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We present a hybrid RSI/RSII model in which we both solve the hierarchy problem and produce a

continuum of Kaluza-Klein graviton modes. In this model, four-dimensional gravity can be reproduced,

and the radion mode can be stabilized. We then modify the hybrid gravity model to include SUð2ÞL �
SUð2ÞR � Uð1ÞB�L bulk gauge fields. Electroweak symmetry is broken by the choice of appropriate

boundary conditions. By adjusting the size of one region of the extra dimension, we show that the S

parameter can be decreased while protecting the � parameter from corrections. We find that as the S

parameter is decreased by �60%, MZ0 and MW0 stay below 1800 GeV, protecting unitarity.
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I. INTRODUCTION

The idea of warped extra dimensions was first intro-
duced in 1983 when Rubakov and Shaposhnikov suggested
that a vanishing four-dimensional cosmological constant
would result if a five-dimensional bulk vacuum energy was
tuned to cancel the large four-dimensional vacuum energy
of the standard model (SM) fields [1]. This work was
popularized in 1999 when Randall and Sundrum intro-
duced two famous examples of warped extra dimensions,
which led to interesting and distinct phenomenology (here-
after called RSI [2] and RSII [3]). In the first model (RSI), a
finite warped extra dimension living between a positive and
a negative tension brane was used to solve the hierarchy
problem. This model predicts Kaluza-Klein (KK) graviton
excitations to have masses on the order of a few TeV which
could possibly be detected at the Large Hadron Collider
(LHC) in the near future. In the RSII model, Randall and
Sundrum considered a warped infinite extra dimension.
Although they no longer solved the hierarchy problem,
they found that four-dimensional gravity can still be repro-
duced in an infinite extra dimension since the corrections to
Newton’s law at large distances are suppressed on the
positive tension brane.

Since these models were first introduced, many exten-
sions of their work have been proposed. Some of these
extensions include adding extra branes to the bulk of RSII
[4–6], localizing gravity on thick branes [7], adding SM
fields to the bulk of RSI [8], Higgless models in an RSI
background [9], etc. In one of these models [5], an extra
negative tension brane was included in the bulk of the
infinite extra dimension of RSII. This model, if stable,
was designed to solve the hierarchy problem as in RSI
but with an infinite extra dimension. However, it was found
that when the scalar gravity mode (radion) of the five-
dimensional graviton is carefully considered, the theory
becomes unstable [10]. This instability arose since the

kinetic term of the radion in these theories was found to
be negative [11]. The bulk stress tensor violates the pos-
itivity of energy condition and the brane is unstable to
crumpling. More recently, Agashe et al. [12] pointed out
that if one could stabilize a IR-UV-IR model with Z2 parity
about the UV brane, one could address the hierarchy
problem naturally. They argue that in an alternate UV-IR-
UVmodel, one would have to add large brane kinetic terms
in order to solve the hierarchy problem. In Sec. II we
propose a model in which the negative tension brane is
placed at an orbifold fixed point with positive tension
branes living in the bulk of an infinite, warped extra

dimension (see Fig. 1). The metric is given by ds2 ¼
e�AðyÞdx2 þ dy2 where the warp factor is

AðyÞ ¼
��2k1jyj if 0 � jyj � r
2k2jyj � 2ðk1 þ k2Þr if jyj> r:

(1.1)

As in Lykken and Randall [4], this theory has a continuous
KK spectrum, while also solving the hierarchy problem.
However, the phenomenology of our model is more of a
hybrid between RSI and RSII in which the KK gravitons of
RSI become resonances. Placing a negative tension brane
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FIG. 1. The hybrid RSI/RSII gravity model. The space is
orbifolded around y ¼ 0 and extends to infinity.
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at an orbifold fixed point projects out the negative energy
mode of the radion and therefore allows the theory to be
stabilized. We calculate the gravitational spectrum and
show how this theory can be stabilized.

Warped extra dimensions have also proven to be inter-
esting for models of Higgsless electroweak symmetry
breaking. In Cacciapaglia et al. [9], SUð2ÞL � SUð2ÞR �
Uð1ÞB�L gauge fields were included in the bulk of anti-
de Sitter space (AdS) space. Custodial isospin was pre-
served by breaking SUð2ÞL � SUð2ÞR down to SUð2ÞD on
the negative tension brane [13], while SUð2ÞR � Uð1ÞB�L

was broken down to Uð1ÞY on the Planck brane. It was
found, as in technicolor theories, that an order one S
parameter is produced in conflict with experiments. In
order to address this problem, a Planck brane kinetic
term was added, which was found to decrease the S pa-
rameter but at the price of destroying unitarity. They also
added a Uð1ÞB�L brane kinetic term to the TeV brane,
which also lowered the S parameter but at the price of
making T nonzero. More recently, Carone et al. [14]
showed that a holographic UV-IR-UV model can be con-
structed, with SUð2ÞL � Uð1ÞB�L gauge fields in the bulk,
in which a custodial symmetry is generated without intro-
ducing a SUð2ÞR gauge group. They found that like the
standard Higgsless model, the S parameter is too large. In
Sec. III, we modify our hybrid model to include gauge
fields in the warped extra dimension. Following Csàki
et al. [9], we include SUð2ÞL � SUð2ÞR � Uð1ÞB�L gauge
fields in the bulk and use boundary conditions to break the
symmetry in order to reproduce the SM on one of our
branes. In order to have a normalizable photon, we have
brought in another negative tension brane from infinity to
cut off the space at an orbifold fixed point (see Fig. 2). We
find corrections to the � parameter to be suppressed,
signaling that an approximate custodial symmetry is pre-
served. We calculate oblique corrections in this model and
find that as the added slice of the extra dimension in-

creases, the S parameter decreases. We stress that this
method of reducing the S parameter appears to keep cor-
rections to the � parameter suppressed, while preserving
unitarity for a decrease in S up to 60%.

II. GRAVITY IN THE HYBRID MODEL

Our theory is defined by placing a negative tension brane
at an orbifold fixed point (y ¼ 0) in an infinite fifth dimen-
sion (the TeV brane). Two additional positive tension
branes are added at the points y ¼ �r (the Planck branes).
It is important to point out that unlike the theories proposed
in [4,5], we place the TeV brane at the orbifold fixed point,
which (as we will discuss later) stabilizes the Radion mode
(see [11]). The Z2 symmetry demands that the tensions of
the two additional Planck branes be equal. The action takes
the form

S ¼
Z

d5x
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð5Þ

q
½2Mð5Þ3

pl R��b �
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
V1�ðyÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð4Þ

q
V2f�ðyþ rÞ þ �ðy� rÞg�: (2.1)

If we assume four-dimensional Poincaré invariance, the
metric is given by

ds2 ¼ gMNdx
MdxN; (2.2)

with

gMNðx�; yÞ ¼

�e�AðyÞ 0 0 0 0
0 e�AðyÞ 0 0 0
0 0 e�AðyÞ 0
0 0 0 e�AðyÞ 0
0 0 0 0 1

0
BBBBB@

1
CCCCCA

(2.3)

and

AðyÞ ¼
��2k1jyj if 0 � jyj � r
2k2jyj � 2ðk1 þ k2Þr if jyj> r:

(2.4)

As in [2], the assumption of four-dimensional Poincaré
invariance leads one to derive the tension of the TeV brane

located at y¼0 to be V1¼�24Mð5Þ3
pl k1, and the cosmo-

logical constant between the Planck and TeV branes is

�1¼�24Mð5Þ
pl k

2
1. Likewise, the tension on the Planck

brane located at y¼ r is found to be V2¼24Mð5Þ3
pl �

ðk1þk2Þ, and the cosmological constant outside the

Planck branes is�2 ¼ �24Mð5Þ
pl k

2
2. It is useful to transform

the metric to manifestly conformally flat coordinates,
where Einstein’s equations take a simpler form. In these
coordinates, the metric takes the form

gMNðx�; zÞ ¼ e�AðzÞdiagð�1; 1; 1; 1; 1Þ; (2.5)

where
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FIG. 2. The hybrid RSI/RSII Higgsless model. The space is
orbifolded around y ¼ 0 and ends at the location of the outside
negative tension branes (y ¼ �ðr1 þ r2Þ).

BRIAN GLOVER AND JONG ANLY TAN PHYSICAL REVIEW D 79, 115012 (2009)

115012-2



e�AðzÞ ¼
� 1
ð�k1jzjþ1Þ2 if z � zb

1
ðk2jzjþCÞ2 if z > zb:

(2.6)

Now the Planck branes are located at zb ¼
�ð1� e�k1=rÞ=k1, and the constant C ¼ �k2=k1 þ
exp½�k1r�ð1þ k2=k1Þ is chosen such that zb is the same
for the two slices of AdS space.

A. Kaluza-Klein modes

For now we will just consider the spin-2 fluctuation of
the metric. The scalar mode (radion) will be discussed in
the following section. Consider a perturbation of the form

ds2 ¼ e�AðzÞðdx�dx�ð��� þ h��ðx; zÞÞ þ dz2Þ: (2.7)

The transverse traceless solution can be written as

h��ðx; zÞ ¼ e3AðzÞ=4 ~h��ðxÞc ðzÞ, where h4
~h��ðxÞ ¼

m2 ~h��ðxÞ and
½�@2z þ VðzÞ�c ðzÞ ¼ m2c ðzÞ: (2.8)

The potential VðzÞ is found to be [3]

VðzÞ ¼ 9

16
ð@zAðzÞÞ2 � 3

4
@2zAðzÞ

¼ f
15k2

1

4ð�k1jzjþ1Þ2 if jzj � zb

15k22
4ðk2jzjþCÞ2 if jzj> zb

g þ 3k1
ð�k1 þ 1Þ�ðzÞ

� 3

2

�
k1

ð�k1jzj þ 1Þ þ
k2

ðk2jzj þ CÞ
�

� ð�ðz� zbÞ þ �ðzþ zbÞÞ:
As usual, since the equation of motion for the Kaluza-

Klein modes can be written in the form Q̂yQ̂c ðzÞ ¼
m2c ðzÞ, with Q̂ ¼ @z þ ð3=4ÞA0ðzÞ, there is a zero mode

solution that satisfies Q̂c 0ðzÞ ¼ 0:

c 0ðzÞ ¼ N exp½�3
4AðzÞ�: (2.9)

N is found by normalization N ¼
½R exp½�3=2AðzÞ�dz��1=2.
The higher KK modes are found by solving Eq. (2.8)

subject to the following boundary conditions and normal-
ization:
(1) c mðzÞ is continuous at the Planck branes (z ¼ �zb).
(2) c 0

mðzÞ is discontinuous at
(a) the TeV brane: �ðc 0

mðzÞÞjz¼0 ¼ 3k1c mð0Þ.
(b) the Planck branes �ðc 0

mðzÞÞjz¼�zb ¼
�3=2ð k1

�k1jzbjþ1
þ k2

k2jzbjþC
Þc mð�zbÞ.

(3) c mðzÞ approaches a normalized plane wave solution
for very large z.

The solution is

c mðzÞ ¼
� ð�jzj þ 1=k1Þ1=2½amY2ðmð�jzj þ 1=k1ÞÞ þ bmJ2ðmð�jzj þ 1=k1ÞÞ� if jzj � zb
ðjzj þ C=k2Þ1=2½a0mY2ðmðjzj þ C=k2ÞÞ þ b0mJ2ðmðjzj þ C=k2ÞÞ� if jzj> zb:

(2.10)

The boundary conditions and normalization give the fol-
lowing relationships among the coefficients:

amY2ðme�k1r=k1Þ þ bmJ2ðme�k1r=k1Þ

¼
�
k1
k2

�
1=2½a0mY2ðme�k1r=k2Þ þ b0mJ2ðme�k1r=k2Þ�;

(2.11)

amY1ðm=k1Þ þ bmJ1ðm=k1Þ ¼ 0; (2.12)

amY1ðme�k1r=k1Þ þ bmJ1ðme�k1r=k1Þ

¼
�
k1
k2

�
1=2½a0mY1ðme�k1r=k2Þ þ b0mJ1ðme�k1r=k2Þ�;

(2.13)

a02m þ b02m ¼ m: (2.14)

Unlike the RSI model, there is a continuous spectrum of
graviton modes (all m> 0 are allowed). The RSI spectrum
is discrete and given by mn ¼ k1xn, where xn denotes the
zeros of J1ðxÞ [15].1 In Fig. 3 we compare the hybrid RS
KK spectrum to that of RSI. We have chosen order one
parameters such that k1r ¼ 30. The resonances in the
spectrum correspond nicely to the discrete spectrum found
in RSI. Since the modes are suppressed compared to the
zero mode, the corrections to Newton’s law are small:

0. 5. 10. 15. 20. 25.
m k1

2 10 11

4 10 11

6 10 11

8 10 11

1 10 10
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0
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KK Mode Spectrum at z 0

kRS1 6,rRS1 5

k1 6,k2 7,r 5

FIG. 3. Mass spectrum for both the hybrid RS (solid) and RSI
(dashed) models. The hybrid RS model’s spectrum was normal-
ized by the zero mode’s value at z ¼ 0.

1Since we have normalized the metric to be 1 at the TeV brane
instead of the Planck brane as done in RSI [2], our spectrum is
multiplied by exp½k1r� as compared to the solution found in [15].
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Vð �x; z ¼ 0; �x0; z0 ¼ 0Þ

¼ 1

2M3
pl

jc 0ð0Þj2
j �x� �x0j þ

Z 1

0

1

2M3
pl

� jc mð0Þj2e�mj �x� �x0j

j �x� �x0j dm; (2.15)

� 1

2M3
pl

jc 0ð0Þj2
j �x� �x0j

�
1þ

Z 1

0
e�mj �x� �x0j jc mð0Þj2

jc 0ð0Þj2
dm

�
:

(2.16)

B. Radion stabilization

As mentioned above, placing the TeV brane at the orbi-
fold fixed point will allow the radion mode to be stabilized.
To see this we need to include the spin-0 fluctuation (fðxÞ)
of the five-dimensional graviton. The proper way to in-
clude this mode was discussed in [11,16]. Starting in a
gauge where both branes are flat, the metric can be pa-
rameterized as [11]

ds2 ¼ aðy; xÞ2½��� þ h�� þ 2�ðyÞ@�@�fðxÞ�dx�dx�
þ bðy; xÞ2dy2; (2.17)

aðy; xÞ ¼ e�AðyÞ½1þ BðyÞfðxÞ�; (2.18)

bðy; xÞ ¼ ð@y logaÞ2
A0ðyÞ2=4 ; (2.19)

where �ðyÞ depends on the coordinate choice and has @y�

fixed at the position of the branes by matching conditions.
It was found that with the additional relation

BðyÞ ¼ 2eAðyÞ þ e�AðyÞA0ðyÞ�0ðyÞ
� eAðyÞ

Z y

0
e�2Að~yÞA00ð~yÞ�0ð~yÞd~y; (2.20)

the spin-2 calculation goes through as done in the previous
section and is decoupled from the spin-0 radion mode
(fðxÞ). For the warp factor given in Eq. (2.4), Pilo et al.
found that the effective four-dimensional Lagrangian con-
tains the term [11]

L � 2Mð5Þ3
pl

Z r

0
dy

3B0ðyÞ
A0ðyÞ=2 ðfhfÞ; (2.21)

¼ 24Mð5Þ3
pl

2k1

�
1� e�2k1r

k2
k2 þ k1

�Z ffiffiffiffiffiffiffi�g
p

d4xfhf;

(2.22)

where the values of BðyÞ are fixed at the brane positions by
matching conditions. Notice that for positive definite k1
and k2, the kinetic term is always positive in our model.
This should be compared to models with a negative tension
brane in the bulk [4,16]. For these models, k1 is opposite in

sign, and the kinetic term therefore can become negative.
Models with a negative tension brane in the bulk may
therefore contain a ghost radion mode. In our model,
however, the radion mode can be stabilized using a mecha-
nism like the one introduced by Goldberger and Wise [17].
In addition, since our model has a normalizable graviton
zero mode and lacks a ghost radion mode, we do not expect
IR modifications to gravity [10,11].

III. HIGGSLESS SYMMETRY BREAKING IN THE
HYBRID MODEL

In this section we will put SUð2ÞL � SUð2ÞR � Uð1ÞB�L

gauge fields in the bulk. The metric is given by (2.5) [see
Fig. 2]. However, unlike before, in this section we cut off
the infinite extra dimension in order to make the massless
mode normalizable.2 This is accomplished by adding a
negative tension brane at an orbifold fixed point y ¼ ðr1 þ
r2Þ [or z ¼ zb2 ¼ 1=k2ðeðk2r2�k1r1Þ � k2=k1ðe�k1r1 � 1þ
k1=k2e

�k1r1ÞÞ in z coordinates]. The five-dimensional ac-
tion for this model is

S ¼
Z

d4x
Z

dz
ffiffiffiffiffiffiffiffiffiffiffiffi
�gð5Þ

q �
� 1

4
Ra
MNR

aMN

� 1

4
La
MNL

aMN � 1

4
BMNB

MN

�
; (3.1)

where Ra
MN , L

a
MN , and BMN are the SUð2ÞL, SUð2ÞR, and

Uð1ÞB�L field strengths.
Using the same procedure as [9], we choose to work in

the unitary gauge where all KK modes of the fields La
5 , R

a
5 ,

B5 are unphysical. Boundary conditions were imposed to
break the SUð2ÞL � SUð2ÞR � Uð1ÞB�L symmetry to the
standard model at z ¼ zb2 and to SUð2ÞD � Uð1ÞB�L at
z ¼ 0. The boundary conditions are

z ¼ 0:

�
@zðLa

� þ Ra
�Þ ¼ 0; La

� � Ra
� ¼ 0; @zB� ¼ 0;

La
5 þ Ra

5 ¼ 0; @zðLa
5 � Ra

5Þ ¼ 0; B5 ¼ 0

(3.2)

z ¼ zb2:

� @zLa
� ¼ 0; R1;2

� ¼ 0
@zðg5B� þ ~g5R

3
�Þ ¼ 0; ~g5B� � g5R

3
� ¼ 0;

La
5 ¼ 0; Ra

5 ¼ 0; B5 ¼ 0

(3.3)

where g5 and ~g5 are the five-dimensional gauge coupling
for SUð2ÞL;R and Uð1ÞB�L, respectively. The motivation for

these boundary conditions is given in Ref. [9]. These
boundary conditions are consistent with models that have
a bifundamental Higgs field in the ð2; 2Þ0 representation
located at z ¼ 0 that break SUð2ÞL � SUð2ÞR ! SUð2ÞD.
On the second IR brane, at z ¼ zb2, there is a boundary

2We will now use r1 instead of r to denote the distance of the
first brane to the origin. Also, we will only consider half of the
space for most of the discussion since the other half is obtained
by orbifolding about the origin.
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Higgs in the ð1; 2Þ1=2 representation under SUð2ÞL �
SUð2ÞR � Uð1ÞB�L, which will break SUð2ÞR �
Uð1ÞB�L ! Uð1ÞY . In order to decouple the boundary
Higgs fields from the theory, we take all of the Higgs
vacuum expectation values to infinity. In addition to the
boundary conditions, we impose continuity for the wave
function and their derivatives at the UV brane, located at
z ¼ zb, as dictated by the equations of motion. The bulk

equation of motion for the gauge fields is

�
@2z0 �

1

z0
@z0 þ q2

k21;2

�
c ðz0Þ ¼ 0; (3.4)

where z0 ¼ �k1zþ 1 or k2zþ C for 0 � z � zb and zb �
z � zb2, respectively. The solution to this equation is given
by

c d
i ¼

� ð�k1zþ 1Þðadi J1ðqið�zþ 1=k1ÞÞ þ bdi Y1ðqið�zþ 1=k1ÞÞÞ; 0 � z � zb
ðk2zþ CÞða0di J1ðqiðzþ C=k2ÞÞ þ b0di Y1ðqiðzþ C=k2ÞÞÞ; zb � z � zb2

; (3.5)

where d labels the corresponding gauge bosons
ðW�; L3; B; R3Þ. Following [9], we expand the fields in
their Kaluza-Klein modes as follows:

B�ðx; zÞ ¼ 1

~g5
a0�ðxÞ þ

X1
j¼1

c B
j ðzÞZj

�ðxÞ; (3.6)

L3
�ðx; zÞ ¼ 1

g5
a0�ðxÞ þ

X1
j¼1

c L3
j ðzÞZj

�ðxÞ; (3.7)

R3
�ðx; zÞ ¼ 1

g5
a0�ðxÞ þ

X1
j¼1

c R3
j ðzÞZj

�ðxÞ; (3.8)

L�
�ðx; zÞ ¼

X1
j¼1

c L�
j ðzÞWj�

� ðxÞ; (3.9)

R�
�ðx; zÞ ¼

X1
j¼1

c R�
j ðzÞWj�

� ðxÞ: (3.10)

A. Oblique corrections

In order to calculate the electroweak corrections in our
model we ensure that all corrections are oblique. This is
done by adjusting the coupling of the fermions localized at
z ¼ zb2 so that the zero mode couplings are equal to the
SM couplings at tree level. For our model the relations are

� ~g5c
ðBÞ
1 ðzb2Þ

g5c
ðL3Þ
1 ðzb2Þ

¼ g02

g2
; (3.11)

g5c
ðL�Þ
1 ðzb2Þ ¼ g; (3.12)

g5c
ðL3Þ
1 ðzb2Þ ¼ g cos�W: (3.13)

For the photon kinetic term, we canonically normalize it as
follows:

Z� ¼ ðða0=~g5Þ2 þ ða0=g5Þ2ÞI ¼ 1; (3.14)

I ¼
Z zb2

�zb2

e�AðzÞ=2dz: (3.15)

Equations (3.12) and (3.13) are used to determine the
correct normalization for the W and Z wave functions.
Given the gauge field’s wave functions, we calculated

the oblique corrections using the relations between the
vacuum polarization and the wave function renormaliza-
tion Z� ¼ 1��0

QQ, ZW ¼ 1� g2�0
11, and ZZ ¼

1� ðg2 þ g02Þ�0
33 [18]. The wave function renormaliza-

tions are give by

ZW ¼
Z zb2

�zb2

½cW�2e�AðzÞ=2dz

¼
Z zb2

�zb2

ð½c Lþ�2 þ ½c Rþ�2Þe�AðzÞ=2dz; (3.16)

ZZ ¼
Z zb2

�zb2

½c Z�2e�AðzÞ=2dz

¼
Z zb2

�zb2

ð½c L3�2 þ ½c R3�2 þ ½c B�2Þe�AðzÞ=2dz;

(3.17)

and the zero momentum vacuum polarizations are

�11ð0Þ ¼ 1

g2

Z zb2

�zb2

ð½@zc Lþ�2 þ ½@zc Rþ�2Þe�AðzÞ=2dz;

(3.18)

�33ð0Þ ¼ 1

g2 þ g02
Z zb2

�zb2

ð½@zc L3�2 þ ½@zc R3�2

þ ½@zc B�2Þe�AðzÞ=2dz: (3.19)

The Peskin-Takeuchi oblique corrections as a function of
vacuum polarization are defined as [18]

S ¼ 16	ð�0
33 ��0

3QÞ; (3.20)

T ¼ 4	

sin2�Wcos
2�WM

2
Z

ð�11ð0Þ ��33ð0ÞÞ; (3.21)

U ¼ 16	ð�0
11 ��0

33Þ: (3.22)
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Since we are only considering the tree level corrections,
�0

3Q ¼ 0. As an input to our model, we use the values of

the SM electroweak parameters at the Z pole: MW ¼
80:045 GeV, sin2�W ¼ 0:231, and 
 ¼ 127:9. We also
assume k1r1 ¼ 30. In the limit r2 ! 0, MW sets the size
of the extra dimension to be r1 ¼ 68:5 TeV�1. Since this is
the limit of the standard Higgsless model, we find T ¼
U ¼ 0 and S� 6	=ðg2ðk1r1ÞÞ � 1:4 as in [9]. Since we are
only interested in showing that the S parameter decreases
while preserving T � 0 and unitarity, we do not do a
complete survey of the parameter space. For our analysis
we set k2 to be equal to the value of k1 in the r2 ! 0 limit.
As we increase r2, we find r1 decreases in order to produce
the proper MW . Figure 4 shows the behavior of the S
parameter as we increase r2. We find the S parameter
decreases. For r2 ¼ 60 we also checked that the lightest
W and Z excitations are less than 1800 GeV and therefore
unitarity is preserved [9]. This provides another mecha-
nism for lowering the S parameter in addition to including
brane kinetic terms [9] and bulk fermions [19].

B. The dual CFT description

A dual description using the AdS/conformal field theory
(CFT) correspondence would include two CFTs coupled in
the UV. There are two strongly interacting sectors in the
IR: one is responsible for breaking SUð2ÞR � Uð1ÞB�L !
Uð1ÞY , and one is responsible for breaking SUð2ÞL �
SUð2ÞR ! SUð2ÞD. In contrast to the original Higgsless
model in which the gauge group breaks to the standard
model in the UV, our model breaks to the standard model at
an IR scale that changes as we vary r2. We find that as this
scale decreases, the S parameter also decreases.

The two strongly interacting scales become comparable
when r2 � 65 TeV�1, which corresponds to k1r1 � k2r2.
At this scale, we find additional light resonances corre-
sponding to the extended gauge group. The appearance of
the resonances would affect four-Fermi operators and can
be used to constrain our model. However, for the parameter

space we consider in Fig. 4, the next lightest resonance
above the W and Z mass is never below 1 TeV.
It would be interesting to understand from the four-

dimensional perspective why the S parameter decreases
as a result of the additional strongly interacting sector.
Future work could explore this interpretation as well as
survey the parameter space keeping the constraint on four-
Fermi operators in mind.

IV. CONCLUSIONS

In the first section, we presented a model that is a hybrid
between RSI and RSII. The model has a negative tension
brane located at an orbifold fixed point (y ¼ 0) and two
identical positive tension branes located at y ¼ �r. The
fifth dimension extends to infinity as in RSII; however, the
presence of the positive tension branes produces graviton
resonances, which coincide with the discrete RSI spec-
trum. This model is attractive since it both solves the
hierarchy problem and produces a continuum of KK gravi-
ton modes. As in both the RSI and RSII models, four-
dimensional gravity can be recovered. Stability of our
model is ensured by placing the negative tension brane at
an orbifold fixed point.
In the second section of the paper, negative tension

branes were brought in from infinity to cut off the space
at an orbifold fixed point. We included SUð2ÞL �
SUð2ÞR � Uð1ÞB�L fields in the bulk and broke to the
standard model on the far brane. The distances between
the branes are scaled as to produce the correct W mass. As
in standard Higgsless electroweak symmetry breaking
models, a large S parameter along with vanishing T and
U parameters were found when the second slice of our
space was shrunk to zero. As the second slice of our space
was increased, the S parameter was lowered, while correc-
tions to both T and U remained suppressed. We also find
the lightest W and Z excitations stayed below 1800 GeV
and therefore preserve unitarity. In conjunction with using
brane kinetic terms and placing fermions in the bulk, this
could be used as a useful mechanism for lowering the S
parameter.
Future work on these models could include trying to

incorporate both Higgsless electroweak symmetry break-
ing and solutions to the hierarchy problem into a single
model. It would also be interesting to explore how this
model compares to other known mechanisms used to lower
the S parameter. In addition, an understanding of why the S
parameter decreases in the dual CFT description would be
interesting.
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