare decays to Higgs plus missing
energy, or charged Higgs plus charged lepton and missing
energy.

We now consider the case where the NLSP is a slepton
or squark. In this case, the dominant decay is through a

virtual gaugino: ~q ! q~�� or ~‘ ! ‘~��. The virtual gaugino
then decays through the same modes as given for the real
gaugino above.

For example, suppose the NLSP is a right-handed stau.
(We expect the heaviest flavor slepton or squark to be the
lightest, since the Yukawa couplings drive down the scalar
masses in the renormalization group equation.) This can
occur, for example, in models of gauge-mediated SUSY
breaking. If the X scalars are heavy, the dominant decay
mode is ~�R ! �� �X �X , � ��XX via a virtual neutralino. The
decay length is

c�ð~�R ! �� �X �XÞ �mm

�
M

106 GeV

�
2
�

m

200 GeV

�
6

	
�

m~�

100 GeV

��7
; (4.6)

where we have assumed a common mass scale m�m~� �
m�0 . The chargino couples to the right-handed stau only

through the tau Yukawa, but this may be important at large
tan�. Virtual chargino exchange gives the decays

BR ð~��R ! ��‘
� �X �XÞ � 10�4tan2�

�
m�0

m��

�
2
; (4.7)

which may involve light leptons, depending on the flavor
structure of the interaction in Eq. (2.1).
As for the neutralino NSLP, decays to X scalars are

dominant if they are kinematically allowed. The decays
are ~��R ! ‘� ~X ~X with decay length

c�ð~�R ! ‘� ~X ~XÞ � cm

�
M

107 GeV

�
2
�

m

200 GeV

�
2

	
�

m~�

100 GeV

��5
: (4.8)

This is followed by ~X ! �X� with decay length given by
Eq. (4.5).
The right-handed stau will mix with the left-handed stau

via A terms and the� term times the tau Yukawa coupling.
It is also possible that the left-handed stau is the LSP. We
therefore consider the decays of a left-handed stau. If
kinematically available, the most important decay is di-
rectly through the operator in Eq. (2.1), ~�L ! h�XX. The
decay length is given by Eq. (4.5). If this channel is not
open, the leading decay is ~�L ! WXX via a virtual snue-
trino. The decay rate is parametrically the same as Eq. (4.6)
. For sufficiently large m~�, we also have the decay ~��L !
XX�tb and ~�þL ! �X �X �b t. The ratio of decay rates is

�ð~��L ! XX�tbÞ
�ð~��L ! W�XXÞ � 0:1

�
m~�

mH�

�
4
�

m~�

300 GeV

�
2
: (4.9)

This may be the dominant decay, depending on the super-
partner masses.
Returning to the case of right-handed stau LSP, the

mixing with ~�L allows the decay to the final states dis-
cussed for ~�L decay above:

��ð~�R ! � � �Þ �
�
m�� tan�

m2

�
2
�ð~�L ! � � �Þ: (4.10)

Therefore, ~�R ! h�XX may be an important decay mode
in some models, particularly at large tan�.
If a squark (e.g. the stop) is the LSP, then the dominant

decay modes are ~q ! q� �X �X , q ��XX via a virtual neutra-

lino, or ~q ! q‘ �X �X , q �‘XX via a virtual chargino. The
latter decay will be suppressed if the LSP is dominantly
a right-handed squark. The decay length is as in Eq. (4.6)
with the obvious replacements.
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We now turn to the B ¼ 1
2 model. In general, the decay

lengths in the B ¼ 1
2 model are longer than the L ¼ 1

2

model, because the operator in Eq. (2.18) is suppressed
by a higher power ofM. In addition, some decays are loop
suppressed. We begin with the case of neutralino NSLP. If
the X scalars are heavy, the neutralino will decay via �0 !
udd �X �X or �u �d �dXX. The diagram involves a virtual quark
connecting to X fermions, with the remaining squarks
converting to quarks via a loop. The decay length for this
process is

c�ð�0 ! XXqqqÞ � 100 m

�
M

TeV

�
4
�

m

500 GeV

�
6

	
�

m�0

100 GeV

��11
: (4.11)

This estimate is highly uncertain due to the estimate of 4-
body phase space and the loop factor. For such large
displaced vertices the collider physics of the SUSY LSP
is unchanged, but the LSP reconstructed at colliders is not
the dark matter. As above, decay to the X scalars is the
preferred mode when it is kinematically allowed. The

decay modes are �0 ! udd �~X �~X or �u �d �d ~X ~X followed by
�~X ! X �u �d �d or ~X ! �Xudd. The decay length to X scalars
is

c�ð�0 ! qqq ~X ~XÞ � 0:3 mm

�
M

TeV

�
4
�

m

500 GeV

�
4

	
�

m�0

100 GeV

��9
: (4.12)

This is followed by the ~X decay with

c�ð ~X ! XqqqÞ � 3 mm

�
M

TeV

�
4
�

m

500 GeV

�
2

	
�

m ~X

100 GeV

��7
: (4.13)

We again emphasize that this involves crude estimates of
the many-body phase space and loop factors. There are
additional complications from the flavor structure of the
interaction. If the dominant terms in Eq. (2.18) involve
right-handed tops, there will be additional suppression if
�0 decays to tops are kinematically forbidden.

We now move onto the case of a squark LSP. If the X
scalars are light enough, the decay will go directly through
the operator in Eq. (2.18) with decay length

c�ð~q ! ~X ~X qqÞ � 10�8 m

�
M

TeV

�
4
�

m~q

100 GeV

��5
:

(4.14)

The X scalars subsequently decay via Eq. (4.13). If the
squark decay to X scalars is not kinematically available,
the decay must go through a squark loop with decay length

c�ð~q ! XXqqÞ � 0:3 cm

�
M

TeV

�
4
�

m

500 GeV

�
2

	
�

m~q

100 GeV

��7
; (4.15)

where m is an assumed common mass in the loop.
Finally we consider the case of a slepton LSP. The decay

must go via a virtual gaugino ~‘ ! ‘��. The virtual gaugino
has the same decay modes as the real gauginos discussed

above. Thus through a neutralino, we may have ~‘ !
‘qqqXX with decay length

c�ð~‘ ! ‘qqqXXÞ � 105 m

�
M

TeV

�
4
�

m

500 GeV

�
8

	
�

m~‘

100 GeV

��13
: (4.16)

If the X scalars are light enough, the slepton can decay via
~‘ ! ‘qqq ~X ~X with decay length

c�ð~‘ ! ‘qqq ~X ~XÞ � 1 m

�
M

TeV

�
4
�

m

500 GeV

�
6

	
�

m~‘

100 GeV

��11
: (4.17)

Again, these are highly uncertain estimates.
In several of the scenarios discussed above, the X fer-

mions and/or scalars can have lifetimes on cosmological
time scales. This may be due either to larger values of M,
different superpartner masses, or simply because of large
suppression factors missed in the crude approximations
made above. Such decays can have important effects on
nucleosynthesis, matter-radiation equality, or the dark mat-
ter content of the Universe, among other issues. The study
of these issues is beyond the scope of this work.
Finally, a few comments on the L ¼ 1 model. In this

case the operator in Eq. (2.24) does not break R parity so
that both the LSP and the dark matter particle may be
stable. In the non-SUSY UV completion of this model,
there is some novel phenomenology associated with theH0
state. As already mentioned in Sec. II C, the charged Higgs
can be pair produced. They then decay via H0� ! �� þ
E6 T , the missing energy being carried away by dark matter.

V. CONCLUSIONS

We have presented a simple class of models in which the
dark matter relic abundance is determined by the baryon
asymmetry. This naturally explains the fact that the ob-
served baryon and dark matter abundances are close,
�DM ’ 5�B. Conceptually these models are very simple:
higher-dimension operators distribute the primordial B�
L asymmetry between the dark and visible sectors. When
these higher-dimension operators fall out of equilibrium,
the asymmetry is separately frozen into the two sectors. We
presented several simple examples as existence proofs. In
any specific model, the dark matter mass is precisely
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determined, and we find masses in the range 5 to 15 GeV in
the models presented here.

The symmetric component of the dark matter abundance
can be annihilated away either by some of the same inter-
actions that transfer the asymmetry, or by the interactions
that generate the dark matter mass. Interestingly, either of
these mechanisms also gives a possible direct detection
cross section large enough to be observed in upcoming
experiments. This gives a strong motivation for additional
dark matter experiments and analyses sensitive to dark
matter in the low mass range. An interesting feature in
the second class of models is that the dominant direct
detection mechanism is through the electric charge radius
of the dark matter.

This dark matter mechanism described here can be
naturally combined with supersymmetry, giving a connec-
tion to a plausible model of electroweak physics and the
hierarchy problem. In some models, the would-be LSP
(and dark matter candidate) of supersymmetry naturally

decays into pairs of dark matter particles. This gives rise to
interesting modifications of standard supersymmetric col-
lider phenomenology, including the possibility of highly
displaced vertices.
This class of models gives a compelling alternative to

the usual WIMP paradigm for dark matter that is worthy of
further investigation.
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