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We present a detailed analysis together with exact numerical calculations on one-loop contributions to

the branching ratio of the radiative decay of � and �, namely � ! e�, � ! e�, and � ! �� from

supersymmetry without R parity, focusing on contributions involving bilinear couplings. A numerical

study is performed to obtain explicit bounds on the parameters under the present experimental limit. We

present, and use in the calculation, formulas for exact mass eigenstate effective couplings. In this sense,

we present an exact analysis free from approximation for the first time. After comparing our results

against the closest early analysis, we discovered a major difference in resulted constraints on some ��
i Bj

combinations. Constraints from neutrino masses on the parameters were considered. Our result indicates

that the branching ratio measurement on � ! e� down to 10�13–10�14 and beyond, as targeted by the

MEG experiment, has a chance of observing decay from the R-parity violating scenario.

DOI: 10.1103/PhysRevD.79.115013 PACS numbers: 12.60.Jv

I. INTRODUCTION

Recent neutrino experiments have demonstrated that
neutrinos change flavor as they travel from source to
detector, a phenomenon consistent with the hypothesis of
neutrino oscillation. All that contributes evidence for neu-
trino masses and lepton-flavor violation (LFV) and pro-
vides the first definite experimental clue for physics
beyond the standard model (SM). Many extensions of the
SM predict a certain amount of LFV in relation to neutrino
mass generation or otherwise. Important criterion for a
viable model is giving acceptable neutrino mass spectrum
while staying within experimental limits of LFV. Apart
from the soft terms within the minimal supersymmetric
standard model (MSSM), both LFV and neutrino masses
are indeed forbidden by ad hoc discrete symmetry—the
R parity. Note that soft terms by themselves still conserve
total lepton number, and hence do not generate neutrino
masses. In the supersymmetric standard model without
R parity imposed, there is however an important source
of LFV and neutrino masses. A major part of this comes
simply from the R-parity violating (RPV) terms in the
superpotential, though RPV soft (supersymmetry break-
ing) terms are also of interest. The latter too often escapes
notice.

The best evidence of supersymmetry (SUSY) would
obviously be the discovery of SUSY particles in the col-
lider machines. However, processes such as the leptonic
radiative decays can serve as alternativeways to test SUSY,
complementary to the direct SUSY particle searches.

Although these processes have not yet been seen so far in
present experiments, there are very stringent upper bounds
on their possible rates implying important constraints on
the new physics contributions. The present experimental
upper bounds of branching ratio for � ! �� [1], � ! e�
[2], and � ! e� [3] are

Brð� ! ��Þ< 6:8� 10�8;

Brð� ! e�Þ< 1:1� 10�7;

Brð� ! e�Þ< 1:2� 10�11:

The muon radiative decay reaction � ! e� has been the
focus of most attention due to the experimental bound
being much stronger. This bound will probably be im-
proved in the future. The MEG experiment, Ref. [4], which
searches for� ! e� decays down to 10�13–10�14 branch-
ing ratio is now in its final stage of preparation. The
� decays may also be better probed in future facilities.
The recent studies on radiative decays from other mod-

els such as little Higgs with T parity [5,6] and the SUSY
grand unified theories (GUT) [7,8] also give some interest-
ing results on the lepton-flavor violation processes. For
example, in the little Higgs models with T parity, the
presence of new flavor violating interactions and mirror
leptons containing masses of order 1 TeV can enhance
these processes to the level of the present experimental
limit. In the SUSY GUT model, Ref. [7] discusses the
complementarity between lepton-flavor violation and
Large Hadron Collider (LHC) experiments in probing the
SUSY GUT. They found that the LFV experiments have
strong capabilities to detect SUSY induced LFV, in some
cases even outreaching the LHC. In Ref. [8], the authors
study the correlation between Ue3 and the Brð� ! e�Þ in

*chienyic@andrew.cmu.edu
†otto@phy.ncu.edu.tw

PHYSICAL REVIEW D 79, 115013 (2009)

1550-7998=2009=79(11)=115013(14) 115013-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.79.115013


the context of a SUSY SO(10) framework. They find that
taking running effects into account leads to a constant
enhancement of the value ofUe3 at the high scale, bringing
� ! e� into the realm of MEG for SUSY parameter space
regions which were previously excluded without inclusion
of such running.

The study we present in this paper analyzes branching
ratios that can be generated for all processes in the context
of the generic supersymmetric standard model (GSSM),
i.e. SUSY without R parity [9]. If one simply takes the
minimal supersymmetric field spectrum of the SM and
imposes nothing more than gauge symmetries while admit-
ting soft SUSY breaking, the generic supersymmetric stan-
dard model would be obtained. Thus, the GSSM is the
complete theory of SUSY without R parity, where all kinds
of RPV terms are admitted without bias. Assuming SUSY,
it is at least conceptually, the simplest model to accom-
modate neutrino mixing and oscillations. We work within
the framework of single-VEV parametrization (SVP) [9–
11], which is an optimal choice of flavor basis that helps
guarantee a consistent and unambiguous treatment of all
kinds of admissible RPV couplings and to maintain a
simple structure for RPV effects on tree-level mass matri-
ces for all states including scalars and fermions.

The experimental bound on the branching ratio of these
leptonic radiative decays is used to constrain the model
parameter space, particularly the RPV part. Under con-
straints by the present experimental upper bound of
branching ratios for � ! e�, � ! e�, and � ! ��, we
obtain the allowed region of the RPV parameter spaces. We
give complete one-loop formulas for the type of contribu-
tions to the branching ratio of three leptonic radiative
decays. We present numerical analysis of these contribu-
tions from all possible combinations of RPV parameters.
Besides the more familiar ��

k�kij,
1 there are a list of

combinations of type B�
k�kij, �

�
i �j, and B�

i �j. A similar

analysis on the � ! e� process has been reported in
Ref. [13] in 2001.2 The present work differs from
Ref. [13] in a few important ways. The present work is
based on using new formulas of exact mass eigenstate
couplings to calculate the one-loop diagrams, while in
Ref. [13] the authors only used electroweak states (l�i ’s)
as an approximation for physical particles of external legs

to the loop (the charge leptons). The latter amounts to
neglecting the Higgsino and wino components of the de-
caying and product charged leptons. Therefore, the current
analysis is an improvement or completion of the work
reported in Ref. [13]. In particular, we find that the con-
straints one can obtain on some of the��

i Bj type parameter

combinations have very substantial improvement. This is
indeed the first exact calculation of processes within the
model at the one-loop level presented, free from any ap-
proximation of the type. In addition, our results on the
other two, � decays, processes have not been available in
previous literature. We also increase the value of the �0

parameter (corresponding to the MSSM� parameter) used
from 100 to 135 GeV to accommodate the updated lightest
chargino ð~��

1 Þ lower mass limit of approximately 104 GeV

[19]. In the sense explained above, the paper is somewhat
of a sequel to Ref. [13], where we draw comparison when
relevant. However, it can also be read just on its own.
Readers who want to do so may simply neglect statements
matching analysis and results here with that of the latter.
One catch though is that we focus our discussion and result
presentations on interesting results we get beyond that of
Ref. [13], only briefly summarizing features and results
that are essentially well explored in the latter reference.
As experimental evidence for neutrino masses has be-

come quite well established, we also include in our analysis
a brief comparison of results from radiative decays with
neutrino mass bounds. Recombinations of RPV couplings
typically contribute both to the decays and neutrino
masses, but with different dependence on the other model
parameter. Some RPV parameters, like the bilinear ones,
can give rise to a neutrino mass term alone. However, we
do not have solid evidence on the scale of the neutrino
masses, only �m2. And there are so many relevant RPV
combinations for both neutrino masses and radiative decay
processes that it makes a comprehensive and systematic
analysis unrealistic unless further assumptions are taken on
the model structure. Some parameter combinations may
have a more important role to play in a certain process
while others may give dominant contributions to neutrino
masses. We are interested in investigating and presenting
generic results on model parameters. Hence, we adopt a
naive strategy on the interpretation of neutrino mass
bounds as naive upper bounds on the involved parameter
(s) in order not to give a neutrino mass term contribution
beyond the sub-eV scale. This may be a bit on the con-
servative side but is considered a reasonable strategy to be
adopted. Note that this rough neutrino mass scale is not
expected to be pushed down, since the scale of �m2 is
known from the oscillation experiments. On the other
hand, we have only upper bounds for the radiative decays
which may be, and we believe should be, probed with a lot
better precision in the future. Our radiative decay results
will hence be useful references for the future, even if they
are no better than the naive neutrino mass bounds. In the

1The interesting kind of combination of bilinear and trilinear
RPV parameters contributing to flavor violations through scalar
mass mixings [12] or a one-loop diagram [13,14], and analogous
one-loop dipole moment [15] were published a few years ago.
More recently, similar contributions to radiative B decays were
also published [16].

2There have been numerous studies on similar processes from
various versions or limited models of R-parity violation in the
literature. Most of the model assumptions look ad hoc. We have
no intention of reviewing all of that here. However, an early
study on � ! e� from softly broken R parity [17] should
particularly be mentioned. Another particularly noteworthy pa-
per on the topic is given by Ref. [18].
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case of � ! e�, for example, if the MEG experiment
pushes the bound on the branching ratio down to
10�13–10�14, our numerical results show that it can give
a stronger constraint on the ��

1B2 parameter combination.
To put it more interestingly, the neutrino mass bounds do
not rule out the possibility of seeing a � ! e� at MEG
coming from ��

1B2 of the RPV supersymmetric model. In
the case of ��

2�212, the current bound is actually already
competitive.

This paper is organized as follows. In the next section,
we briefly summarize the main features of GSSM and also
set our notation. In Sec. III, we give the general exact
formulas in the basis of mass eigenstates without any
approximation. The focus is on the ‘�j ! ‘�i � amplitude

from one-loop diagrams without colored intermediate
states. The two sections are included here to make the
paper self-contained, and set the notation to be used for
the discussions that follow. Note that Sec. III does include
important results, expressions for effective coupling
among mass eigenstates involved, that have not been pub-
lished before. Our numerical results will be presented in
Sec. IV. We also compare the results obtained by using the
exact mass eigenstate couplings versus the previous calcu-
lations and discuss the sources of the difference between
them. In addition, we illustrate the effects of varying the
input parameters on the bounds. Finally, Sec. V will be
devoted to the conclusions.

II. THE GENERIC SUPERSYMMETRIC
STANDARD MODEL

We briefly describe the model here. Details of the for-
mulation adopted are elaborated on in Ref. [9]. The most
general renormalizable superpotential with the spectrum of

minimal superfields can be written as

W ¼ "ab½��Ĥ
a
uL̂

b
� þ huikQ̂

a
i Ĥ

b
uÛ

C
k þ �0

�jkL̂
a
�Q̂

b
j D̂

C
k

þ 1
2���kL̂

a
�L̂

b
�Ê

C
k � þ 1

2�
00
ijkÛ

C
i D̂

C
j D̂

C
k ; (1)

where ða; bÞ are SUð2Þ indices, and ði; j; kÞ are the usual
family (flavor) indices (going from 1 to 3). The ð�;�Þ
indices are extended flavor indices going from 0 to 3.
Note that � is antisymmetric in the first two indices, as
required by the SUð2Þ product rules, shown explicitly here
with "12 ¼ �"21 ¼ 1. Similarly, �00 is antisymmetric in
the last two indices from SUð3ÞC, though color contents are
not shown here. Besides the superpotential, the Lagrangian
contains the gauge interaction part, including kinetic terms
of the matter superfields and a soft SUSY breaking part.
We take a definite flavor basis to write the model

Lagrangian. Such choice of parametrization is not unique.
In the current case of the GSSM, the scalar parts of the
colorless electroweak doublet superfields could bear vac-
uum expectation values (VEVs). We use a parametrization
called the SVP advocated by our group since Ref. [10]. A

flavor basis with only one among the L̂�’s, designated as

L̂0, bearing a nonzero VEV is adopted. That is to say, the
direction of the VEV, or the Higgs field Hd, is singled out

in the four-dimensional vector space spanned by the L̂�’s.
Explicitly, under the SVP, flavor bases are chosen such that

(1) hL̂ii � 0, which implies L̂0 � Ĥd; (2) yejkð� �0jk ¼
��j0kÞ ¼

ffiffi
2

p
v0
diagfm1; m2; m3g; (3) ydjkð� �0

0jkÞ ¼ffiffi
2

p
v0
diagfmd;ms;mbg; and (4) yuik ¼

ffiffi
2

p
vu
VT
CKMdiagfmu;

mc;mtg, where v0 �
ffiffiffi
2

p hL̂0i and vu � ffiffiffi
2

p hĤui.
The soft SUSY breaking part of the Lagrangian can be

written as follows [9,12]:

Vsoft ¼ �abB�H
a
u
~Lb
� þ �ab½AU

ij
~Qa
i H

b
u
~UC
j þ AD

ijH
a
d
~Qb
i
~DC
j þ AE

ijH
a
d
~Lb
i
~EC
j � þ H:c:þ �ab

�
A�0
ijk

~La
i
~Qb
j
~DC
k þ 1

2
A�
ijk

~La
i
~Lb
j
~EC
k

�

þ 1

2
A�00
ijk

~UC
i
~DC
j
~DC
k þ H:c:þ ~Qy ~m2

Q
~Qþ ~Uy ~m2

U
~Uþ ~Dy ~m2

D
~Dþ ~Ly ~m2

L
~Lþ ~Ey ~m2

E
~Eþ ~m2

Hu
jHuj2 þM1

2
~B ~B

þM2

2
~W ~WþM3

2
~g ~gþH:c:; (2)

where we have used Hd in the place of the equivalent ~L0

among the trilinear A terms. Note that ~Ly ~m2
~L
~L, unlike the

other soft mass terms, is given by a 4� 4 matrix.
Compared to the MSSM case, ~m2

L00
corresponds to ~m2

Hd
,

while ~m2
L0k

’s give new mass mixings.

III. LEPTONIC RADIATIVE DECAYS

Within the GSSM, the three SM charged leptons are the
light mass eigenstates out of a 5� 5 charged fermions
mass matrix, which also includes the charginos. We use
the common notation ��

n , n ¼ 1 to 5, with the former

states given by ‘�i � ��
iþ2, i ¼ 1 to 3. The states have

characters different from the fermionic components l�i ’s
and lþi ’s of the L̂i and ÊC

i superfields, respectively, as a

result of the generally nonzero �i RPV mixings between
the charged leptons and charginos of the R-parity conserv-
ing (MSSM) limit. The smallness of the �i values as
indicated by the resulted neutrino mass value [10,20] was
the basis for most of the approximations on related subject
matters in the literature, essentially neglecting the differ-
ence between ‘i’s and li’s. Reference [13] is not totally free
from the kind of approximation, though it focuses on the
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��
i �ijk RPV contributions to � ! e�. We will see that in

this kind of parameter combination the approximation in
Ref. [13], which neglects Higgsino and wino components
of the decaying and product charged leptons, is perfectly
fine. The study is the first of its kind, catching a major role
of the �i’s, as well as the soft bilinear RPV parameters
Bi’s, in the LFV process in conjunction with the �-type
couplings.3

As advertised, our analysis here goes beyond that. Let us
start by looking into the full mass eigenstate couplings of
the truly physical charged leptons.

A. Charged scalar vertices

A charged lepton ‘�i (or a generic ��
n ) couples to a

charged scalar and a neutral fermion. From carefully ex-
panding the Lagrangian, we have the vertices

g2 ��ð��
�n Þ
�
N L

�nmn

1��5

2
þN R

�nmn

1þ�5

2

�
�ð�0

nÞ	�
mþH:c:;

(3)

where 1
2 ð1� �5Þ are the L- and R-handed projections and

N R
�nmn ¼ U�

1 �nX
�
4nD

l
2m þ U�

1 �nX
�
ðkþ4ÞnD

l
ðkþ2Þm þ yek

g2
U�

2 �nX
�
ðkþ4ÞnD

l
ðkþ5Þm þ 1ffiffiffi

2
p U�

2 �n½tan
WX�
1n þ X�

2n�Dl
2m

þ 1ffiffiffi
2

p U�
ðjþ2Þ �n½tan
WX�

1n þ X�
2n�Dl

ðjþ2Þm � yej
g2

U�
ðjþ2Þ �nX

�
4nD

l
ðjþ5Þm � ��

kjh

g2
U�

ðjþ2Þ �nX
�
ðkþ4ÞnD

l
ðhþ5Þm; (4)

N L
�nmn ¼ �V�

1 �nX
�
4nD

l
2m � V�

1 �nX
�
ðkþ4ÞnD

l
ðkþ2Þm þ 1ffiffiffi

2
p V�

2 �n½� tan
WX1n þ X2n�Dl
1m � ffiffiffi

2
p

tan
WV
�
ðjþ2Þ �nX1nDl

ðjþ5Þm

� yej
g2

V�
ðjþ2Þ �nX4nDl

ðjþ2Þm þ yej
g2

V�
ðjþ2Þ �nXðjþ4ÞnDl

2m � �khj

g2
V�

ðjþ2Þ �nXðkþ4ÞnDl
ðhþ2Þm; (5)

with �n runs from 1 to 5, n from 1 to 7, andm from 1 to 8. V
and U are unitary matrices used to diagonalize the charged
fermion mass matrix, and X is the diagonalizing matrix of
the neutral fermion mass matrix. Dl is the diagonalizing
matrix of the charged scalar mass matrix [9]. We quote the
corresponding terms N R

inm and N L
inm from an earlier

formula in Ref. [13] for comparison:

N R
inm ¼ 1ffiffiffi

2
p ½tan
WX�

1n þX�
2n�Dl

ðiþ2Þm � yei
g2

X�
4nD

l
ðiþ5Þm

� ��
kih

g2
X�

ðkþ4ÞnD
l
ðhþ5Þm;

N L
inm ¼ � ffiffiffi

2
p

tan
WX1nDl
ðiþ5Þm � yei

g2
X4nDl

ðiþ2Þm

þ yei
g2

Xðkþ4ÞnDl
2m � �khi

g2
Xðkþ4ÞnDl

ðhþ2Þm:

(6)

One-loop diagrams formed by the pair of coupling vertices
give rise to a class of contributions to the radiative decays
we call neutralinolike, which obviously does include the

ones with the physical neutralinos among the fermions
running inside the loop. The new contributions come
from the first five terms of Eq. (4) and first four terms of
Eq. (5), which are not seen in Ref. [13]. These new terms
involve Higssinos and winos on the external legs and are
easy to understand. For example, in N R

�nmn, the first term
denotes the interaction with wino, neutral Higgsino, and
charged Higgs. The second term is the interaction with
wino, L-handed sleptons, and the neutrino flavor states,
while the third term describes the interaction with charged
Higgsino, neutrino, and R-handed sleptons. The last two
terms denote the interactions with charged Higgsino,
charged Higgs, and the bino and wino, respectively. The
nonzero �’s do give the physical charged leptons some
Higgsino or gaugino components.

B. Neutral scalar vertices

Next, we come to the charginolike contributions. Here
we have to pair up neutral scalar vertices:

g2 ��ð��
�n Þ
�
CL�nmn

1� �5

2
þ CR�nmn

1þ �5

2

�
�ð��

n Þ	0
m þ H:c:;

(7)

where

3See, however, studies on the ��
i �

0
ijk RPV contributions for

similar processes in the quark sector [15]. In fact, the general
relevancy of the kind of parameter combinations to flavor
diagonal and off-diagonal dipole moments for fermions was first
pointed out in Ref. [12].
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CR�nmn ¼ U�
1 �nV2n

1ffiffiffi
2

p ½Ds
1m � iDs

6m� � U�
2 �nV1n

1ffiffiffi
2

p ½Ds
2m þ iDs

7m� � U�
ðjþ2Þ �nV1n

1ffiffiffi
2

p ½Ds
ðjþ2Þm þ iDs

ðjþ7Þm�

þ yej
g2

U�
2 �nVðjþ2Þn

1ffiffiffi
2

p ½Ds�
ðjþ2Þm � iDs�

ðjþ7Þm� �
yej
g2

U�
ðjþ2Þ �nVðjþ2Þn

1ffiffiffi
2

p ½Ds�
2m � iDs�

7m�

� ��
hjk

g2
U�

ðjþ2Þ �nVðkþ2Þn
1ffiffiffi
2

p ½Ds�
ðhþ2Þm � iDs�

ðhþ7Þm�; (8)

CL�nmn ¼ V�
2 �nU1n

1ffiffiffi
2

p ½Ds�
1m þ iDs�

6m� � V�
1 �nU2n

1ffiffiffi
2

p ½Ds�
2m � iDs�

7m� � V�
1 �nUðjþ2Þn

1ffiffiffi
2

p ½Ds�
ðjþ2Þm � iDs�

ðjþ7Þm�

þ yej
g2

V�
ðjþ2Þ �nU2n

1ffiffiffi
2

p ½Ds
ðjþ2Þm þ iDs

ðjþ7Þm� �
yej
g2

V�
ðjþ2Þ �nUðjþ2Þn

1ffiffiffi
2

p ½Ds
2m þ iDs

7m�

þ �khj

g2
V�

ðjþ2Þ �nUðkþ2Þn
1ffiffiffi
2

p ½Ds
ðhþ2Þm þ iDs

ðhþ7Þm�; (9)

with n and �n run from 1 to 5 and m from 1 to 10.Ds is the
diagonalizing matrix of the neutral scalar mass matrix [9].
Note that CL�nmn is equal to CR

�
nm �n by definition. These are to

replace CL�nmn and CR
�

nm �n of Ref. [13]4

CRinm ¼ V1n

1ffiffiffi
2

p ½Ds
ðiþ2Þm þ iDs

ðiþ7Þm�

� yei
g2

Vðiþ2Þn
1ffiffiffi
2

p ½Ds
2m � iDs

7m�

� ��
hik

g2
Vðkþ2Þn

1ffiffiffi
2

p ½Ds
ðhþ2Þm � iDs

ðjþ7Þm�;

CLinm ¼ yei
g2

U2n

1ffiffiffi
2

p ½Ds
ðiþ2Þm þ iDs

ðiþ7Þm�

� yei
g2

Uðjþ2Þn
1ffiffiffi
2

p ½Ds
2m þ iDs

7m�

þ �khi

g2
Uðkþ2Þn

1ffiffiffi
2

p ½Ds
ðhþ2Þm þ iDs

ðhþ7Þm�:

(10)

Note that Ds is actually real, though we are using Ds�
notation as if it is not. This is just a convention for tracing
the LFV structure of the various contributions in our ana-
lytical discussions below. Here, in fact, the real difference
between the Ds� and Ds terms is given explicitly by the
different signs between the corresponding scalar and pseu-
doscalar parts. Note that the yei terms in the above ex-
pressions can be written together with the � terms using the
���k notation and the identification of yei as �0ii. This
common structure between L̂0 and the L̂i’s is very useful in
our discussions below.

C. The decay amplitude

In applying the above interactions to the process
‘�j ðpÞ ! ‘�i �ðqÞ, we can write the amplitude as

T ¼ e��� �uiðp� qÞ
�
m‘ji���q

�

�
AL
2

1� �5

2

þ AR
2

1þ �5

2

��
ujðpÞ; (11)

where �� ¼ ��ðqÞ is the polarization four-vector of the
outgoing photon. The decay rate is then simply given by

�ð‘�j ! ‘�i �Þ ¼
�em

4
m5

‘j
ðjAL

2 j2 þ jAR
2 j2Þ: (12)

It is straightforward to calculate the contributions from
one-loop diagrams with the effective interactions of
Eqs. (3) and (7). The result for AL

2 (AR
2 ¼ AL

2 jL$R) is given
by

AL
2 ¼ �em

8�sin2
W

1

M2
~‘m

�
N L

ðiþ2ÞmnN
L�
ðjþ2ÞmnF2

�M2
�0
n

M2
~‘m

�

þN R
ðiþ2ÞmnN

R�
ðjþ2Þmn

m‘i

m‘j

F2

�M2
�0
n

M2
~‘m

�

þN L
ðiþ2ÞmnN

R�
ðjþ2Þmn

M�0
n

m‘j

F3

�M2
�0
n

M2
~‘m

��

� �em

8�sin2
W

1

M2
Sm

�
CLðiþ2ÞmnC

L�
ðjþ2ÞmnF5

�
M2

��
n

M2
Sm

�

þ CRðiþ2ÞmnC
R�
ðjþ2Þmn

m‘i

m‘j

F5

�
M2

��
n

M2
Sm

�

þ CLðiþ2ÞmnC
R�
ðjþ2Þmn

M��
n

m‘j

F6

�
M2

��
n

M2
Sm

��
; (13)

4Recall that in the latter case, one distinguishes the ‘‘external’’
charged lepton, approximated by an l�, from an ‘‘internal’’
charged fermion mass eigenstate.
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where

F2ðxÞ ¼ 1

6ð1� xÞ4 ð1� 6xþ 3x2 þ 2x3 � 6x2 lnxÞ;

F3ðxÞ ¼ 1

ð1� xÞ3 ð1� x2 þ 2x lnxÞ;

F5ðxÞ ¼ 1

6ð1� xÞ4 ð2þ 3x� 6x2 þ x3 þ 6x lnxÞ;

F6ðxÞ ¼ 1

ð1� xÞ3 ð�3þ 4x� x2 � 2 lnxÞ;

with summations over all physical fermion and scalar mass
eigenstates as represented by the n andm indices assumed.

The processes we discuss here violate lepton flavor
while conserving the lepton number. Before going into
the analysis, it is instructive to introduce the lepton-flavor
numbers Le, L�, and L� to the superfields as one does to

their corresponding components in the SM. The RPV
parameters bear violations of the lepton-flavor numbers.
It is obvious that in order to have a contribution to ‘�j !
‘�i �, a term must reduce Lj and increase Li by exactly one

unit while leaving the rest unchanged. For instance, ��
1�2

means increasing a Le and reducing a L� while leaving L�

unchanged. This simple but useful rule serves as a counter-
check of individual contributions discussed below.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present the results we obtained by a
careful numerical implementation of our � ! e�, � !
e�, and � ! �� formula with explicit numerical diago-
nalization of all the mass matrices involved. We isolate
various major contributions by singling out each of the
corresponding RPV parameter combinations as only non-
vanishing one at a time. The soft SUSY breaking contri-
butions to R-parity conserving slepton mixings are set to
zero (i.e. ~m2

L, ~m
2
E, and AE are set to be diagonal). A basic

set of typical values chosen for the input parameters are
given in Table I. We used this set of inputs unless otherwise
specified in the results below. A summary of bounds on
various combinations of two R-parity violating parameters
is shown in Table II. Neutrino mass bounds are also put
onto the plots. We perform numerical calculation of the
neutrino mass contributions from various parameters in-
volved based on formulas from Ref. [21]. The bounds are
obtained naively by requiring that individual neutrino mass
terms obtained be less than the sub-eV level. Note that each
of these bounds has different dependence on the back-
ground model parameters and are also typically different
from the leptonic decay contribution term plotted. Hence,
the comparison has only a simple illustrative value. A more
comprehensive cross analysis is, however, considered not
appropriate without taking further assumption on some of
the parameters involved. At the end, we also show some of
the effects of varying these input parameters.

A. The j���j or jB��j contributions
We first look at the contributions with a (���) or (���)

structure. The dominant terms do not involve the Higgsino
or wino component of the decaying or the product charged
leptons. They come from the third term of CR�nmn and the
only one �-coupling vertex of CL�nmn, corresponding to the
diagrams with the chirality flip on the internal fermion line.
Indeed, the role of the �i’s come in through the internal
fermion line, as discussed in good detail in Ref. [13]. Take
AL
2 , for example, the dominating term comes from

CL�n0mnC
R�
�nmn, where �n0 < �n. We then have the real scalar

part of the contribution, for example, proportional to

X5
n¼1

X5
m¼1

Uðjþ2Þ �nV�
ðj0þ2Þ �n0V

�
1nM��

n
Uðkþ2ÞnF6

�
M2

��
n

M2
Sm

�

�Ds�
ðjþ2ÞmD

s
ðhþ2Þm

�khj0

g2
: (14)

In the � ! e� case, we have �n0 ¼ 3 and �n ¼ 4 and then
use the relation Uðjþ2Þ �n � ðjþ2Þ; �n and V�

ðj0þ2Þ �n0 � ðj0þ2Þ; �n0 .
The expression (14) can be given by

X5
n¼1

X5
m¼1

V�
1nM��

n
Uðkþ2ÞnF6

�
M2

��
n

M2
Sm

�
Ds�

4mD
s
ðhþ2Þm

�kh1

g2
:

(15)

If the loop function F6 could be factored out from the
double summation, we would have a V�

1nM��
n
Uðkþ2Þn sum-

mation over fermions and a Ds�
4mD

s
ðhþ2Þm summation over

(real) scalars. Taking h ¼ 2 in the above expression (15),
we have the two dominating chargino contributions, the
n ¼ 1 and 2 parts, given approximately by

V �
1n�

�
kRR2n

�k21

g2
F6

�
M2

��
n

M2
Sm

�
; (16)

where RR is a 2� 2 matrix with order 1 matrix elements
(see Ref. [9] for details.) The expected combination��

k�k21

comes up, with k ¼ 1 and 3 admissible. The same situation

goes for the CR3mnC
L�
4mn part of AR

2 , with the combination

�k�
�
k12 (k ¼ 2 and 3 admissible here) instead.

Terms involving the Higgsino and wino components of
the decaying and product charged leptons are expected to
be proportional to Ua �n or Va �n for a ¼ 1 or 2, with [9]

TABLE I. Basic input SUSY parameters for the numerical
results presented. These values are adopted unless otherwise
specified.

M1 (GeV) M2 (GeV) �0 (GeV) tan�
100 200 135 40

~m2
L ð104 GeV2Þ ~m2

E ð104 GeV2Þ Ae (GeV)

diagf2; 1; 1; 1g diagf1; 1; 1g 100
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U aðiþ2Þ / �i; Vaðiþ2Þ / �imi: (17)

In the case of the � ! e�, if we focus on the ��
3 and �321

parameter combination, the new contributions of N L;R
3mn,

N L;R
4mn, C

L;R
3mn, and CL;R4mn do not contribute to the Brð� !

e�Þ, since they are only proportional to the �1 or �2, not
�3. Likewise, the �3�

�
312 also does not have a new con-

tribution to Brð� ! e�Þ. For the same reason, the contri-
butions of �1�

�
123, �

�
1�132, �2�

�
213, �

�
2�231, and all B��

and B�� type combinations to the branching ratio of lep-
tonic radiative decays are still essentially the same as the
results obtained by neglecting the wino and Higgino com-
ponents of the decaying and product charged leptons.

There are, however, new contributions that come from
the charginolike loop diagrams with the chirality flip on the
external fermion line. They are the product of the fourth
term and the �-coupling term of CR�nmn. There are two types

of diagrams. The first type comes from CR�n0mnC
R�
�nmn, where

�n0 < �n, with a � coupling in the CR
�

�nmn and a Yukawa
coupling in the CR�n0mn. It is given by

m‘

X5
n¼1

X5
m¼1

U�
2 �n0Uðjþ2Þ �nVðj0þ2ÞnV�

ðkþ2ÞnF5

�
M2

��
n

M2
Sm

�

�Ds�
ðj0þ2ÞmD

s
ðhþ2Þm

��hjk

g2

yej0

g2
; (18)

requiring further h ¼ j0 and k ¼ j0. Note that all off-
diagonal matrix elements of the form Vðkþ2Þn are very

small, those RPV ones (n ¼ 1 or 2), in particular, contain
a yek suppression [9]. A similar situation goes with the

scalar sumDs�
ðj0þ2ÞmD

s
ðhþ2Þm ¼ j0h by unitarity. m‘ stands

for the mass of the decaying lepton. There is a factor of yej0
suppression in the expression (18). The electroweak state
Feynman diagram of this expression is in Fig. 1. Note the
Higgsino component of an external line illustrated.
In the case of � ! ��, we have �n0 ¼ 4 and �n ¼ 5. After

we take j0 ¼ h ¼ k ¼ 2 in the expression (18) and use the
relation Uðjþ2Þ �n � ðjþ2Þ; �n and U�

2ðiþ2Þ / ��
i , the expres-

sion (18) can be given approximately by

m��
�
2

�232

g2

ye2
g2

F5

�
M2

��
n

M2
Sm

�
: (19)

The expected ��
2�232 comes out with a factor of ye2 (muon

Yukawa coupling) suppression. The same situation goes
for the case of the � ! e� and � ! e�, corresponding to
the combination of��

1�121 and�
�
1�131, respectively, with a

ye1 suppression.

Likewise, the second type comes from CR�n0mnC
R�
�nmn, where

�n0 < �n, with a � coupling in the CR�n0mn and a Yukawa

coupling in the CR
�

�nmn. It is given by

m‘

X5
n¼1

X5
m¼1

U2 �nU
�
ðj0þ2Þ �n0V

�
ðjþ2ÞnVðkþ2ÞnF5

�
M2

��
n

M2
Sm

�

�Ds
ðjþ2ÞmD

s�
ðhþ2Þm

���
hj0k

g2

yej
g2

: (20)

The electroweak state Feynman diagram for this case is in
Fig. 2. In the case of � ! e�, we have �n0 ¼ 3 and �n ¼ 4.
After taking j ¼ h ¼ k ¼ 2 and using the relation men-

h
y

γ

l
e j’ llλ hjk

k
j’ 0

h

l j l j

l
~0

l
0~
j’

m j

~
u n’−2l

µ n’−2

FIG. 1. Diagram with chirality flip on the external line, which has larger Yukawa suppression.

y

γ

ll
hj’k

*

k

l h

0~

l
j

λl
j

j
µm j

l 0~
j

j’l jl 0 e jh
~

u

FIG. 2. Diagram with chirality flip on the external line, which has smaller Yukawa suppression.
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tioned above, the expected �2�
�
212 would come out, with a

factor of muon Yukawa. The same situation goes for the
case of the � ! e�, and � ! ��, corresponding to the
combination of�3�

�
313 and�3�

�
323, respectively, with a tau

Yukawa. Compared with the first type, the second one does
have larger contributions, since the former have the
stronger Yukawa suppression. This result is confirmed by
our exact numerical calculation and could be understood
easily through Figs. 1 and 2, where the relevant illustrative
electroweak state one-loop diagrams are given. Because
these two types of contributions involve leptonic Yukawa
couplings, they have 1

cos� dependence. However, they are

not the dominant contributions, so the ��� or ��� type
contributions are still insensitive to the tan�.

We plot contours of the resulting branching ratio as a
function of (real) �2 and �212, �3 and �323, and �3 and
�313 in Figs. 3–5, respectively. The present experimental
limit is also shown and the allowed region at 90% C.L. is
shaded. The 90% C.L. upper limit on j��

k�k21j or j�k�
�
k12j

(normalized by j�0j ¼ 135 GeV) is given by

j��
3�321j
j�0j

;
j��

1�121j
j�0j ;

j�3�
�
312j

j�0j ;

j�2�
�
212j

j�0j < 2:1� 10�7:

(21)

Likewise, the 90%C.L. upper limit on j��
k�k32j or j�k�

�
k23j

(normalized by j�0j ¼ 135 GeV) is given by

j��
2�232j
j�0j

;
j��

1�132j
j�0j ;

j�3�
�
323j

j�0j ;

j�1�
�
123j

j�0j < 7:0� 10�4:

(22)

The 90% C.L. upper limit on j��
k�k31j or j�k�

�
k13j (nor-

malized by j�0j ¼ 135 GeV) is given by

j��
2�231j
j�0j

;
j��

1�131j
j�0j ;

j�3�
�
313j

j�0j ;

j�2�
�
213j

j�0j < 8:5� 10�4:

(23)

For the B�� structure, one of the contributions is from
the chirality flip inside the loop. In AL

2 , this term comes
from the � coupling term of CL�n0mn and the fifth term of

FIG. 3 (color online). Contours of Bð� ! e�Þ in the (real)
plane of ð�2; �212Þ. The 90% C.L. allowed region is shaded. The
dash-dotted (red) lines are sub-eV neutrino mass bounds.

FIG. 4 (color online). Contours of Bð� ! ��Þ in the (real)
plane of ð�3; �323Þ. The 90% C.L. allowed region is shaded. The
dash-dotted (red) lines are sub-eV neutrino mass bounds.

FIG. 5 (color online). Contours of Bð� ! e�Þ in the (real)
plane of ð�3; �313Þ. The 90% C.L. allowed region is shaded.
The dash-dotted (red) lines are sub-eV neutrino mass bounds.
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CR�nmn, where �n0 < �n. We then have the expression

X0

m

X5
n¼1

V�
ðj0þ2Þ �n0Uðjþ2Þ �nV�

ðjþ2ÞnM��
n
Uðkþ2ÞnF6

�
M2

��
n

M2
Sm

�

	 ½Ds
2m þ iDs

7m�½Ds
ðhþ2Þm þ iDs

ðhþ7Þm�
yej
g2

��hkj0

g2
;

(24)

where the
P0
m

notation means the unphysical Goldstone

mode is omitted. In the case of � ! e�, we have �n0 ¼ 3
and �n ¼ 4. Using V�

ðj0þ2Þ �n0 � ðj0þ2Þ �n0 and Uðjþ2Þ �n �
ðjþ2Þ �n and taking k ¼ 2, we then have the expression

X0

m

X5
n¼1

V�
4nM��

n
U4nF6

�
M2

��
n

M2
Sm

�
½Ds

2m þ iDs
7m�

� ½Ds
ðhþ2Þm þ iDs

ðhþ7Þm�
ye2
g2

��h21

g2
: (25)

The fermionic sum suggests a major contribution from n ¼
4, i.e. the muon itself with the m� dependence. However,

this contribution then has two factors of ‘‘muon Yukawa’’
(ye2) suppression. The scalar sum gives a contribution

proportional to B�
j0 tan�. The expected combination

B�
h�h21 comes up with an explicit tan� dependence. The

other contribution having similar strength to the one in
expression (24) discussed above is from the chirality flip on
the external muon line. In AL

2 , this term comes from the �
coupling term of CL�n0mn and the fifth term of CL�nmn, where

�n0 < �n. We then have the contribution proportional to

m‘

X5
n¼1

X5
m¼1

Vðjþ2Þ �nV�
ðj0þ2Þ �n0U

�
ðjþ2ÞnUðkþ2ÞnF5

�
M2

��
n

M2
Sm

�

�Ds
ðhþ2ÞmD

s�
2m

��hkj0

g2

�yej
g2

: (26)

In the case of � ! e�, we have �n0 ¼ 3 and �n ¼ 4. Using
Vðjþ2Þ �n � ðjþ2Þ; �n and V�

ðj0þ2Þ �n0 � ðj0þ2Þ �n0 and taking k ¼
2, we have the expression

m�

X5
n¼1

X5
m¼1

U�
4nU4nF5

�
M2

��
n

M2
Sm

�
Ds

ðhþ2ÞmD
s�
2m

��h21

g2

�ye2
g2

;

(27)

where we have h ¼ 3 or 1. The scalar sum gives the
dominating contribution proportional to B�

h. The expected

combination B�
h�h21 comes up. The 90% C.L. upper limit

on jB�
k�k21j or jBk�

�
k12j (normalized by j�0j ¼ 135 GeV)

is given by

jB�
3�321j
j�0j2

;
jB�

1�121j
j�0j2

;
jB3�

�
312j

j�0j2
;

jB2�
�
212j

j�0j2
< 1:3� 10�4:

(28)

Likewise, the 90% C.L. upper limit on jB�
k�k32j or jBk�

�
k23j

(normalized by j�0j ¼ 135 GeV) is given by

jB�
2�232j
j�0j2

;
jB�

1�132j
j�0j2

;
jB3�

�
323j

j�0j2
;

jB1�
�
123j

j�0j2
< 1:4� 10�3:

(29)

The 90% C.L. upper limit on jB�
k�k31j or jBk�

�
k13j (normal-

ized by j�0j ¼ 135 GeV) is given by

jB�
2�231j
j�0j2

;
jB�

1�131j
j�0j2

;
jB3�

�
313j

j�0j2
;

jB2�
�
213j

j�0j2
< 1:9� 10�3:

(30)

B. The jB��j contributions
Next, we will discuss the B�� and B�� type combina-

tions. The dominant terms come from two types of dia-
grams with the chirality flip inside the loop. One of them
comes from the third term of CR�nmn and the fifth term of

CL�nmn. In AR
2 , this term comes from CR�n0mnC

L�
�nmn, where �n0 <

�n. We then have the real scalar part of the contribution
proportional to

X5
n¼1

X5
m¼1

U�
ðj0þ2Þ �n0Vðjþ2Þ �nV1nM��

n
U�

ðjþ2ÞnF6

�
M2

��
n

M2
Sm

�

�Ds
ðj0þ2ÞmD

s�
2m

yej
g2

: (31)

The relevant electroweak state Feynman diagram is then in
Fig. 6. With only l�i on the external legs, it obviously
involves no Higgsino or wino component there. The domi-
nating part with the charginos (n ¼ 1 and 2) gives a �j

dependence through U�
ðjþ2Þn. The scalar sum gives the

contribution proportional to B�
j0 tan�. The expected com-

bination B�
j0�j comes up with an explicit tan� dependence.

Similarly, in AL
2 , this term comes from CL�n0mnC

R�
�nmn, again

�n0 < �n. It is given by

y

γ

l j’l j
− g

e
j

2W
~

l j

l j’

0~
l 0

~0

FIG. 6. The charginolike loop diagram contributes to the lep-
tonic radiative decay due to B�

j0�j combination.
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X5
n¼1

X5
m¼1

V�
ðj0þ2Þ �n0Uðjþ2Þ �nUðj0þ2ÞnM��

n
V�

1nF6

�
M2

��
n

M2
Sm

�

�Ds
2mD

s�
ðjþ2Þm

yej0

g2
: (32)

The expected combination ��
j0Bj comes up (see Fig. 7).

The other type of contribution comes from the second
term of CR�nmn and the fourth term of CL�nmn, which is a new
contribution not considered in Ref. [13]. It does have a
sizable contribution in some RPV parameter space regions.

In AR
2 , this term comes from CR�n0mnC

L�
�nmn. We then have the

contribution proportional to

X5
n¼1

X5
m¼1

�U�
2 �n0Vðjþ2Þ �nV1nM��

n
U�

2nF6

�
M2

��
n

M2
Sm

�

�Ds
2mD

s�
ðjþ2Þm

yej
g2

: (33)

We expect a Bj tan� from the scalar mixing part, and a

��
�n0�2 from U�

2 �n0 . In A
L
2 , this term comes from CL�n0mnC

R�
�nmn. It

is given by

X5
n¼1

X5
m¼1

�V�
ðj0þ2Þ �n0U2 �nU2nM��

n
V�

1nF6

�
M2

��
n

M2
Sm

�

�Ds
ðj0þ2ÞmD

s�
2m

yej0

g2
: (34)

Again, we expect a B�
j0 tan� from the scalar mixing part,

and a � �n�2 from the U2 �n. The relevant electroweak state
Feynman diagrams for the cases are given in Figs. 8 and 9,
respectively. They clearly illustrate the role of the Higgsino
component on an external line.
Taking the � ! e�, for example, we have �n0 ¼ 3 and

�n ¼ 4. The expression (31) would become

X5
n¼1

X5
m¼1

V1nM��
n
U�

4nF6

�
M2

��
n

M2
Sm

�
Ds

3mD
s�
2m

ye2
g2

; (35)

where we used the relation U�
ðj0þ2Þ3 � j0;1 and Vðjþ2Þ4 �

j;2. As mentioned above, the expected B�
1�2 combination

comes up. It clearly has a muon Yukawa suppression.
Likewise, the expression (32) becomes

X5
n¼1

X5
m¼1

V�
1nM��

n
U3nF6

�
M2

��
n

M2
Sm

�
Ds

2mD
s�
4m

ye1
g2

: (36)

It clearly has the ��
1B2 combination with an electron

Yukawa suppression, and is thus smaller than expres-
sion (35). It is confirmed by our numerical calculation.
The result we mentioned above is also discussed in
Ref. [13]. The expression (33) becomes

X5
n¼1

X5
m¼1

�U�
23V1nM��

n
U�

2nF6

�
M2

��
n

M2
Sm

�
Ds

2mD
s�
4m

ye2
g2

; (37)

and we have the ��
1B2 combination with a muon Yukawa

suppression. The expression (34) becomes

X5
n¼1

X5
m¼1

�U24V
�
1nM��

n
U2nF6

�
M2

��
n

M2
Sm

�
Ds

3mD
s�
2m

ye1
g2

; (38)

and we have the B�
1�2 combination with an electron

Yukawa suppression. We expect that this contribution is
smaller than in expression (37), because it has a larger
Yukawa suppression.
In summary, using an approximate formula of mass

eigenstate couplings, one can only obtain the expres-
sion (35) and (36). However, in this paper, we take all
contributions into account including diagrams with
Higssinos and winos on the external legs. Therefore, addi-
tional contributions, such as the expression (37) and (38) in

y

γ

e j’l l j’

−
j’l j

− g
2

~
W

l j

0~
0l

~0

FIG. 7. The charginolike loop diagram contributes to the lep-
tonic radiative decay due to ��

j0Bj combination.

y
h

γ

~
u n’−2l

µ n’−2

0le
j

l
~0

l 0

j l
~0

0

l
−
j W

~ g
2

FIG. 8. The charginolike loop diagram contributes to the leptonic radiative decay due to Bj�
�
�n0�2 combination, where �n0 � 2< j.
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this case, would be obtained. If we consider the B�
1�2

combination, the dominant term still comes from expres-
sion (35), since the new contribution, expression (38), has
an electron Yukawa suppression, while expression (35)
only has a muon Yukawa suppression. However, the situ-
ation would be totally changed in the combination of
��

1B2, since the expression (36) has an electron Yukawa
suppression while the new contribution, expression (37),
only has a muon Yukawa suppression. As a result, our
exact formula made the allowed region of the ðB2; �1Þ
parameter space more stringent than that in Ref. [13]. We
give contours of Brð� ! e�Þ in the real ðB2; �1Þ plane in
Fig. 10. The solid lines represent the results obtained by
using the exact mass eigenstate couplings, while the
dashed lines stand for the results obtained by using the

approximate ones. Likewise, the contour of Brð� ! e�Þ is
given in the real ðB3; �1Þ plane in Fig. 11. The present
experimental limit is also shown and the allowed region at
90% C.L. is shaded.
The 90% C.L. upper limit on j��Bj or j�B�j type

combinations (normalized by j�0j3, j�0j ¼ 135 GeV) is
given by

jB�
1�2j

j�0j3
< 6:5� 10�7;

jB2�
�
1j

j�0j3
< 7:1� 10�7;

jB�
1�3j

j�0j3
< 1:4� 10�4;

jB3�
�
1j

j�0j3
< 1:5� 10�4;

jB�
2�3j

j�0j3
< 1:1� 10�4;

jB3�
�
2j

j�0j3
< 1:2� 10�4:

(39)

FIG. 10 (color online). Contours of Bð� ! e�Þ in the (real)
plane of ðB2; �1Þ. The 90% C.L. allowed region is shaded. The
solid lines represent the results obtained by using the exact mass
eigenstate couplings, while the dashed lines stand for the results
obtained by using the approximate ones. The dash-dotted (red)
lines are neutrino mass bounds. Notice the MEG experiment
targets probing the decay at 10�13–10�14.

y

γ

.

e j’l l j’

−~
W

l
0~

0

0 l j’
0

~

l
−
0h

~
u

l

n−2

n−2

µ

g
2

FIG. 9. The charginolike loop diagram contributes to the leptonic radiative decay due to B�
j0� �n�2 combination, where j0 < �n� 2.

FIG. 11 (color online). Contours of Bð� ! e�Þ in the (real)
plane of ðB3; �1Þ. The 90% C.L. allowed region is shaded. The
solid lines represent the results obtained by using the exact mass
eigenstate couplings, while the dashed lines stand for the results
obtained by using the approximate ones. The dash-dotted (red)
lines are neutrino mass bounds.
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For a direct contrast, we also give the incorrect upper
bounds obtained by using the approximate formula:

jB2�
�
1j

j�0j3
< 1:4� 10�4;

jB3�
�
1j

j�0j3
< 3:5� 100;

jB3�
�
2j

j�0j3
< 2:3� 10�3:

We can see clearly that the ratio between the limit of
jB2�

�
1j

j�0j3
and the correct one in Eq. (39) is approximately the ratio of
ye2
ye1

. Therefore, the difference of the experimental bounds

between the exact formula (solid line) and the approximate
formula (dashed line) in Fig. 10 is the result of different
Yukawa suppressions, which is consistent with our analy-
sis. If we take the expected improvement from the MEG
experiment into account and assume Brð� ! e�Þ<
10�14, we get

jB�
1�2j

j�0j3
< 1:2� 10�8;

jB2�
�
1j

j�0j3
< 1:3� 10�8:

TABLE II. Summary of bounds on various combinations of
two R-parity violating parameters, normalized by j�0j ¼
135 GeV. The input parameters are as in Table I.

j��
3
�321j

j�0j ,
j��

1
�121j

j�0j ,
j�3�

�
312

j
j�0j , or

j�2�
�
212

j
j�0j <2:1� 10�7

j��
2
�232j

j�0j ,
j��

1
�132j

j�0j ,
j�3�

�
323

j
j�0j , or

j�1�
�
123

j
j�0j <7:0� 10�4

j��
2
�231j

j�0j ,
j��

1
�131j

j�0j ,
j�3�

�
313

j
j�0j , or

j�2�
�
213

j
j�0j <8:5� 10�4

jB�
1
�2j

j�0j3 <6:5� 10�7

jB2�
�
1
j

j�0j3 <7:1� 10�7

jB�
1
�3j

j�0j3 <1:4� 10�4

jB3�
�
1
j

j�0j3 <1:5� 10�4

jB�
2
�3j

j�0j3 <1:1� 10�4

jB3�
�
2
j

j�0j3 <1:2� 10�4

j��
1
�2j

j�0j2 <3:7� 10�5

j��
1
�3j

j�0j2 <4:7� 10�3

j��
2
�3j

j�0j2 <3:6� 10�3

jB�
3
�321j

j�0j2 ,
jB�

1
�121j

j�0j2 ,
jB3�

�
312

j
j�0j2 , or

jB2�
�
212

j
j�0j2 <1:3� 10�4

jB�
2
�232j

j�0j2 ,
jB�

1
�132j

j�0j2 ,
jB3�

�
323

j
j�0j2 , or

jB1�
�
123

j
j�0j2 <1:4� 10�3

jB�
2
�231j

j�0j2 ,
jB�

1
�131j

j�0j2 ,
jB3�

�
313

j
j�0j2 , or

jB2�
�
213

j
j�0j2 <1:9� 10�3

TABLE III. Effects of parameter variations of interest, on the bounds of j��
1�121j 	

ð135 GeVÞ�1 and j��
1B2j 	 ð135 GeVÞ�3. Note that the fixed mass scale of 135 GeV is used

for normalization to extract numerical bounds.

Parameter changes Normalized numerical bounds
j��

1
�121j

ð135 GeVÞ
j��

1
B2j

ð135 GeVÞ3

Original inputs of Table I <2:1� 10�7 <7:1� 10�7

(i) ~m2
L ¼ diagf20 000; 5002; 5002; 5002g GeV2

~m2
E ¼ diagf5002; 5002; 5002g GeV2

�0 ¼ 500 GeV <7:5� 10�6 <2:1� 10�4

�0 ¼ 250 GeV <2:7� 10�6 <3:0� 10�5

�0 ¼ 135 GeV <1:3� 10�6 <7:1� 10�6

�0 ¼ �135 GeV <1:3� 10�6 <7:3� 10�6

�0 ¼ �250 GeV <2:9� 10�6 <3:1� 10�5

�0 ¼ �500 GeV <8:2� 10�6 <2:1� 10�4

(ii) M1 ¼ 1
2M2 ¼ 500 GeV <1:2� 10�6 <4:5� 10�6

(iii) ~m2
L ¼ 20 000� diagf1; 1; 1; 1g GeV2 <2:9� 10�7 <9:7� 10�7

~m2
L ¼ diagf20 000; 10002; 10002; 10002g GeV2 <3:0� 10�6 <2:1� 10�5

(iv) ~m2
E ¼ 20 000� diagf1; 1; 1g GeV2 <2:1� 10�7 <7:3� 10�7

~m2
E ¼ diagf10002; 10002; 10002g GeV2 <2:2� 10�7 <8:7� 10�7

(v) ~m2
L ¼ diagf20 000; 5002; 5002; 5002g GeV2

~m2
E ¼ diagf5002; 5002; 5002g GeV2

�0 ¼ 135 GeV, tan� ¼ 2 <8:7� 10�7 <2:6� 10�3

tan� ¼ 10 <1:1� 10�6 <1:1� 10�4

tan� ¼ 50 <1:3� 10�6 <4:5� 10�6

�0 ¼ 250 GeV, tan� ¼ 2 <1:7� 10�6 <1:2� 10�2

tan� ¼ 10 <2:4� 10�6 <4:7� 10�4

tan� ¼ 50 <2:7� 10�6 <1:9� 10�5

�0 ¼ 500 GeV, tan� ¼ 2 <3:9� 10�6 <8:3� 10�2

tan� ¼ 10 <6:4� 10�6 <3:2� 10�3

tan� ¼ 50 <7:5� 10�6 <1:3� 10�4
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Notice that this constraint is even more stringent than the
one from neutrino masses as you can see in Fig. 10.

C. Parameter variations

In this section, we illustrate the effects of varying the
input SUSY parameters on the bounds, using j��

1�121j and
j��

1B2j as examples. The results are summarized in
Table III. In the table, we list the variation of the �0 and
the M1 in parts i and ii, respectively. Our numerical results
show that the bound is most stringent for small j�0j in both
j��

1�121j and j��
1B2j cases. In addition, the increase of M1

also weakens the bound. These results are reasonable since
increasing �0 and M1 ¼ 1

2M2 essentially increases the

chargino and neutralino masses. In the case of j��
1�121j,

the dominant diagram involves mainly the ~l02, while the

j��
1B2j case involves the mixing between ~l02 and ~l00.

Therefore, varying ~m2
E does not have much effect on the

bounds while varying the corresponding entries in ~m2
L

changes the bounds significantly (see parts iii and iv).
Finally, part v of Table III shows the tan� dependence of

the results. From the table we can see that varying tan� has
only a little effect on j��

1�121j, but a rather significant
effect on j��

1B2j. Although the subdominant contributions
mentioned in Sec. IVB involve the Yukawa couplings, and
thus have the 1

cos� dependence, the dominant contributions

do not have the tan� dependence [13]. As a result, the lack
of sensitivity to tan� in the former case is to be expected.
In the latter case, the numerical result shows that the bound
has a strong dependence on tan�. There are two sources
that result in this dependence. The first one is the 1

cos�

dependence of the Yukawa coupling. The other is the

explicit tan� dependence of the dominant terms mentioned
in Sec. IVC. Figure 12 shows a contour plot of the experi-
mental bound of Bð� ! e�Þ in the (real) plane of ðB2; �1Þ
for various values of tan�. It not only shows the tan�
dependence of the results, but also illustrates that the
experimental bound gives a more stringent constraint in
the large tan� region.

V. CONCLUSION

In this paper, we have given explicit formulas and de-
tailed discussions on the full one-loop contribution to the
radiative decay of � and �, namely, � ! e�, � ! e�, and
� ! �� for the generic supersymmetric SM (without
R parity). We use the exact formula of the mass eigenstate
couplings to calculate the branching ratios of these leptonic
radiative decay processes and compare them with the
results obtained in an earlier approximation in Ref. [13].
In some combinations of RPV parameters, the results
obtained by using these two approaches are exactly the
same such as �1�

�
123, �

�
1�132, �2�

�
213, �

�
2�231, �

�
3�321,

�3�
�
312, and all B�� and B�� type combinations. The

dominant terms of the other ��� or ��� combinations
such as �2�

�
212, ��

1�121, �3�
�
313, ��

1�131, ��
3�323, and

�2�
�
232 are still the same in the two methods, but the

subdominant terms come from a new contribution. In the
B�� or B�� contributions, the dominant contributions of
B�
1�2, B

�
1�3, and B�

2�3 are the same in the exact and
approximate formulas. However, the dominant contribu-
tions of ��

1B2, �
�
1B3, and ��

2B3 are totally new. The upper
bound on these combinations obtained from the experi-
mental limit are

jB2�
�
1j

j�0j3
< 7:1� 10�7;

jB3�
�
1j

j�0j3
< 1:5� 10�4;

jB3�
�
2j

j�0j3
< 1:2� 10�4:

As a result, our exact formulas impose more stringent
constraints on the admissible region of parameter spaces
for the GSSM, or SUSY without R parity. If we also
consider the expected improvement from the MEG experi-
ment and assume Brð� ! e�Þ< 10�14, we could get even
more stringent constraints on the B�

2�1 combination

jB2�
�
1j

j�0j3
< 1:3� 10�8:

The constraint is even more stringent than the naive con-
straint from neutrino masses imposed here, which indicates
a very encouraging scenario for future probing of the
leptonic radiative decay and may be as well as the
� decays. A more involved analysis will have to be per-
formed on the full model parameter space matching the
radiative decays to neutrino mass generations. We want to
highlight though that the scale for the actual neutrino
masses is not expected to be reduced while probes on the

β β

β

β
β

FIG. 12 (color online). Contours of the experimental bound of
Bð� ! e�Þ in the (real) plane of ðB2; �1Þ with different values
of tan�, ranging from 10 to 50, among which tan� ¼ 50 gives
the most stringent constraint and the corresponding 90% C.L.
allowed region is shaded.
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leptonic radiative decays, and for that matter the other
lepton number/flavor violating decays, can be improved.
That makes the latter a promising ground to further explore
models like SUSY without R parity with rich lepton num-
ber/flavor violating structures.
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