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The Ginsparg-Wilson relation is extended to interacting field theories with general linear symmetries.

Our relation encodes the remnant of the original symmetry in terms of the blocked fields and guides the

construction of invariant lattice actions. We apply this approach in the case of lattice supersymmetry. An

additional constraint has to be satisfied because of the appearance of a derivative operator in the symmetry

transformations. The solution of this constraint leads to nonlocal SLAC-type derivatives. We investigate

the corresponding kinetic operators on the lattice within an exact solution of supersymmetric quantum

mechanics. These solutions—analogs of the overlap operator for supersymmetry—can be made local

through a specific choice of the blocking kernel. We show that the symmetry relation allows for local

lattice symmetry operators as well as local lattice actions. We argue that for interacting theories the lattice

action is polynomial in the fields only under special circumstances, which is exemplified within an exact

solution.
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I. INTRODUCTION

Lattice simulations of the path integral are a powerful
tool to study quantum field theories, especially their non-
perturbative properties. The first step in this program is to
find a correct discretization of the continuum action and its
symmetries (and appropriate discrete observables). In that
respect a lot of experience has been collected in the case of
gauge and chiral theories.

There have also been efforts to simulate supersymmetric
(SUSY) theories on the lattice for many years. For a
quadratic, i.e. free theory, a supersymmetric lattice action
can be constructed. However, one encounters great diffi-
culties in finding more general lattice actions that are
invariant under the (naively) discretized supersymmetry
transformations. One of them can be traced back to the
fact that SUSY transformations contain derivatives of
fields and that the continuum SUSY actions are invariant
up to total derivative terms. In general the corresponding
terms on the lattice do not vanish because the Leibniz and
chain rule of differentiation is violated by any lattice
derivative operator [1]. The optimal choice in this respect
is the SLAC derivative [2], which preserves the Leibniz
rule in the first Brillouin zone (BZ) (see [3] for recent
works), but leads to nonlocalities [4].

Simulations without a realization of supersymmetry on
the lattice [5] generically suffer from fine-tuning problems
in the continuum limit. In higher SUSY theories it is
possible to realize a part of the supersymmetry, and one

can hope that this partial realization already ensures the
correct continuum limit. Many approaches to lattice super-
symmetry rely on such constructions, as e.g. [6]. Another
possibility is to use a (nonlinear) deformation of the con-
tinuum transformations on the lattice [7]. One then still has
to show that such lattice transformations resemble the
SUSY transformations in the continuum limit even in the
presence of quantum corrections to all orders of perturba-
tion theory, as done for a specific model in [8]. This can
ensure the correct continuum limit of these deformed trans-
formations, but a nonperturbative argument would be de-
sirable. A further attempt to keep the full SUSY by
representing it on noncommutative objects or link objects
[9] has been criticized in [10]. For more details on lattice
supersymmetry we refer the reader to [11]. The conclusion
of all these studies seems to be that there is a fundamental
obstacle against interacting local lattice theories with exact
SUSY implemented in the naive way.
This situation resembles very much that of chiral theo-

ries on the lattice. The Nielsen-Ninomiya theorem [12]
forbids exact chiral symmetry on the lattice under a few
very reasonable assumptions like locality. Ginsparg and
Wilson have derived a modified symmetry relation for a
chiral lattice theory [13]; in particular, the lattice Dirac
operator anticommutes with �5 except for a term that
vanishes in the continuum limit a ! 0. A solution to this
relation was found by Neuberger [14], which is not ultra-
local [15], but local if the background gauge field is smooth
(the plaquette is close to the identity) [16].
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The Ginsparg-Wilson (GW) relation is not a mere modi-
fication of the naive lattice symmetry with terms that
formally vanish in the limit a ! 0; it is derived from an
analysis of the Wilsonian renormalization group [13,17].
For the general setting see also [18–21] and for a recent
blocking derivation of the overlap operator [22]. Thus it is
a nonperturbative construction of a deformed symmetry
transformation. Our strategy in putting supersymmetry on
the lattice is therefore to revisit the corresponding proce-
dure (this was already suggested in [23] and some earlier
but incomplete attempts can be found in [24]). It leads to a
lattice theory in an effective Wilsonian sense. This can be
viewed as integrating out quantum fluctuations up to a
finite number of lattice degrees of freedom, the integration
over which is performed numerically. It is well known that
in such a process of quantization classical symmetries get
deformed. The aim of the present work is not only to
extend the Ginsparg-Wilson approach to supersymmetry.
We will also generalize the investigations of Ginsparg and
Wilson for an arbitrary linear symmetry. The reduction of
the degrees of freedom is done with an appropriate block-
ing transformation and the results will depend on the
choice of a blocking kernel.

If only a quadratic theory is considered the effective
lattice action for a given continuum action can be calcu-
lated. This was done in [25] for a supersymmetric model.
Here we are not attempting to find such explicit solutions,
since this is possible only for a free theory. Rather we
investigate the implications of a continuum symmetry for
the effective lattice action. If these implications are ful-
filled a symmetric theory should be approached in the
continuum limit.

As our main result, we derive an exact relation that a
lattice theory has to obey in order to represent the contin-
uum symmetry. Also interacting theories are included in
this generalization of the GW relation to a general linear
symmetry. By contrast, the GW relation deals only with the
chiral symmetry acting on the quadratic fermion part of the
action; the gauge fields are mere spectators. As in the GW
case the naive lattice symmetry will be modified by terms
that are proportional to the inverse blocking kernel. If this
relation should represent a proper lattice symmetry, certain
conditions, especially locality, must be satisfied. These
conditions exclude e.g. the Wilson operator as a solution
for chiral symmetry.

Applying the formalism to supersymmetry with its de-
rivative transformations, an additional constraint has to be
fulfilled in order to derive a lattice remnant of the contin-
uum symmetry. The solution of this constraint generically
leads to the nonlocal SLAC operator in the lattice trans-
formations. We also investigate the continuum limit of the
blocking kernel, which is less restrictive.

We are able to solve the relation for the quadratic
(kinetic plus mass) sector of supersymmetric quantum
mechanics (SUSYQM). In the case of this one-dimensional

toy model the relation already yields nontrivial difference
operators—analogs of the overlap operator for the case of
supersymmetry.
The locality of these derivative operators can be im-

proved using the freedom in the blocking kernel. This is
an important result of our strategy: The blocking kernel
helps in achieving the desired properties of the lattice
theory, ‘‘at the expense of’’ introducing a right-hand side
(rhs) in the lattice symmetry relation rendering it different
from the naive one.
Concerning interacting SUSY theories, the symmetry

relation generically couples different powers of the fields
in the action beyond second order. It is therefore very
intricate to truncate the interaction in the power of fields.
As an example displaying these difficulties we solve the
case of constant fields in SUSYQM. For general theories
we give a necessary criterion for the construction of poly-
nomial interactions.
The paper is organized as follows: First we introduce the

blocking procedure in detail and derive the symmetry
relation. It is particularly simple when a quadratic action
is considered, and for chiral symmetry we recover the GW
relation. The next section is devoted to the additional
constraint and its solutions. Their continuum limit as
well as the continuum limit of the blocking kernel is
analyzed carefully in Sec. IV.
In Sec. V we start to apply the approach to SUSYQM,

giving the general solution for the quadratic case and
discussing its properties, especially locality. Afterwards
in Sec. VI we solve the constant field case and investigate
the possibility of polynomial actions fulfilling the symme-
try relation, both in general and for SUSY. We end with a
summary of our results and a discussion of their
implications.

II. WILSONIAN EFFECTIVE ACTION

In this chapter the Wilsonian effective action computed
from a general blocking transformation is introduced. The
key results of the following investigation are the blocked
symmetry transformations. These are specified later for the
case of supersymmetry. The simple form of the symmetry
transformations in case of a quadratic action is derived in
Sec. II D. With this result the general concepts are eluci-
dated at the example of chiral symmetry where the well-
known Ginsparg-Wilson relation is reproduced.

A. Blocking

The starting point is the generating functional of a
general quantum theory

Z½j� ¼ 1

N

Z
d’e�Scl½’�þ

R
j’; (1)

with classical action Scl½’� and fields ’ðxÞ ¼
ð’1ðxÞ; . . . ; ’AðxÞÞ comprising both, bosonic and fermionic
degrees of freedom.
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The theory is reduced to a finite number of degrees of
freedom by introducing averaged or blocked fields �fðanÞ
at lattices sites n 2 N1 � N2 � � � � � Nd by a linear
blocking procedure,

�fðanÞ :¼
Z

ddxfðan� xÞ’ðxÞ; (2)

where a is the lattice distance, and a blocking function f
peaked at 0. f should have the dimension inverse to the
d-dimensional integral, such that the original and blocked
fields have the same dimension.

This blocking can be easily generalized to finite block-
ing steps and fields ’i where i comprises internal indices
and species of fields. Then a general blocking reads

ð�fÞin ¼ fijnx’
j
x; (3)

where a summation/integration over indices is understood.

The blocking matrix fijnx is rectangular, and usually relates
only the same species, but in general it also mixes the
internal indices. In (3) x can be a discrete index, then ’x is
already understood as a blocked continuum field ’x ¼
ð�f0Þx. In that case the blocking maps a lattice with a

smaller lattice spacing and consequently more degrees of
freedom onto a smaller one with a larger lattice spacing.

The blocking procedure amounts to rewriting the gen-
erating functional Z in Eq. (1) in terms of a path integral on
the lattice defined by the image of f. For the sake of
simplicity we concentrate on the generating functional at
vanishing sources. For now, the general case, important for
the discussion of the continuum limit, will be discussed in
Sec. IV. We proceed with rewriting the generating func-
tional Z½0� as

Z½0� ¼ 1

N

Z
d�e�S½��; (4)

where the �i
n live on the lattice given by the blocking f,

and S is the Wilsonian effective action with

e�S½�� ¼ SDet1=2�
Z

d’e�ð1=2Þð���fÞ�ð���fÞ�Scl½’�: (5)

SDet is the superdeterminant, i.e. the determinant for
bosons and its inverse for fermions.1 In (5) we have intro-
duced a quadratic smearing with a blocking kernel

ð���fÞ�ð���fÞ ¼ ð���fÞin�ij
nmð���fÞim: (6)

By inserting (5) into (4) and performing the Gaussian
integration over � it can be straightforwardly checked that
(4) gives Z½0� in (1). Note that the above smearing also
encompasses �’s with diverging or vanishing determi-
nants. This and further details will be discussed in
Sec. IV. The explicit examples of quadratic actions and

chiral symmetry are shown in Secs. II D and II E
respectively.
For illustration of the smearing procedure we briefly

discuss a specifically simple case with �ij
nm ¼ ��ij�mn

with � ! 1. Then the smearing term turns into a
� function in field space,

SDet 1=2�e�ð1=2Þð���fÞ�ð���fÞ ¼ �ð���fÞ; (7)

and the smearing is removed. Removing the smearing in
the continuum limit, a ! 0, is necessary in order to re-
cover the original action in this limit, S ! Scl, apart from
the blocking f becoming the delta distribution, that is
�f ! ’. Furthermore, for achieving (7), �=ad has to

diverge. More general restrictions for the continuum limit
will be addressed in detail in Sec. IV.
The blocking kernel shall connect bosons and fermions

only among themselves and in these subspaces it obeys

�ij
nm ¼ �ji

mnð�1Þj�ijj�jj; (8)

where

j�ij ¼
�
1 �i fermionic,

0 �i bosonic.
(9)

In other words, � is antisymmetric for fermions and sym-
metric for bosons, � ¼ ��T , where the minus sign applies
whenever fermionic indices are interchanged in the trans-
position of the matrix.

B. Symmetries

The primary concern of this construction is the blocking
transformation of symmetries of the classical action. We
now investigate in what form the lattice action inherits this
symmetry. Our main result will be the relation (18) that
corresponds to the Ginsparg-Wilson relation, but is valid
for a general linear symmetry. Continuum implementations
of the related ideas close to the present line of arguments
can be found in e.g. [20,21]; for reviews see [18,19].
Let the classical action S be invariant under a linear

transformation

’ ! ’þ ~�’; ð~�’Þix ¼ � ~Mij
xy’

j
y; (10)

where ~M in general relates different field species ði; jÞ, but
may also act nontrivially on the coordinates ðx; yÞ. � is the
small parameter of the transformation. In the application to
SUSY, � is Grassmann valued as ~M mixes bosons and
fermions, and ~M also contains derivatives. We have intro-

duced the notation that for a given lattice quantityO the ~O
refers to the corresponding continuum quantity.
In combination with the averaging function f, see

Eqs. (2) and (3), this symmetry transformation induces a
corresponding transformation on the blocked field �f

ð~��fÞin ¼ fijnyð~�’Þjy ¼ �fijny ~M
jk
yx’k

x: (11)

Of course we want to represent this transformation solely

1Strictly speaking SDet1=2� in our case means the inverse of
the Pfaffian of � for fermions and det1=2� for the bosons.
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on the lattice fields. Indeed, the transformation can be
lifted to � as

� ! �þ ��; ð��Þin ¼ �Mij
nm�

j
m; (12)

with a lattice transformation M, if

Mik
nmf

kj
mx ¼ fikny ~M

kj
yx (13)

holds.
This property can be viewed as a constraint ensuring the

compatibility of the lattice symmetry transformation with
the blocking. One might be tempted to use it to define M,
but f has no right inverse, since it maps onto fewer degrees
of freedom. This constraint has been mentioned without
further investigation in [24]. Wewill analyze it in full detail
in Sec. III and argue that it has severe consequences, if ~M
contains a derivative. Since the transformations defined by
M act on lattice fields they can be regarded as a naive
realization of the symmetry transformations on the lattice.

According to Eq. (12) this naive transformation � has
the operator representation

� ¼ �Mij
nm�

j
m

�

��i
n

(14)

on the space of fields �. In the fermionic sector the left
derivative is used, e.g. �

�c
�c c ¼ � �c .

Now we can transform the classical symmetry into a
relation of the effective theory on the lattice. To that end we
apply in Eq. (5) the naive symmetry transformation � !
�þ �� defined above to the Wilsonian action as well as

the classical symmetry transformation ’ ! ’þ ~�’ to the
integration variable using the invariance of the classical
action, �Scl½’� ¼ 0. To linear order in � we arrive at

Mij
nm�

j
m

�

��i
n

S½��

¼ �STr ~M� eS½�� Z d’e�Scl½’�Mij
nmð���fÞjm

� �

��i
n

e�ð1=2Þð���fÞ�ð���fÞ: (15)

The supertrace term STr ~M on the rhs comes from the
expansion of the Jacobi determinant and comprises the

possible anomaly of the symmetry transformation ~�.
The difference (���f) in this equation can be ex-

pressed as a � derivative using

ð���fÞjm �

��i
n

e�ð1=2Þð���fÞ�ð���fÞ

¼ �
�
ð�1Þj�ij�mn�

ij þ ��1jk
mr

�

��k
r

� �

��i
n

�
e�ð1=2Þð���fÞ�ð���fÞ: (16)

When inserted into (15), the first term on the rhs of this

identity contracts to the supertraceþ �STrM of the lattice
symmetry M, while the rest only contains derivatives with
respect to the blocked field� and can be pulled outside the
’ integral. Then (15) turns into

Mij
nm�

j
m
�S½��
��i

n

¼ STrM� STr ~Mþ eS½��ðM��1Þijnm

� �

��j
m

�

��i
n

e�S½��: (17)

Finally, performing the derivatives leads to a nonlinear
relation for the blocked action S containing up to second
order derivatives in �,

Mij
nm�

j
m

�S

��i
n

¼ ðM��1Þijnm
�
�S

��j
m

�S

��i
n

� �2S

��j
m��i

n

�

þ ðSTrM� STr ~MÞ: (18)

This is the key relation for the Wilsonian or lattice action
S½��, the naive symmetry transformation M, and the
blocking kernel �. While the left-hand side of this relation
is just the naive symmetry variation of the action S, the rhs
constitutes some nontrivial modification of it that has been
derived in the blocking procedure. The behavior of this
term with respect to the continuum limit will be investi-
gated in Sec. IV. Note furthermore that Eq. (18) represents
the lattice version of the (modified) quantum master equa-
tion, see e.g. [18–21,26].
A few comments are in order here. The supertraces of ~M

and M terms in this relation carry the noninvariance of the
measures d’ and d�, respectively, and hence comprise
possible (integrated) anomalies of the theory. More pre-
cisely, STr ~M carries the full anomaly related to the mea-
sure d’. The blocking removes a part of the integrations
from the path integral leaving only the field � to be
integrated. The related part of the anomaly leads to
STr ~M� STrM.
The above derivation also works for a finite blocking

step where ’ is already a blocked field and x, y are lattice
coordinates. Then, however, the starting point must be
regarded as a Wilsonian action for a fine lattice (Scl½’� ¼
S½’�) that already satisfies the relation (18), which e.g.
brings in the continuum anomaly. This again leads to (18)
for the blocked effective action on the coarser lattice.
If the right-hand side of (18) vanishes, we are left with

the invariance of the action under the naive symmetry
transformations,

Mij
nm�

j
m

�S

��i
n

¼ 0: (19)

This happens for symmetric blocking matrices �S fulfilling

M��1
S � ðM��1

S ÞT ¼ 0; (20)

since only the (anti)symmetric part ofM��1 enters the rhs
of the relation. The minus sign appears only if the matrixM
connects fermions with fermions, i.e. if fermionic fields are
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transformed into themselves by the symmetry. The above
condition just means that the blocking kernel is invariant
under the naive symmetry variation. More generally,
��1 þ ��1

S leads to the same symmetry relation (18) for

all ��1
S . This defines a family of equivalent blocking

kernels ��1ð��1
S Þ.

For the chiral case � ¼ �S is excluded by the vector
symmetry as we will elaborate on in Sec. II E. For the case
of supersymmetry, there is in general not such an argument
and, indeed, such a matrix has been used e.g. in [24].
However, we shall show below that the naive symmetry
M in the systematic blocking approach to SUSY is inher-
ently nonlocal and hence excluded. Instead, a nonsymmet-
ric blocking kernel � must be used.

Then the relevant symmetry can be written in terms of a
modified field-dependent symmetry operator,Mdefð�Þ, de-
fined as

ðMdefÞijnm�j
m :¼ Mij

nm

�
�j

m � ð��1Þjkmr
�S

��k
r

�
: (21)

Inserting this definition into the symmetry relation (18), we
are led to the relation

ðMdefÞijnm�j
m

�S

��i
n

¼ ð�1Þj�ijj�jj �

��i
n

½ðMdefÞijnm�j
m�

� STr ~M; (22)

the right-hand side being related to a total field derivative.
The above derivation ofMdef closely follows the analogous
continuum arguments as used in [18–21]. A discussion of
various representations of (22) and their use can be found
in [18].

C. Local lattice symmetries

It is important to emphasize that (22) in general does not
comprise a symmetry, as the above construction applies to
any blocking kernel �. Thus, in general (22) only disguises
an explicit symmetry breaking induced by the blocking.
We shall exemplify this statement in Sec. II E at the stan-
dard Wilson-Dirac operator that explicitly breaks chiral
symmetry, but still satisfies (22).

The question arises what are the additional conditions on
Mdef that make it a deformed symmetry. For local contin-
uum symmetries it is important that the corresponding
lattice version of the symmetry carries this locality. More
generally, for a given symmetry the blocking should only
induce a local symmetry breaking or deformation gener-
ated by f and �. Consequently we are led to two condi-
tions:

(1) A mandatory condition for a deformed lattice sym-
metry is the locality ofMdef . This guarantees a well-
defined continuum limit in which the lattice artifacts
related to the deformation tend to zero in a con-
trolled way as they are local. Hence, in order to have
a deformed symmetry the family of blockings

��1ð��1
S Þ must contain at least one blocking ��1

local

that leads to a local symmetry operator Mdef . We
emphasize that this does not necessarily imply that
��1
local is local. The locality of Mdef reads

lim
jx�yj!1

jMdefðx; yÞj< e�cjx�yj (23)

for some c > 0. In the present investigation we shall
relax (23), and demand

jxrMdefðx; yÞj<1 8 r 2 N; x; y 2 aN: (24)

For explanations, see Appendix H. Clearly operators
Mdef with (23) satisfy (24) but (24) also allows for
softer decay, e.g. polynomial times exponential de-
cay. Moreover, for interacting theories the locality
conditions (23) and (24) involve field-dependent
terms as Mdefð�Þ in (21) is field dependent.

(2) Mdef has to carry the original continuum symmetry
related to the symmetry operator ~M. This condition
excludes e.g. the trivial solution Mdef � 0. For this
solution it is clear that the symmetry pattern of the
lattice action is not entailed in Mdef , and Mdef does
not tend toward the continuum symmetry ~M in the
continuum limit. We can summarize this condition
in the demand thatMdef is identical to the continuum
symmetry operator Mcont up to lattice artifacts at
p ¼ 0, where the continuum limit is located. Hence,
the condition that Mdef carries the continuum sym-
metry can be formulated as

lim
p!0

Mdef ¼ Mcontð1þOðapÞÞ: (25)

Note that Mcont ¼ ~M only for ��1 ¼ 0 in the con-
tinuum; see the discussion in Sec. IVB.

The above conditions (21)–(25) should be seen as a
definition of a deformed symmetry, and put constraints
on the blocking kernel �. In order to formally obtain a
symmetric continuum limit, one might use actions without
such a symmetry, but the above considerations guarantee
the existence of a local lattice symmetry for every finite
lattice spacing that converges locally toward the continuum
symmetry. The latter property is very important for a
successful numerical implementation.
In the case of lattice supersymmetry the question is

whether such a deformed symmetry operator Mdef accord-
ing to this definition can be constructed.

D. Quadratic action

The general results above simplify greatly for quadratic
actions

S ¼ 1
2�

i
nK

ij
nm�

j
m; (26)

with the kernel K comprising kinetic and mass terms. At
first sight this case seems trivial as it describes a free field
theory. Nonetheless, it already includes the nontrivial case
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of Ginsparg-Wilson fermions [13] with background gauge
fields; see the next section. Moreover, locality of a sym-
metry operator Mdef of an interacting theory relates di-
rectly to the locality of its kinetic noninteracting part.

With this action the general symmetry relation (18)
simplifies to

�MTK� ¼ �KTðM��1ÞTK�
� trðM��1ÞKT þ ðSTrM� STr ~MÞ: (27)

In many cases the second line vanishes. In case of field-
independent transformation matrices M and kinetic opera-
tors K it anyway is just an irrelevant constant. However, in
the case of anomalous symmetries it contributes to the
anomaly. If one considers nonquadratic actions the corre-
sponding term in general becomes � dependent.

The first line in (27) has to be valid for general fields �
and hence we conclude that

MTK � ðMTKÞT ¼ KTðM��1ÞTK � ðKTðM��1ÞTKÞT:
(28)

Again the minus signs appear on the left- and right-hand
sides only if fermions are transformed into fermions by the
naive symmetry M.

The interesting information in the symmetry relation is
that of the propagation of symmetry breaking on the lattice.
This propagation can be seen from

ðK�1ÞTMT �MK�1 ¼ ð��1ÞTMT �M��1: (29)

This equation highlights how the breaking of the symmetry
by the blocking matrix � and the breaking by the kernel K
must compensate each other. It also enables us to read off
the general solution K,

K�1 ¼ ��1 � ��1
S : (30)

Here, ��1
S is a general symmetry-preserving term fulfilling

(20). We emphasize that (30) can also be used for deter-
mining a family�ðKÞ for a givenK. We conclude that pairs
ðK�1; ��1Þ are unique up to symmetry-preserving terms
��1
S . The symmetry relation can be also rewritten by

introducing the deformed symmetry matrixMdef as defined
in (21). Here we find a �-independent Mdef with

Mdef :¼ Mð1� ��1KÞ ¼ �M��1
S K: (31)

Mdef may, however, now depend on background fields via
K and ��1

S , e.g. link variables if K is the Dirac operator.

Note that (31) defines a family of symmetry matrices, as
��1
S is a general symmetric matrix satisfying (20). For the

modified symmetry the relation (28) reads

MT
defK � ðMT

defKÞT ¼ 0: (32)

As already mentioned in the previous section, (32) in
general does not comprise a symmetry, as the above con-
struction applies to any kinetic operator. Thus, in general
(32) only disguises an explicit symmetry breaking induced

by the blocking kernel. We also clearly see the necessity of
the second condition (25): for ��1 ¼ K�1 we have ��1

S ¼
0 and hence Mdef � 0. Then the modified symmetry rela-
tion (32) carries no information about the symmetry at
hand.
In turn, onlyMdef’s in (31) with (32) and the locality and

continuum limit properties (24) and (25) respectively de-
fine deformed lattice symmetries.
Note that for a quadratic action, and only in this case,

there is also a simpler way to derive a symmetry relation. In
this specific case the saddle point approximation for the
path integral is exact. Thus, instead of a solution of the path
integral, one can also discuss the symmetries of the saddle
point solutions as done in [27].

E. Chiral symmetry

We shall first discuss the above construction and con-
ditions at the example of the chiral symmetry. Consider an
action out of the field multiplet of two fermionic fields:
� ¼ ðc ; �c TÞ. The related kinetic operator is given in
terms of the Dirac operator

K

ad
¼ 0 �DT

D 0

� �
; (33)

and the action (26) reads S ¼ ad �cDc . As explained
above, in our units the quantities relevant for the contin-
uum must get additional factors of ad to account for the
integral. The continuum action is invariant under symme-
try transformations generated by

~M’ ¼ �5 0
0 �T

5

� �
c
�c T

� �
; (34)

with �y
5 ¼ �5. Since the transformation acts only algebrai-

cally on spinor indices it is easy to fulfill the constraint
(13). The naive transformation is just the same as the
continuum transformation. A general blocking matrix �
carries the fermionic antisymmetry and reads

�

ad
¼ 0 ��T

1

�1 0

� �
; (35)

with a general �1. Note that in order to get a real action
both D and �1 must be Hermitian. Inserting the kinetic
operator (33), the chiral transformation matrix (34), and
the general blocking (35) into (27) we are led to

fD; �5g ¼ Df�5; �
�1
1 gD; (36)

which comes from the field-dependent part of (27). It can
be rewritten in terms of a deformed symmetry, cf. [23],
which is according to the general definition ofMdef in (31)
given as

Mdef ¼ �5;def 0
0 ð ��5;defÞT

� �
(37)

with
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�5;def ¼ �5ð1� ��1
1 DÞ; ��5;def ¼ ð1�D��1

1 Þ�5:

(38)

In terms of the deformed �5’s the symmetry relation reads

�� 5;defDþD�5;def ¼ 0: (39)

For Hermitian ��1
1 and D we arrive at ��5;def ¼ �y

5;def .

In case of a theory with vector symmetry the blocking
should respect it. Hence the simplest �1 is a fermionic
mass term with mass 1=a, �1 ¼ 1=a1, where 1 is diagonal
with respect to the lattice sites and the identity in Dirac
space. The result,

fD; �5g ¼ 2aD�5D; (40)

is the Ginsparg-Wilson relation [13].
The deformed symmetry operator Mdef from (37) and

(38) is local due to the ultralocality of ��1 and the locality
of D. It should, however, be noted that �5;def is not

normalized, �2
5;def � 1, and even vanishes at the doublers.

We conclude that �5;def does not define a chiral projection.

Indeed no such normalized �5;def can be constructed for a

single Weyl fermion, see [28,29], as a consequence of the
Nielsen-Ninomiya no-go theorem. In the given example
the normalization of �5;def fails at the doublers; it is neither

smooth nor local.
The part of Eq. (27), that is independent of�, carries the

integrated chiral anomaly,

Tr f�5; �
�1
1 gD� 2ðTr�5 � Trcont�5Þ ¼ 0; (41)

where the trace Tr sums over the lattice. Hence the second
term vanishes, Tr�5 ¼ 0. The first term in (41) only has to
be summed over the nonzero eigenfunctions ofD, denoted
by Tr0, and we arrive at

Tr 0f�5; �
�1
1 gD ¼ 2Tr0�5 ¼ �2ðnþ � n�Þlattice; (42)

where we have used (36). Here, n�lattice are the numbers of
fermionic zero modes with positive and negative chirality,
respectively. Note that (42) implies that ðnþ � n�Þlattice
vanishes, if we choose a blocking compatible with axial
symmetry. Then, however, vector symmetry is broken, and
we would lose (background) gauge symmetry. This analy-
sis is reflected in the well-known fact that Trcont�5 is
regularization dependent. Choosing a vector symmetric
regularization of the trace, e.g.

Tr cont�5 :¼ lim
�!0

Trcont�5e
�D2

cont ; (43)

we are led to Trcont�5 ¼ ðnþ � n�Þcont. Here, n�cont are
the numbers of fermionic zero modes with positive and
negative chirality, respectively. In turn, an axially symmet-
ric regularization leads to Trcont�5 ¼ 0.

In summary we arrive at

ðnþ � n�Þlattice ¼ ðnþ � n�Þcont; (44)

which constrains the continuum regularization in terms of

the lattice blocking and vice versa. We conclude that full
chiral symmetry in the presence of a background gauge
field is maintained if and only if the lattice gauge field
permits the same difference of positive and negative chi-
rality zero modes as for the continuum gauge field.
Note that for the standard GW-relation (40), i.e. with

�1 ¼ 1=a1, one can rewrite the lattice terms in (41) as

Tr�5ð1� aDÞ ¼ X
x

X
n

ð1� a�nÞc y
n ðxÞ�5c ðxÞ

¼:
X
x

QtopðxÞ; (45)

which is the fermionic definition of the topological charge
density QtopðxÞ introduced by Niedermayer [30]. For more

general �1 it can be found in [31].
As an example for an explicit breaking of chiral sym-

metry we consider Wilson fermions with Dirac operator
DW ,

aDW ¼ i�� sinðap�Þ þ r
X
�

ð1� cosðap�ÞÞ: (46)

In this case chiral symmetry is explicitly broken due to the
momentum-dependent Wilson mass. We start with the
relation (30) for general Dirac operators D. The corre-
sponding blocking kernel [cf. (35)] is given by

��1
1 ¼ D�1 þ ��1

1;S: (47)

The singularity of D�1 at the center of the Brillouin zone
has to be removed from ��1

1;S in order to guarantee the

continuum limit of Mdef ! Mcont, (25). This is achieved
with

��1
1;S ¼ ��

1

d
tr��D�1 þ ���1

1;S; (48)

with tr���� ¼ �d���, and d is the space-time dimension.

We conclude that ��1
1 is given by

��1
1 ¼ 1

1

d
trD�1 ����1

1;S; (49)

with a scalar first term proportional to 1, and a symmetric
contribution ���1

1;S proportional to ��f�ðpÞ. Note that the
first term cannot be changed by���1

1;S and hence carries the

unique information about the symmetry-breaking part of
the kinetic operator K. This part is the same for all mem-
bers of the family �ðKÞ of blockings corresponding to a
given K. Restrictions on this part will hence constrain the
class of possible lattice actions.
For Ginsparg-Wilson fermions we have ��1

1 ¼ a1 and
���1

1;S ¼ 0, that is ��1 has no symmetric part. For Wilson

fermions the choice ���1
1;S ¼ 0 leads to a nonlocal ��1

1 :

some higher derivative of trD�1
W ðpÞ is not bounded at the

origin and this contradicts locality; see Appendix H.
Furthermore this nonlocality cannot be changed by the
symmetric term ���1

1;S except in one dimension. We con-

clude that the blocking ��1 related to the Wilson-Dirac
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operator is inherently nonlocal. Still a priori this does not
entail that the corresponding Mdef is nonlocal. However,
the product of this ��1 (including ���1

1;S) with the Wilson-

Dirac operator is also inherently nonlocal and enters Mdef .
Actually, the nonlocality of Mdef is most easily seen from
the nonlocality of the left-hand side of (29) in a Taylor
expansion about p ¼ 0. We conclude that there is no
deformed chiral symmetry operator Mdef for Wilson
fermions.

We summarize that the lattice blocking induces the
continuum regularization. In turn, if we have chosen a
specific continuum regularization, this restricts the lattice
blocking compatible in the continuum limit. We conclude
this analysis with the remark that an analysis of chiral
transformations c ! ð1� �5Þ=2c completely fixes the
relations, as the related integrated anomaly is independent
of the regularization. This is at the heart of the lattice
observations made in [32,33].

F. Explicit solution for a quadratic action

For a quadratic action it is also possible to solve (5) for

the effective action S explicitly. Assuming Scl½’� ¼
1
2’

i
x
~Kij
xy’

j
y, the lattice action S½�� ¼ 1

2�K� can be ob-

tained via performing the Gaussian integration. It leads to

K ¼ �� �fðfT�fþ ~KÞ�1fT�: (50)

After some manipulations that can be found in Appendix A
the resulting fixed point operator reads in momentum space

KðpkÞ ¼
�X
l2Z

f�ðpk þ l 2	a Þfðpk þ l 2	a Þ
~Kðpk þ l 2	a Þ

þ ��1ðpkÞ
��1

:

(51)

Note that such a solution of the Ginsparg-Wilson relation
was already mentioned in [13]. It is often called perfect
lattice action.

In most cases fðxÞ is considered to be the averaging over
one lattice spacing, e.g. in one dimension

fðxÞ ¼
�
1=a if jxj< a=2;
0 otherwise;

(52)

which means fðpkÞ ¼ 2
La

sinðpka=2Þ
pk

. Such an averaging was

applied in [25] to construct a free supersymmetric (perfect)
lattice theory. However, since the constraint (13) was not
considered there the symmetry properties of the resulting
effective action cannot be expressed in terms of a lattice
symmetry involving only lattice fields: Eq. (13) demands
for the derivative operator appearing in the supersymmetry
transformations

X
m

rnm�ðamÞ ¼ 1

a
ð’ðanþ a=2Þ � ’ðan� a=2ÞÞ (53)

and this cannot be fulfilled for any rnm since the trans-
formation involves the continuum fields.

To interpret the rhs of Eq. (53) a new field was intro-
duced in [25], which is defined to be 1

a ’ðanþ a=2Þ at the
lattice point an. Then the lattice fields are transformed into
such fields under the supersymmetry transformations.
They are, however, rather a continuum than a blocked
lattice quantity. The correct SUSY continuum limit is
therefore ensured in this approach because the lattice ac-
tion is a direct solution of the blocking. But this property
cannot be expressed in terms of a lattice symmetry that
contains only lattice fields. A well-defined lattice symme-
try is, however, desirable as a guiding principle for the
construction of a more general lattice action.

III. ADDITIONAL CONSTRAINT

A. Discussion

In the derivation of the relation of the effective action
there has emerged a novel constraint, Eq. (13),

Mf ¼ f ~M; (54)

on the symmetriesM, ~M and the averaging function f. It is
trivially fulfilled if the symmetry transformation merely
acts on the multiplet indices, e.g. with �5 in the chiral case.
However, whenever the symmetry transformation ~M

contains a derivative—as in the case of supersymmetry—
the constraint becomes nontrivial. The problem can be
considered in each space-time direction separately. It states
that the derivative @ (in ~M) is ‘‘pulled through’’ the aver-
aging function f to become a lattice derivative operator r
(in M) that acts among the averaged fields:

rnm

Z
dxfðam� xÞ’ðxÞ ¼

Z
dxfðan� xÞ@x’ðxÞ (55)

for all continuum fields ’ðxÞ (neglecting internal indices i,
j) and for all lattice points n. [The meaning of (55) is
illustrated in Fig. 1. It represents a commuting diagram.]
This constraint will restrict the possible lattice derivatives
r to be used in the lattice symmetry transformations M as
we show now.
In order to satisfy Hermiticity and translational invari-

ance, r should be an antisymmetric circulant matrix

rnm ¼ 1

2a

XðN�1Þ=2

l¼�ðN�1Þ=2
cl�n�m;�l; (56)

with real coefficients cl fulfilling c�l ¼ �cl. For simplic-
ity we have specialized to an odd number N of lattice
points. The Kronecker symbol � on the rhs is periodic
with periodicity N.
We use a partial integration in (55) and a Fourier trans-

form with a discrete momentum pq ¼ 2	q=L with q 2 Z
and a lattice volume L ¼ Na (for details see Appendix B)
to arrive at

fðpqÞ½rðpqÞ � ipq� ¼ 0 8 q 2 Z: (57)
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Hence, the constraint states that the averaging function can
have nonvanishing Fourier components fðpqÞ for each

wave number pq for which the difference operator has

the ‘‘ideal’’ continuum dispersion relation rðpqÞ ¼ ipq.

The latter condition means that the naive translation

ð@xeipqxÞjx¼an ¼
X
m

rnme
ipqam (58)

holds for all lattice points n for this wave number.
At this point let us stress that because of the periodicity

rðpqþNÞ ¼ rðpqÞ the square brackets in Eq. (57) can

vanish only once for every q modN, for all other q fðpqÞ
has to vanish. With regard to the correct continuum limit of
r we demand this to happen—if at all—in the first
Brillouin zone, thus

fðpqÞ ¼ 0 for jpqj>	

a

�
1� 1

N

�
: (59)

This limits the spatial resolution of f to j�xj � a which,
however, is a natural scale in the blocking approach to a
lattice [see (52) for comparison].

B. Solutions

Inside the first Brillouin zone the constraint (57) intro-
duces a kind of uncertainty relation between the averaging
function f and the lattice difference operator r. For in-
stance, if one demands an ultralocal operator ranging over
only one neighboring point, r will be proportional to the
symmetric difference,

r ¼ c1rsymm; rsymm
nm ¼ 1

2a
ð�nþ1;m � �n�1;mÞ: (60)

The dispersion relation is in this case

rðpqÞ ¼ c1
i

a
sinðapqÞ; (61)

and the bracket in (57) vanishes for p ¼ 1 if and only if

c1 ¼ 2	=N

sinð2	=NÞ : (62)

The proportionality factor c1 indeed approaches 1 in the
continuum limit and hence r approaches the continuum
derivative asrsymm does. As a consequence, f has only the
lowest (and zeroth) Fourier components (pk ¼
f�2	=L; 0; 2	=Lg):

fðxÞ ¼ f0 þ f1 cosð2	x=LÞ: (63)

Hence for this ultralocal difference operator the averaging
function f is very broad as it probes the whole space x 2
½�L=2; L=2�.
The solution allowing for the next (p ¼ 2) Fourier com-

ponent in f demands the difference operator to spread over
at least nearest and next-to-nearest neighbors with coeffi-
cients

rnm ¼ 1

2a
ðc1ð�nþ1;m � �n�1;mÞ þ c2ð�nþ2;m � �n�2;mÞÞ

(64)

with the solutions

c1 ¼ 2	

N

2 sinð4	=NÞ � sinð8	=NÞ
sin2ð4	=NÞ � sinð2	=NÞ sinð8	=NÞ ; (65)

c2 ¼ � 2	

N

2 sinð2	=NÞ � sinð4	=NÞ
sin2ð4	=NÞ � sinð2	=NÞ sinð8	=NÞ ; (66)

which correctly approach 4=3 and �1=6 in the limit N !
1.
One can proceed in this way. The more Fourier coeffi-

cients are included in the averaging function, the less
localized is the derivative operator. In general, r needs
to spread to the nth neighbors to enable n nonvanishing
Fourier coefficients in fðpÞ.2

FIG. 1. A sketch of the blocking procedure: The averaging
function f maps from continuum fields ’ to averaged fields �f

(that are connected to the lattice fields � via �). The additional
constraint Eq. (13) comes about because the diagram of f with
the continuum symmetry ~M� @x and the lattice symmetry M�
r has to commute.

2In this way derivatives interpolating between the symmetric
derivative and the SLAC derivative are constructed.
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At the extreme, in order to make f as narrow as it can
get, all Fourier components fðpqÞ (in the first Brillouin

zone) are needed. The constraint (57) then leads to the
nonlocal SLAC operator by definition [2]. The coefficients
in this case are

cSLACl ¼ ð�1Þl 2	=N

sinð	l=NÞ : (67)

All of these operators can in principle be used inside M
to generate the lattice supersymmetry transformations. But
there are additional restrictions on f further reducing these
possibilities.

IV. CONTINUUM LIMIT

The results of Sec. III necessitate a careful investigation
of the continuum limit. We have argued in Sec. II A that the
averaging function f needs to approach the delta distribu-
tion in the continuum limit. Hence, approaching this limit,
more and more Fourier components fðpqÞ are needed. As a
consequence of the additional constraint (57), the lattice
derivative operator r agrees in Fourier space with the
SLAC derivative for the increasing number of modes pq

with nonvanishing fðpqÞ. In other words, the difference

operator becomes more and more extended over neighbor-
ing lattice sites, while f gets narrower. The more neighbors
are included in the lattice derivative r, the more demand-
ing numerical simulations will become. One is therefore
tempted to use the most localized solution from this
constraint.

Moreover, if combined with an appropriate blocking
kernel �, the numerical effort could be reduced further.
Thus it is advantageous to determine the general setting
giving access to the full set of allowed blockings f’s and, in
particular, �’s.

For that purpose we reconsider the full generating func-
tional in the presence of external sources. The physics of
the blocked fields �f with blocking f, (2), is carried by

general correlation functions of this field,
h�fðan1Þ � � ��fðanrÞi. These correlation functions are

generated by

Zf½J� ¼ 1

N

Z
d’e�Scl½’�þJ�f½’�: (68)

The correlation functions of �f naturally live on a lattice

defined by n 2 N1 � N2 � � � � � Nd resulting from the
blocking f.

A. Continuum limit of the blocking f

In the limit �f½’� ! ’ the correlation functions

h�fðan1Þ � � ��fðanrÞi tend toward the continuum correla-

tion functions. Accordingly, the most restrictive constraint
coming from the comparison of the lattice observables with
their continuum counterparts is that f must approach the
delta function in the continuum limit. Then the lattice

theory resembles the continuum up to minor modifications.
As stated in the previous section this means that Eq. (57)
must be fulfilled for an increasing number of modes.
Let us work on a lattice with N points and let r be more

localized than the SLAC derivative, i.e. have an ideal
dispersion relation rðpqÞ ¼ ipq up to some momentum

pmax <	ð1� 1=NÞ=a. The corresponding f has nonvan-
ishing Fourier components up to this momentum. Doublers
will appear in the spectrum of such operators; they can be
removed as shown in Appendix C within our solution for
supersymmetric quantum mechanics. Analyzing the con-
sequences for f, however, we will argue against these
solutions in the following.
The momentum of the lattice fields�ðpkÞ is restricted by

this momentum cutoff of f [for an explicit formula see
(B5)]. That means one introduces an additional momentum
cutoff smaller than the usual lattice cutoff. In other words
the number of degrees of freedom (Fourier modes) induced
from the continuum via f is smaller than the actual number
N of lattice degrees of freedom. This contradicts the block-
ing philosophy where all the lattice degrees of freedom
should come from blocked continuum degrees of freedom.
To be more precise, in the defining equation (5), the
averaged fields �f span a vector space smaller than the

one of the lattice fields �. Therefore some lattice fields �
have no counterpart �f. Rather, their contribution to the

lattice action S½�� is a simple quadratic one with kernel �.
This mismatch is depicted in Fig. 2.
Another way of stating the problem is that the blocking

f gives rise to a resolution (an ‘‘effective lattice spacing’’)
of 	ð1� 1=NÞ=pmax > a. On this coarser lattice the de-
rivative is actually again SLAC. It is very unlikely that it

FIG. 2. A sketch of the mismatch in the blocking procedure, if
f—in order to generate a local lattice derivative in the constraint
(57)—has a limited number of Fourier components: the averaged
fields �f have fewer degrees of freedom than the number of

lattice points N used for �. In other words, the �f transfer

information from the continuum only to a coarser lattice (see
text).

GEORG BERGNER, FALK BRUCKMANN, AND JAN M. PAWLOWSKI PHYSICAL REVIEW D 79, 115007 (2009)

115007-10



yields any improvement to work on the finer lattice with
lattice spacing a, where not all of the degrees of freedom
are induced by a blocking from continuum fields.

We conclude that the lattice derivative r entering the
lattice symmetry relation asM has to be the SLAC operator
or some degrees of freedom on the lattice will have no
continuum counterparts. In any case relation (57) must
hold for an increasing number of lattice modes in the
continuum limit if f should approach the delta distribution.

B. Continuum limit of the generating functional

It is left to discuss the consequences of a general choice
for �. This is best done in terms of the generating func-
tional Zf½J� defined in (68). The path integral in (68) can

be conveniently rewritten in terms of a path integral over
lattice fields �. In Sec. II A we have done this already for
vanishing external currents J, and a quadratic blocking
kernel 1

2 ð���fÞ�ð���fÞ, see (5), with symmetry

properties (8) and (9). This procedure is readily extended
to the general case with nonvanishing currents by rewriting
the source term exp

R
J�f via the quadratic blocking ker-

nel,

eJ�f ¼ e�ð1=2ÞJ��1JR
d�e�ð1=2Þ���

Z
d�e�ð1=2Þð���fÞ�ð���fÞþJ�:

(69)

Inserting (69) into (68) the generating functional Zf can be

rewritten as a lattice generating functional

Zf½J� ¼ 1

N ½J�
Z

d�e�S½��þJ�; (70)

with Wilsonian action S as defined in (5),

e�S½�� ¼ SDet1=2�
Z

d’e�ð1=2Þð���fÞ�ð���fÞ�Scl½’�:

(71)

The normalization N ½J� carries a trivial quadratic depen-
dence on the current J and reads

N ½J� ¼ N eð1=2ÞJ��1J: (72)

It reduces toN for vanishing current. We emphasize again
that Zf½J� in (70) has no dependence on �, and reduces to

(4) for vanishing current J ¼ 0. Note also that the generat-
ing functional in (70) with N ½0� is the standard lattice
generating functional. As N ½J� is a trivial Gaussian,
lattice simulations for correlation functions straightfor-
wardly relate to those from (70).

The above construction allows us to evaluate general
choices of �. The blocking function f will be discussed in
the next section; here we will assume f to approach the
delta distribution such that �f ! ’. We have already

argued in Sec. II A that a diverging � ensures that the
lattice field � agrees with the blocked field �f½’�. A

simple � is a diagonal one, �ij
nm ¼ c�ij�mn with c ! 1;

see also Sec. II A. Then we are led to

SDet 1=2�e�ð1=2Þð���fÞ�ð���fÞ ¼ �ð���fÞ; (73)

see (7), and the integral in (69) is trivially done. Moreover,
the normalization loses its J dependence, N ½J� ! N , as
��1 vanishes for c ! 1. Finally, the Wilsonian action is
given by

e�S½�� ¼
Z

d’�ð���f½’�Þe�Scl½’�: (74)

This can be viewed as the canonical form of the Wilsonian
action. Note also that in this case the symmetry relation
(18) simplifies to the standard one, as the rhs vanishes with
��1 ¼ 0.
In consequence the limit ��1 ! 0 is the natural choice

for the continuum limit. In order to see how a general �
scales with the lattice spacing a, we rewrite the blocking
term as

ð���fÞ�ð���fÞ ¼ ad
X
i;n

ad
X
j;m

ð���fÞin

� �ij
nm

a2d
ð���fÞim: (75)

First we remark that ad
P

n ! R
ddx in the continuum limit

a ! 0. Second, for symmetric smearings � we can always
diagonalize the matrix �. Third, a factor ad appears be-
cause �nm=a

d ! �ðx� yÞ. We conclude that all eigenval-
ues �n have to satisfy

�n=a
d ! 1; (76)

for guaranteeing that the Wilsonian action tends toward the
classical action in the continuum limit.
In other words, the inverse ��1 has to vanish for S !

Scl. For practical purposes it might be advantageous to
work with some vanishing eigenvalues of ��1 already at
finite lattice spacing. Then the related eigenvalues �n

diverge already for finite lattice spacing, and the right-
hand side of (73) will be proportional to delta functions
for the related eigenfunctions c n, leading to ðc n; �Þ ¼
ðc n; �f½’�Þ. We also note that the symmetry relation (18)

contains only ��1, which shows no divergencies for �n !
1 but zeros. Indeed we show in Appendix D that (18) can
be derived without using � explicitly, and hence noninver-
tible ��1 are not problematic. On the contrary, vanishing
eigenvalues of ��1 mean that the factor N½J� in (72) is
actually a J-independent constant in that subspace of
fields.
Likewise, the eigenvalues of ��1 can have any sign

whereas (71) would require positive eigenvalues of �.
What happens if some eigenvalues of ��1 do not vanish

in the continuum limit? As the generating functionals
Zf½J�, and in particular Z½J�, do not depend on �, it is

not mandatory that the Wilsonian action S approaches the
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classical action Scl. Assuming �f½’� ! ’, a finite � in

(71) amounts to equivalence classes of actions with mea-
sures

d� exp�S½�� (77)

related by Gaussian integrations in the continuum. On the
level of classical actions this is nothing but the introduction
of auxiliary fields � via the equations of motion.

The case of vanishing eigenvalues �n (diverging ��1),
however, is different. From the path integral in (71) one
reads off that the corresponding subspace of fields ’ is
simply integrated out and the Wilsonian action S does not
depend on the corresponding eigenfunctions c n. The cor-
responding singularities of ��1 in the normalization (72)
can be avoided by considering currents J only in the
orthogonal subspace, that is ðc n; JÞ ¼ 0. Then the above
derivations are unaltered, but with this procedure we have
removed the ’ modes in the singular subspace from our
theory. A simple example for vanishing � is given by the
Wilson mass term in a fermionic theory. Assume that we
start with the naive lattice Dirac action with doublers. The
blocking kernel � can be chosen such that it vanishes at the
doublers. In turn ��1 provides a diverging mass for the
doublers. More details on this and the general case with
vanishing � is deferred to Appendix E.

We summarize our findings as follows: in order to
recover the original action Scl ¼ S in the continuum limit
f ! �, the blocking kernel � has to lead to a delta function
in field space; see (73). It might, however, be advantageous
to rely on a nontrivial classical Wilsonian action in the
continuum limit, generated by other choices of �, in order
to optimize the locality and hence to minimize the numeri-
cal effort.

V. FREE SUPERSYMMETRY ON THE LATTICE

We will now apply the blocking formalism to SUSYQM
which is a supersymmetric theory in one dimension, i.e. all
‘‘fields’’ depend only on a time x1 ¼ t. It serves as a toy
model for supersymmetric theories. After fixing the nota-
tion, only a quadratic theory is considered in this section;
interacting SUSY theories will be considered in the next
section.

A. Brief review of SUSYQM in the continuum

The field content of SUSYQM is the multiplet

’x ¼ f
ðtÞ; FðtÞ; c ðtÞ; �c ðtÞg; (78)

where 
 and F are real bosons, c is a complex fermion
(Grassmannian), and �c its complex conjugate. (The length

dimensions of these fields are
ffiffiffiffi
L

p
, 1=

ffiffiffiffi
L

p
, and L0,

respectively.)
The Euclidean action in the continuum has the following

form:

Scl½’� ¼
Z

dt

�
1

2
ð@t
Þ2 þ �c @tc � 1

2
F2

þ �c
@W

@

c � FWð
Þ

�
; (79)

where the first three terms are kinetic ones (F is an auxil-
iary nondynamical field) and the last two terms represent a
potential term for 
 and Yukawa interactions.
This action is invariant under the supersymmetry trans-

formations

�
 ¼ � ��c þ � �c ; �F ¼ � ��@tc � �@t �c ;

�c ¼ ��@t
� �F; � �c ¼ ��@t
� ��F;
(80)

up to the following surface term:

�Scl ¼
Z

dt@tð� �c ð@t
þ FÞ þ � �cWð
Þ þ ��cWð
ÞÞ:
(81)

According to our general notation we write

�’ ¼ ð� ~Mþ �� �~MÞ’; (82)

where

~M ¼
0 0 0 1
0 0 0 �@t

�@t �1 0 0
0 0 0 0

0
BBB@

1
CCCA;

�~M ¼
0 0 �1 0
0 0 �@t 0
0 0 0 0
@t �1 0 0

0
BBB@

1
CCCA:

(83)

B. Transformations on the lattice

On the lattice it is very natural to take the same field
multiplet, now evaluated at discrete lattice points

�n ¼ f
n; Fn; c n; �c ng: (84)

In the corresponding lattice transformations [as defined by
(12)]

��i
n ¼ ð�Mij

nm þ �� �Mij
nmÞ�j

m; (85)

the matrices M and �M will be of the same form as in the
continuum,

Mij
nm ¼

0 0 0 1
0 0 0 �r

�r �1 0 0
0 0 0 0

0
BBB@

1
CCCA

nm

; (86)

�M ij
nm ¼

0 0 �1 0
0 0 �r 0
0 0 0 0
r �1 0 0

0
BBB@

1
CCCA

nm

: (87)
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r is subject to the discussion in previous sections. We will
come back to its locality properties in Sec. VE.

C. Ansatz for the quadratic lattice action

For the rest of this section we restrict ourselves to a
quadratic theory. Even in this simple case one obtains a
nontrivial action with nontrivial lattice derivative opera-
tors. These operators solve the relation (18) for SUSY just
as the overlap operator solves it for the chiral symmetry.

We choose the following matrix K for the quadratic
action (cf. Sec. II D):

Kij
mn

a
¼

�h �mb 0 0
�mb �1 0 0
0 0 0 r̂ �mf

0 0 r̂ þmf 0

0
BBB@

1
CCCA

mn

; (88)

which means

S½��
a

¼ � 1

2

h
þ �c ðr̂ þmfÞc � 1

2
F1F� Fmb


(89)

(again, a sum over the lattice indices is understood).
Though the symbols of the matrices K suggest them to
be similar to the objects in a quadratic continuum action
withW ¼ m
, they are so far undetermined. (In particular
the lattice masses and derivatives can be different for
fermions and bosons.) h, mb, and mf must be symmetric

and r̂ antisymmetric circulant matrices to guarantee
Hermiticity and translational invariance. In the continuum

limit we expect the behavior h ! @2, r̂ ! @, and mb;f !
m1, while at finite lattice spacing these matrices are chosen
according to relation (18). This also means that the matrix

r̂ can be different from the derivative operator r in the
naive generators M and �M. Generalizations of the men-
tioned ansatz for the quadratic action are possible. One
could, for example, introduce an additional undetermined
matrix in the F2 term, but this is not necessary for the
solution of the relation in the next two sections. In the last
section of this chapter we will consider the most general
ansatz to derive some statements for the general locality of
the solutions.

D. First solution for an ultralocal blocking

To start with the simplest form of the blocking matrix �
we take its inverse to be

að��1Þijmn ¼
a2 0 0 0
0 a0 0 0
0 0 0 a1
0 0 �a1 0

0
BBB@

1
CCCA

mn

; (90)

where all ai are symmetric circulant matrices of length
dimension i (and allowed to be zero, cf. Sec. IVB). Note
that these considerations also include a much more general

ansatz. This happens because (90) is the same as a general
blocking ansatz up to a symmetric part �S as shown in
Appendix F.
Circulant matrices commute. Using this property, a so-

lution of the symmetry relation (18) for the quadratic
SUSY action (89) is straightforward. In Sec. II D we have
already specified the symmetry relation for quadratic theo-
ries. From the first line of (27) one can read the following
equations:

�hþrr̂ þ rðmf �mbÞ ¼ �½ða2rþ a1Þh
þ ða1rþ a0Þmb�ðr̂ þmfÞ;

(91)

r̂ � rþmf �mb ¼ �½ða2rþ a1Þmb

þ ða1rþ a0Þ�ðr̂ þmfÞ: (92)

Two additional equations can be identified with the trans-
posed of these if one reconsiders the symmetric or anti-
symmetric form of the matrices. The field-independent
second line of (27) vanishes as M and hence M��1KT

always connect bosons with fermions. The corresponding
relation for the generator �M induces the same set of
equations.
At first we proceed in the same manner as in the deri-

vation of the Ginsparg-Wilson relation: we use an ultra-
local blocking with ai’s diagonal in lattice sites and derive
a solution for the lattice action in terms of these matrices.
This solution corresponds to the overlap operator that also
is a function of the blocking (appearing in the chiral case).

The second equation (92) can easily be solved for r̂ þ
mf in terms of mb and r. One gets r̂ and mf as the

antisymmetric respectively symmetric part of

½ð1þ a1mb þ a0Þ � ða2mb þ a1Þr�ðr þmbÞ
X

; (93)

where

X ¼ ð1þ a1mb þ a0Þ2 � ða2mb þ a1Þ2r2: (94)

The first equation (91) then gives h and the complete
solution reads

r̂ ¼ ð1þ a0 � a2m
2
bÞr

X
; (95)

mf ¼ ð1þ a1mb þ a0Þmb � ða2mb þ a1Þr2

X
(96)

�hþm2
b ¼

�r2 þm2
b

1þ a0 � a2r2
: (97)

The last part is presented in terms of �hþm2
b because

this operator appears in the bosonic sector after integrating
out F, i.e. in the on-shell action.
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As expected, in the limit ai ! 0 one has h ! r2, r̂ !
r, and mf ! mb. At finite lattice spacing, however, these

operators are nontrivial because each of them contains both

the derivative operator r and the mass term mb. r̂ and mf

are nonsingular because X is positive since r is anti-
Hermitian; h is nonsingular, if a0 and a2 are not largely
negative and the denominator in (97) vanishes.

Nowwe have to check the locality of our resulting lattice
action. As explained in Sec. IV, the solution of the addi-
tional constraint, (54), leads to the nonlocal SLAC deriva-
tive rðpÞ � p. As the operators of the lattice action (95)–
(97) are given in terms of r, one might expect that they
inherit this locality problem. Therefore, the locality prop-
erties of the lattice action need to be examined carefully.

Since � is similar to a mass term (diagonal in lattice
sites) the form of the denominators in (95)–(97) renders the
appearing operators very similar to a massive propagator.
In the continuum similar expressions lead to an exponential
decay for large distances. On the lattice, however, the
corresponding behavior is spoiled by terms decaying
only algebraically. This is shown in Appendix G using
methods of complex analysis.

E. Solution with a local action

Since we insist on the locality of the lattice action, more
general blocking kernels �must be considered. With these
it is possible to enforce locality in the SUSY lattice action.
In our point of view this is a crucial feature of the modified
symmetry including the blocking kernel compared to the
naive symmetry without it.

Allowing now for an arbitrary momentum dependence
of � one can solve the Eqs. (91) and (92) for the circulant
matrices a0, a1, and a2. Consequently these matrices are

dependent on r̂, h, mf, and mb. Given rðpkÞ ¼ ipk the

solution in terms of the matrices of the lattice action is

a0ðpkÞ ¼ h

m2
b �h

� ir̂pk

m2
f � r̂2

; (98)

a1ðpkÞ ¼ �mb

m2
b �h

þ mf

m2
f � r̂2

; (99)

a2ðpkÞ ¼ 1

m2
b �h

þ ir̂=pk

m2
f � r̂2

: (100)

Now one could use the simplest ultralocal operators (with-
out doublers) in the action and read off the corresponding
��1 for a solution of the relation. Additional restrictions
for these operators appear since singularities in the ai must
be excluded. A possible singularity appears at pk ¼ 0 if the
mass is zero in the theory. To avoid this singularity one can

use mb ¼ mf and h ¼ r̂ r̂ . Note that in this way the

fermionic and bosonic sectors are treated in a similar

manner. So possible doublers of the fermionic sector also
appear in the bosonic one, but can be removed with the
same mass term. The result then simplifies to

a0ðpkÞ ¼ r̂ðr̂ � ipkÞ
m2

f � r̂2
; a2ðpkÞ ¼ 1þ ir̂=pk

m2
f � r̂2

; (101)

and a1ðpkÞ ¼ 0. Just as expected all ai vanish if the de-

rivative operator r̂ is the SLAC derivative and the de-
formed symmetry is reduced to the naive one.
The simplest solution for the fermionic operators is the

standard Wilson fermion. With the corresponding bosonic
operators one finally arrives at

r̂ðpkÞ ¼ i

a
sinðapkÞ; h ¼ r̂ r̂; (102)

mbðpkÞ ¼ mfðpkÞ ¼ mþ 1

a
ð1� cosðapkÞÞ: (103)

In this realization all possible doublers are removed by the
Wilson mass terms in the bosonic and fermionic sectors.
Such a form for the quadratic lattice action was chosen

in [34] and other lattice simulations. It has been shown that
the choice of the same mass and derivative operators in the
fermionic and bosonic sectors leads to a major improve-
ment with respect to the lattice supersymmetry.
Note, however, that a major requirement is still not

considered. One should not only insist on the locality of
the action. To get a well-defined representation of the
symmetry on the lattice also the deformed symmetry trans-
formations must be local.

F. Local supersymmetry

In order to get a well-defined lattice supersymmetry, the
deformed symmetry operator Mdef has to be local and
approach the continuum supersymmetry, as explained in
Sec. II D. The solutions we have obtained so far contain the
SLAC operator, either in the action, Eqs. (95)–(97), or in
the inverse blocking kernel, Eqs. (98)–(101). This leads to
a nonlocal behavior in ��1K, which in Mdef ¼
M�M��1K can enhance or reduce the nonlocality of
M (whereas in the chiral case a nonlocal ��1K immedi-
ately induces a nonlocal Mdef). Here we investigate the
conditions under which the locality of the action and the
deformed symmetry generator Mdef can be achieved. We
first derive a special solution which fulfills the locality
condition (24) for the action and Mdef . At the end of the
section we will argue that this condition [and not (23)] is
the best one can achieve in the present setup.
For the special solution we consider now a slightly

generalized form of the deformed supersymmetry and the
lattice action. Since the corresponding inverse blocking
kernel has no direct physical implication it is adjusted
accordingly.
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In the ansatz for the quadratic lattice SUSY action,
Eq. (88), a general symmetric circulant matrix �I is used
in the F2 term instead of the diagonal matrix �1. As a
deformed supersymmetry generator we take

Mdef ¼
0 0 0 Ib
0 0 0 �rb

�rf �If 0 0
0 0 0 0

0
BBB@

1
CCCA: (104)

If ��1 vanishes in the continuum limit, it follows that
Mdef ! ~M, and hence Ib;f ! 1 and rb;f ! @t.

Demanding that Mdef is a symmetry of the lattice action
K, Eq. (32), one arrives at the following sets of equations:

Ib
If

¼ mb

mf

¼ rb

rf

; (105)

rf

Ib
¼ h

r̂ ; (106)

rb

Ib
¼ r̂

I
: (107)

This can be solved easily, e.g. for the choice (102) and
(103) of straightforward operators in K, one obtains I ¼ 1.
In that case a natural solution is

Ib ¼ If ¼ 1; rb ¼ rf ¼ r̂: (108)

With r̂ as defined in (102), for example, the deformed
symmetry is ultralocal and obviously approaches the con-
tinuum supersymmetry. So it seems that there exists a local
deformed symmetry of the considered local lattice action.
The reason for the absence of locality problems is that the
SLAC operator from the blocked lattice symmetry M has
not appeared yet.

The deformed symmetry must, however, not only be a
local symmetry of the lattice action. A further condition,
Eq. (31), implies a relation between M and Mdef . This
additional condition is a direct consequence of the sym-
metry relation (18). Since ��1 is so far undetermined it is
apparently not difficult to satisfy this condition. But re-
strictions of the lattice action, due to e.g. Hermiticity,
impose further constraints on the blocking kernel. In the
case of supersymmetry these constraints are of great im-
portance since ��1 can only connect fermions with fermi-
ons, whereasMdef connects fermions and bosons with each
other. So one has to investigate whether or not there exists
an ��1 to ensure that this deformed symmetry Mdef is
indeed the result of a blocking procedure and hence fulfills
Mdef ¼ Mð1� ��1KÞ. As M is not invertible we use a
general ansatz for ��1, namely

að��1Þijmn ¼
b2 b01 0 0
b01 b0 0 0
0 0 0 b1 þ b001
0 0 �b1 þ b001 0

0
BBB@

1
CCCA

mn

; (109)

and compare the two sides of M��1 ¼ ðM�MdefÞK�1

yielding

0 0 ð�1Þðb1 � b001 Þ 0

0 0 rbðb1 � b001 Þ 0

�rb2 � b01 �rb01 � b0 0 0

0 0 0 0

0
BBBBB@

1
CCCCCA

¼

0 0 ð1� IbÞ=ðr̂ �mfÞ 0

0 0 ðrb �rÞ=ðr̂ �mfÞ 0

� � � � � � 0 0

0 0 0 0

0
BBBBBB@

1
CCCCCCA: (110)

The lower left block of this matrix equation can be satisfied
by an appropriate choice of b0, b

0
1, and b2. The upper right

block fixes b1 � b001 and in addition implies

rb

Ib
¼ r: (111)

Together with Eq. (107) this yields

Ir ¼ r̂: (112)

We remind the reader that r is the SLAC derivative
appearing in the lattice symmetry M due to the additional

constraint and I and r̂ are the matrices for the F2 and the
kinetic fermion term in the lattice action, in which both
should be local.
The SLAC operator is nonlocal because of its disconti-

nuity at the boundary of the Brillouin zone. To ensure a

local r̂ ¼ Ir, i.e. to make it periodic in momentum space,
I and all its derivatives must vanish at the boundaries of the
Brillouin zone. Then the behavior is not analytic in mo-
mentum space, but a stronger than polynomial decay is
guaranteed (see Appendix H). With such a result for the
matrix I all symmetry conditions for the action can be
fulfilled with

mf ¼ mb; If ¼ Ib ¼ I; (113)

rf ¼ rb ¼ r̂ ¼ Ir; h ¼ Ir2: (114)

All of these operators of the action satisfy locality stronger
than polynomial. Note that this solution amounts toMdef ¼
IM.
The only remaining problem arises since I vanishes at

the boundaries of the Brillouin zone. This means that the
on-shell bosonic mass term inherits a divergence
mbðpÞ2=2IðpÞ at the edge of the Brillouin zone. Hence an
on-shell problem is expected although the off-shell action
is local in the sense of condition (24).
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It is instructive to recall that these results rely on the
specific structure of the transformations in the case of
supersymmetry. They transform fermions into bosons and
vice versa. By contrast the blocking matrix and the action
relates fermions with fermions and bosons with bosons. In
the case of other symmetries the transformations ��1, and
K would have the same block diagonal structure, which
makes it easier to find a local solution for K and Mdef .

One may still wonder whether the current approach can
be generalized to get a result that satisfies the more severe
condition (23) for locality. To investigate this problem we
look at the relation Mdef ¼ �M��1

S K [see (31)], where

only the symmetric part of ��1
S of the blocking appears. To

get an exponential decay for both Mdef and the action K,
also M��1

S has to fulfill this condition. The SLAC deriva-

tive in the generator M, (86), violates the locality of this
matrix. Taking the most general ��1

S , (F2), the only entries

of M��1
S are d1 þrd001 (d1 �rd001 for the second super-

symmetry, �M��1
S ) and the same matrix multiplied by the

SLAC derivative. So both d1 þrd001 and rðd1 þrd001 Þ
must be local. In analogy to I and Ir we conclude that it
is impossible to get an exponential decay on the lattice for
both matrices. So the condition (24) and not (23) can be
fulfilled for both Mdef and K.

VI. TOWARD INTERACTING SUPERSYMMETRY
ON THE LATTICE

The final goal of our investigations of lattice SUSY is to
write down a lattice action for an interacting theory.
According to the usual argument, that is not blocking
inspired, a supersymmetric lattice action for the quadratic
case can be found. The lattice supersymmetry transforma-
tions are in that case defined as the continuum transforma-
tions with the derivative operator replaced by a local lattice
derivative.

For the case of a quadratic action we have given a
solution above that preserves the modified symmetry and
is hence guided by the blocking of the symmetry. In this
case it is also possible to derive a direct solution of the
blocking transformations, cf. Equation (50). Therefore it is
desirable to extend the above results to interacting theories.

For actions beyond second order we go back to the
original equation (18) which provides a systematic relation
to be fulfilled in order to keep the considered symmetry.
The solutions are, however, much more complicated than
in the quadratic case. This can already be observed by an
analysis of a specific solvable example, namely, constant
fields in SUSYQM, which gives nontrivial results and dis-
plays a new issue: the polynomial nature of the action.

A. Solution for constant fields in SUSYQM

In this section we work with the same parametrization
for M, �M, and ��1, see (86) and (90), but study only
constant fields 
n ¼ 
 and so on. This amounts to the

zero mode sector of the lattice derivative r, i.e. we can
replace r ! 0. Note that in this approximation F is in-
variant under the naive lattice transformations. Of course,
locality will not be an issue for this toy model.
For the action we use the following ansatz:

S

a
¼ N½ �c c gð
Þ � hð
; FÞ�; (115)

where N, the number of lattice sites, is a remnant of the
summation. In view of the continuum limit we have re-
stricted ourselves to an F-independent function g coupling
the boson and the fermion, like @W=@
 in the continuum
action (79). Likewise, we expect the Fg ¼ @h=@
 to hold
in the continuum limit.
For such an action the relation (18) becomes a partial

differential equation in g and h:

Fg� @h

@

¼ �Na1g

@h

@

� Na0g

@h

@F
� a1

a

@g

@

: (116)

This indeed approaches Fg ¼ @h=@
 in the limit where
the ai vanish.
For finite a0 and a1 this equation can be solved for h for

different choices of g. Among these solutions we consider
those that consist of a term F2=2 plus terms linear in F with
an arbitrary 
 dependence, such that the auxiliary field F
can be integrated out easily.
The simplest case is gð
Þ ¼ 0, which should include the

‘‘kinetic term,’’ that in the zero mode sector degenerates to
�F2=2. Indeed, any function hðFÞ is a solution of Eq.
(116) in this case.
The case gð
Þ ¼ mf resembles an additional mass term.

The corresponding solution

hð
;FÞ ¼ 1

2
F2 þ 1þ a0N

1� a1Nmf

mfF


þ a0
2

ð1þ a0NÞNm2
f

ð1� a1NmfÞ2

2 (117)

becomes F2=2þmfF
 in the limit ai ! 0 as required.

For finite ai we obtain a bosonic mass different from mf

and an additional term proportional to 
2. This action
could also be gotten from Sec. VC, Eqs. (89) and (95)–
(97), since putting r ! 0 there also yields different bo-
sonic and fermionic masses and a 
2 term surviving from
h.
The most interesting case is an interacting theory with a

truly 
-dependent term gð
Þ. For the lowest possible
power

gð
Þ ¼ �
; (118)

one obtains the common Yukawa interaction. The general
solution of (116) is again restricted by the requirement that
for vanishing constants ai the term h should resemble the
continuum result F2=2þ �F
2=2. One obtains the non-
polynomial solution
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hð
; FÞ ¼ 1

2
F2 � 1þ a0N

a1N

Fþ a0ð1þ a0NÞ

2a21N

2

�
�
1

aN
þ 1þ a0N

a21�N
2
F� a0ð1þ a0NÞ

a31�N
2




�

� logð1� a1�N
Þ þ a0ð1þ a0NÞ
2a41�

2N3

� ðlogð1� a1�N
ÞÞ2; (119)

which upon expanding in a1 becomes polynomial

hð
; FÞ ¼ 1

2
F2 þ �

2
ð1þ a0NÞF
2

þ a0
8
�2Nð1þ a0NÞ
4 þOða1Þ: (120)

Now it is obvious that the correct continuum limit is
approached and that this interaction term does not diverge
in the limit a1 ! 0 as one might have expected from (119).

Note that in the zero mode sector there is no failure of
the Leibniz rule. Hence the direct translations of the con-
tinuum action are naively supersymmetric fulfilling (19)
which amounts to setting a1;2 ¼ 0 (in other words using a

SUSY preserving blocking �S). The presented solutions
are deformations thereof. Already in the simple case of
constant fields these deformations lead to a nonpolynomial
solution if an interacting theory is considered.

One might expect that the nonpolynomial form of the
action is a generic consequence of the symmetry relation
(18), not only for supersymmetry. Indeed, similar results
have been obtained in the context of chiral symmetry [17].
We will discuss this in the next sections as well as the
circumstances under which a polynomial action like (120)
is possible.

B. Polynomial solutions of the symmetry relation

As shown in the previous section it seems difficult to find
a polynomial solution of the lattice symmetry relation (18)
beyond second order. In the following we argue that a
nonpolynomial action is indeed the generic solution of
this relation for an arbitrary linear symmetry. Only if
special conditions are fulfilled, can the series in the fields
be truncated. To show this general behavior we generalize
the considerations of Sec. II D to interacting systems.

We consider a lattice action consisting of polynomials
up to order R in the fields represented as

S½�� ¼ XR
r¼1

sðrÞ½��; sðrÞ½�� ¼ Ki1���ir
n1���nr�

i1
n1 � � ��ir

nr ;

(121)

where sðrÞ contains the rth order in the fields. The purely

quadratic case R ¼ 2 (and sð1Þ ¼ 0) has been discussed in
Sec. V. The coefficients K are so far not further specified;
they can imply a simple multiplication of fields at the same
lattice point, but are also allowed to contain lattice deriva-

tives or to smear the powers of the fields over several lattice
sites, as long as they obey the correct continuum limit.
The relation (18) is in general a complicated nonlinear

differential equation coupling derivatives with respect to
the fields at different lattice points. An expansion in the
order of the fields using the ansatz (121) yields

Oð�0Þ: 0 ¼ M��1

�
�sð1Þ

��

�sð1Þ

��
� �2sð2Þ

����

�

þ ðSTrM� STr ~MÞ; (122)

Oð�r¼1...R�2Þ: M�
�sðrÞ

��

¼ M��1
X

sþt¼rþ2

�
�sðsÞ

��

�sðtÞ

��
� �2sðrþ2Þ

����

�
; (123)

Oð�r¼R�1;RÞ: M�
�sðrÞ

��
¼ M��1

X
sþt¼rþ2

�sðsÞ

��

�sðtÞ

��
;

(124)

Oð�r¼Rþ1���2R�2Þ: 0 ¼ M��1
X

sþt¼rþ2

�sðsÞ

��

�sðtÞ

��
; (125)

where we used a shorthand notation without indices. These

coupled equations can be read as restrictions for theKi1���ir
n1���nr

parametrizing sðrÞ imposed by the symmetry. In the case of
R ¼ 2 only the conditions (122) and (123) are relevant
giving (27).
For interacting theories, R> 2, a set of equations with

vanishing left-hand sides, Eq. (125), appears. The very
difficulty to obtain a polynomial solution is to fulfill these

equations with a finite number of interacting terms sðrÞ½��
(which in addition shall give the desired theories in the
continuum). If this turns out to be impossible for some
order R, this order has to be increased and finally one might
be forced to nonpolynomial interactions.
As an example we consider the relation of the highest

order Oð�2R�2Þ, which reads

0 ¼ ðM��1Þijnm
�
�sðRÞ

��j
m

�sðRÞ

��i
n

�
; (126)

and can be rewritten in matrix-vector notation as

0 ¼ vTðM��1Þv with vi
n ¼ @sðRÞ

@�i
n

: (127)

This relation is a severe constraint, because it implies that

M��1 � ðM��1ÞT ¼ 0 (128)

within the subspace of lattice fields spanned by the vi
n. If

the vi
n span the whole space of �i

n, the relation is imme-
diately reduced to the naive symmetry.
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If the vi
n do not span the whole space of the fields they

must be linearly dependent. Then some linear combina-
tions of the vi

n vanish and from the definition (127) it is

clear that the highest part of the action sðRÞ does not depend
on some particular combinations of fields. On this sub-
space there is no constraint like (128).

So after all it is only possible to get a truncation of the
action, if (128) is fulfilled on that subspace of �’s, on

which the highest term of the action, sðRÞ, depends.
Keeping translational invariance, it is impossible to have

sðRÞ independent of fields at particular lattice points n, but
sðRÞ may be independent of a whole field component (�i) of
the multiplet. Such a case appears in the case of constant
fields [see Eq. (120)] when a1 is set to zero. Then the
highest term of the action, 
4, depends only on 
, and
M��1 þ ðM��1ÞT has no matrix entries for this field
component. In this way a polynomial solution can be
achieved.

We stress that so far we have only discussed one neces-
sary condition for a truncation of the action down to a
polynomial. The remaining Eqs. (122)–(125) need to be
solved as well.

The continuum limit of the resulting actions needs in
general a careful investigation since additional interaction
terms must be introduced to solve the relation. These terms
have no corresponding continuum counterparts and should
vanish in the continuum limit. It is easy to ensure this in a
naive way, where one just introduces the appropriate power
of the lattice spacing, a, in front of the terms to let them
vanish when a goes to zero. Notice, however, that the
additional interaction terms introduce new vertices in a
perturbative expansion. Because of divergences (for a !
0) the corresponding diagrams are not necessarily vanish-
ing even though the vertices themselves vanish. So it seems
nontrivial to find the correct form of the action in the
continuum limit.

The situation gets even more difficult if the truncation
constraint is not fulfilled. Then one has to accept a non-
polynomial action. Beside the feasibility of such actions
for numerical simulations, one has to analyze fundamental
aspects of them like renormalizability. Nevertheless, these
solutions obey the deformed lattice symmetry that ap-
proaches the continuum one in the continuum limit. This
limits the possible actions, e.g. by relating the different
couplings and might even determine the entire form of the
action.

How the discussion specializes to supersymmetry will
be discussed in the next section.

C. Interacting SUSY

To illustrate the above rather formal general statements,
we specify them to SUSY theories. For the sake of argu-
ment we consider now a higher order action of SUSYQM;
other SUSY theories will lead to a similar situation.

We mimic the interaction term of the continuum theory,
�c c
þ F
2 [see Eq. (79) with W ¼ 
2=2], by the fol-
lowing lattice action:

sð3Þ ¼ Kn1;n2;n3
�c n1c n2
n3 þ K0

n1;n2;n3Fn1
n2
n3 (129)

with parameters K and K0 as in (121).
The (super)vector v following from this action reads

vi
n ¼

Kn1;n2;n
�c n1c n2 þ 2K0

n1;n2;nFn1
n2

K0
n;n1;n2Fn1
n2�Kn1;n;n2

�c n1
n2

Kn;n1;n2c n1
n2

0
BBB@

1
CCCA: (130)

It is not hard to see that v takes all values in the considered
space of lattice fields upon varying the fields
ð
n; Fn; �c n; c nÞ at all lattice sites. The rationale for this
is, as explained above, the ‘‘completeness’’ of the highest

term in the action sð3Þ, Eq. (129), if it contains all fields of
the multiplet. As a consequence, (128) has to be fulfilled in
general, but this reduces the symmetry relation (18) to the
naive symmetry. One can easily convince oneself that the
same argument applies to all continuum-inspired actions of
the form ðR� 1Þ �c c
R�2 þ F
R�1.
There are two options to consider at this point. The first

one is to accept nonpolynomial actions like (119), which
induces many new complications.
The second and rather intricate possibility is to fulfill

(128) only on a subspace of the fields. For SUSY this can
be achieved, e.g., by building the highest order term (in this

case sð3Þ) out of purely bosonic or purely fermionic fields.
As M��1 has only entries mixing bosons and fermions,
(127) is fulfilled easily in this way. We repeat the constant
field result, where setting a1 ¼ 0 and a0 � 0 in Eq. (120)
the highest term is of the form 
4. In the present case with
‘‘smearing’’ in K, such a term could be represented as
Kn1;n2;n3;n4
n1
n2
n3
n4 .

Of course, such incomplete parts of the actions on their
own are not giving the desired continuum limit since in the
continuum SUSYactions all fields are present at any given

order (i.e. in every sðrÞ). The only meaning such terms
could have is to be lattice artifacts needed to solve the
symmetry relation (18) at finite lattice spacing and to
vanish in the continuum limit, such that the continuum
action contains only terms of lower order in the fields.
Again, in this approach we so far have discussed only the

highest relation. To solve the remaining relations is a non-
trivial task to be done in further investigations.
With the help of such additional terms it might be

possible to fulfill the symmetry relation which then guar-
antees the (super)symmetry in the continuum limit.

VII. SUMMARY

In this work we have systematically approached lattice
supersymmetry and have extended the Ginsparg-Wilson
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relation to general linear symmetries and interacting
theories.

For a general blocking procedure we have derived a
lattice relation, Eq. (18), from the continuum symmetry
of the theory at hand. This relation can be viewed as the
‘‘remnant’’ of the continuum symmetry on the lattice and
has to be satisfied by the lattice action. The relation also
includes potential anomalies and reduces to the well-
known Ginsparg-Wilson relation for chiral theories.

As this relation is derived for all possible blockings it
does in general not comprise a lattice symmetry, but rather
describes the breaking of the continuum symmetry by the
blocking procedure. It can be interpreted as a deformed
symmetry only for those blockings for which the symmetry
operator in (21) is local, as defined in (24), and tends
toward the continuum symmetry operator in the continuum
limit. These important properties are discussed in Sec. II C.
These requirements exclude for instance the Wilson fer-
mion action as a solution for a chiral lattice theory.

Interestingly enough, the averaging function f defines
the lattice formulation, but does not appear in the relation
of the lattice action. Instead, f is involved in an additional
constraint encountered in the derivation of the relation.
This constraint is of particular importance when the sym-
metry transformations include derivatives, which is one of
the characteristic features of supersymmetry (as opposed to
e.g. the algebraic �5 transformations in the chiral case). In
order to keep the resolution of the averaging function as
demanded by the lattice cutoff, the derivative operator in
the lattice transformations must be the SLAC derivative or
approach the SLAC derivative in the continuum limit. Such
a nonlocal operator is of course problematic in view of the
locality of lattice action and symmetry.

The other ingredient of the blocking transformation, the
blocking kernel �, appears explicitly in the symmetry
relation of the lattice action. An � that respects the sym-
metry leads to a vanishing rhs of this relation and thus to a
naive symmetry. For chiral theories this is forbidden be-
cause of vector symmetry. In case of supersymmetry a
symmetric � can in principle be chosen, but the resulting
deformed symmetry would then contain the SLAC deriva-
tive and hence be nonlocal. The corresponding invariant
lattice actions inherit this problem. Thus we are led to
nonsymmetric �’s and a nonvanishing rhs of our relation
to have a chance to obtain local lattice actions and local
symmetry transformations for supersymmetry.

In the concrete example of quadratic SUSYQM one can
find how � improves the locality of the action: An ultra-
local ��1 introduces propagatorlike denominators in the
lattice operators, which however are not enough to com-
pensate for the nonlocality of the emerging SLAC operator.
Considering ��1 as a momentum-dependent quantity al-
lows (ultra-) local lattice actions as a solution of the
symmetry relation. Beside the lattice action also the de-
formed lattice symmetry must be local. To get a connection

to the blocking procedure, only a relaxed version of local-
ity can be guaranteed (cf. Sec. V F). Hence this rather
simple example already reveals a lot about the interplay
of the blocking ingredients, the locality of actions, and
symmetries on the lattice.
One of the main differences between SUSY and chiral

theories is that the symmetry of the former acts on non-
quadratic terms. Correspondingly, the relation for lattice
SUSY extends beyond second order and couples different
powers of fields. We have discussed that this generically
results in nonpolynomial actions. This finding is not com-
pletely surprising as our construction is halfway toward the
full quantum effective action: We integrate out the original
fields and represent the remaining path integral in terms of
the blocked lattice fields. The nonpolynomial actions are
derived from the continuum theory in a prescribed way.
One might for instance speculate that certain cancellations
between bosons and fermions are still present and help to
renormalize the system. We have given a necessary condi-
tion for a truncation in the action. Indeed, in the very
special example of constant fields in SUSYQM this crite-
rion could be satisfied and the action is local.
We conclude with a short outlook. To date, the main

problem for performing SUSY lattice simulations is the
implementation of the symmetry. We hope to use the
blocking formalism to obtain local interacting theories,
which are invariant under a local deformed symmetry.
The corresponding solutions to the symmetry relation
should either be obtained through reasonable approxima-
tions or by a resummation. This is work in progress.
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APPENDIX A: SOLUTION FOR A QUADRATIC
ACTION

The starting point to get the fixed point operator in its
usual form is the result of the Gaussian integration,

K ¼ �� �fðfT�fþ ~KÞ�1fT�

¼ �½1� fðfT�fþ ~KÞ�1fT��: (A1)

A direct inversion of fT�fþ ~K is difficult since fT�f is,
unlike ~K, nondiagonal in frequency space. This property
comes from the f that maps a larger space onto a smaller
one. So fT�f acts on a larger space than the diagonal �
and is in general nondiagonal. Therefore, one first gets a
closed expression of the inverse ofK. Assuming ~K and� to
be invertible an expansion in terms of a Neumann series
yields
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K�1 ¼ X1
n¼0

½fðfT�fþ ~KÞ�1fT��n��1

¼ ��1 þ f
X1
n¼0

½ðfT�fþ ~KÞ�1ðfT�fþ ~K � ~KÞ�n

� ðfT�fþ ~KÞ�1fT

¼ ��1 þ f
X1
n¼0

½1� ðfT�fþ ~KÞ�1 ~K�n

� ðfT�fþ ~KÞ�1fT: (A2)

After a resummation the result becomes

K�1 ¼ ��1 þ f½ðfT�fþ ~KÞ�1 ~K��1ðfT�fþ ~KÞ�1fT

¼ ��1 þ f ~K�1fT: (A3)

An inversion of this expression is the known result men-
tioned in Eq. (51).

Another way to derive it is done via the introduction of
auxiliary fields �i

n,

e�S½�� ¼
Z

d’e�ð1=2Þð��f’Þ�ð��f’Þ�ð1=2Þ’ ~K’

¼ N 0 Z d’
Z

d�e�ð1=2Þ’ ~K’þi�ð��f’Þ�ð1=2Þ���1�:

After a Gaussian integration (first of the ’ then of the �)
one gets again the desired expression for K

e�S½�� ¼ N 00e�ð1=2Þ�ðf ~K�1fTþ��1Þ�1�

¼ N 00e�ð1=2Þ�i
nK

ij
nm�m: (A4)

With the same conventions as in Appendix B one can easily
derive the Fourier representation of K.

APPENDIX B: FOURIER ANALYSIS OF THE
ADDITIONAL CONSTRAINT

For simplicity we work in a one-dimensional finite
volume of size L. A general continuum field has the
Fourier series representation

’ðxÞ ¼ X1
q¼�1

’ðpqÞeipqx; (B1)

’ðpqÞ ¼ 1

L

Z L

0
dx’ðxÞe�ipqx; (B2)

with dimensionless wave numbers q ( 2 Z) and pq ¼ 2	q
L .

The same representation can be applied to the averaging
function fðan� xÞ.

We discretize L ¼ Na with an odd number N of lattice
points and lattice spacing a. Functions on the lattice can be
parametrized by N independent waves which we choose to
be in the first Brillouin zone,

�ðanÞ ¼ XðN�1Þ=2

k¼�ðN�1Þ=2
�ðpkÞeipkan; (B3)

�ðpkÞ ¼ 1

N

XðN�1Þ

n¼0

�ðanÞe�ipkan: (B4)

From this relation it is clear that �ðpkÞ is periodic in pk,
�ðpkÞ ¼ �ðpk þ l2	=aÞ ¼ �ðpkþlNÞ 8 l 2 Z. The same
transformation is used for the �fðanÞ. [For �fðpkÞ k runs

from �ðN � 1Þ=2 to ðN � 1Þ=2.]
In Fourier space the convolution in the averaged field of

Eq. (2) becomes a product,

�fðpkÞ ¼ L

N

X1
n¼�1

XðN�1Þ

m¼0

eiðpq�pkÞanfðpqÞ’ðpqÞ

¼ L
X1

l¼�1
f

�
pk þ l

2	

a

�
’

�
pk þ l

2	

a

�
: (B5)

This shows how the averaging projects the Fourier compo-
nents of ’ onto the first Brillouin zone. In addition one
easily observes that the Fourier components of �f and the

lattice fields are determined by f, which means that f
introduces a cutoff for the lattice momentum if fðpqÞ
vanishes for all pq greater than the cutoff.

Because of the constraint (59), the sum on the rhs
actually has at most one term.
The additional constraint (55) reads after partial integra-

tionX
m

rnmfðam� xÞ þ @xfðan� xÞ ¼ 0 8 n; x: (B6)

Because of the circulant form of r [cf. Eq. (56)] we define
its Fourier transform as

rnm ¼ 1

N

XðN�1Þ=2

k¼�ðN�1Þ=2
rðpkÞeipkaðn�mÞ; (B7)

with

rðpkÞ�kl ¼ 1

N

XðN�1Þ

m¼0;n¼0

rnme
ipkaneiplam; (B8)

where k and l are integer numbers between �ðN � 1Þ=2
and ðN � 1Þ=2. For greater values of k the result of the
Fourier transformation again fulfills rðpkþlNÞ ¼ rðpkÞ
and �kl has the same periodicity (which means it is 1
only for k ¼ l modN and otherwise zero).
With these Fourier transforms the constraint becomes

X1
q¼�1

fðpqÞ½rðpqÞ � ipq�eipqðan�xÞ ¼ 0; (B9)

which for every individual component pq gives the con-

straint (57).
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APPENDIX C: DOUBLER PROBLEM

In this Appendix we discuss solutions r of the addi-
tional constraint which are ultralocal. These include the
(slightly modified) symmetric difference, (60) and (62),
and extensions thereof spreading over neighbors at larger
distances, e.g. (64). They come with blocking functions f
extended over the whole volume, (63), or subvolumes,
depending on how many Fourier components f can have.
In Sec. IVAwe have argued that only the fwith the highest
resolution OðaÞ leads to a reasonable, namely, nonredun-
dant lattice theory. This amounts to r being the SLAC
operator.

Although the use of these ultralocal r’s is questionable,
we nevertheless want to point out that doublers in them can
be removed. For supersymmetric theories it is natural that
also bosons have a doubling problem [34], so we inves-
tigate the kinetic operator in the bosonic sector, too.

Consider the solutions (95)–(97). The operator r in
them has doublers at the edge of the Brillouin zone, unless

r is the SLAC operator, and r̂ inherits them via the
solution (95).

To resolve the doubler problem we make use of the fact
that the matrix mb in our ansatz (89) and in (95)–(97) is
only restricted to be symmetric and circulant. In the spirit
of the Wilson term, we will now replace mb by

ðmbÞnm ¼ m�nm þ r

2a
ð2�nm � �nþ1;m � �n�1;mÞ (C1)

with r a dimensionless parameter. Such a momentum-
dependent correction will then also occur in mf through

our solution3 and all—bosonic and fermionic—doublers
are removed as long as the parameter a2 remains small.
The dispersion relations of mb and r are

mbðpkÞ ¼ mþ r

a
ð1� cosðapkÞÞ; (C2)

rðpkÞ ¼ i

a

XðN�1Þ=2

l¼1

cl sinðlapkÞ: (C3)

We consider massless fields m ¼ 0. Then because of
mbð0Þ ¼ 0 and rð0Þ ¼ 0 it is clear that the bilinears

1
2
ð�hþm2

bÞ
; �c ðr̂ þmfÞc ; (C4)

according to (95)–(97) have zeros at vanishing p as they
should. At the edge of the Brillouin zone, p ¼ 	=a, they
would vanish as well because ofrð	=aÞ ¼ 0, if there were
no r corrections. The finite value mbð	=aÞ ¼ 2r=a, how-
ever, removes the doublers since

ð�hþm2
bÞ
�
p ¼ 	

a

�
¼

�
2r

a

�
2 1

1þ a0
; (C5)

FIG. 3. Dispersion relations for the bosonic and fermionic bilinears with ultralocal r and Wilson mass in mb, cf. Eqs. (C2) and (C3),

on an N ¼ 101 lattice. In the top row we plot the bosonic �hþm2
b and in the bottom row the fermionic jr̂ þmfj, according to the

solutions (95)–(97), as a function of the momentum p in the first Brillouin zone. On the left: r ¼ 0 with doublers visible at the edges.
In the middle: the doublers are removed by r ¼ 1 and ða0; a1; a2Þ ¼ ð0:1; 0:1; 0:3Þ. On the right: additional zeros in the bosonic sector
occur for the choice r ¼ 1 and ða0; a1; a2Þ ¼ ð0:1; 0:1; 2:0Þ.

3In our setting, where mfðmbÞ, it is the simplest to change mb.
One could also have solved mbðmfÞ and then change mf.
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ðr̂ þmfÞ
�
p ¼ 	

a

�
¼ 2r

a

1

1þ 2ra1=aþ a0
: (C6)

These values are nonzero and scale depending on the
behavior of the ai.

What remains to be shown is that there are no other zeros
at intermediate values of p. For that we specialize to the
solution ofr ranging to next-to-nearest neighbors with c1;2
from Eqs. (65) and (66), and plot in Fig. 3 the operators

�hþm2
b and r̂ þmf in momentum space. As�hþm2

b

and mf are real symmetric (also after including r), their

Fourier transforms are real, whereas that of the real anti-

symmetric r̂ is purely imaginary. In order to seek for

zeros, we therefore plot ð�hþm2
bÞðpÞ and jðr̂ þmfÞ�

ðpÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̂2ðpÞ þm2

fðpÞ
q

, both as functions of p. As one

can see from that figure, the doublers are removed and no
additional zeros appear, unless a2 is too big.

APPENDIX D: ALTERNATIVE DERIVATION OF
THE SYMMETRY RELATION

Let us discuss how the symmetry relation emerges in the
setting of Sec. IVB with currents. Here we take the point of
view that the Wilsonian action S is defined to give the same
generating functional Zf½J� in (70),

Zf½J� ¼ 1

N eð1=2ÞJ��1J

Z
d�e�S½��þJ�; (D1)

for all currents J as the classical action in (68),

Zf½J� ¼ 1

N

Z
d’e�Scl½’�þJ�f½’�: (D2)

This yields the same expectation values for all observables
composed out of the blocked fields �f.

Now performing a symmetry variation ’ ! ’þ � ~M’
on the classical fields ’ and changing the integration
variable in (D2) accordingly, one gets to Oð�Þ:

�STr ~MZf½J� ¼ 1

N

Z
d’e�Scl½’�þJ�f½’��J�f½ ~M’�:

(D3)

The second term can be rewritten as �JM�f½’� using the

additional constraint. Then it is just the change of Zf½J�
under J ! J þ �JM,

�STr ~MZf½J� ¼ Zf½J þ �JM� � Zf½J�: (D4)

This can be computed in the representation (D1), where
again we change the integration variable � ! �þ �M�.
This yields a STrM part, the variation of S, and a bilinear
term in J from the variation of the prefactor:

0 ¼ �fSTr ~M� STrMþ �S� JM��1JgZf½J�: (D5)

The currents in the last term can be rewritten as

� derivatives of expðJ�Þ in Zf½J� and, by partial integra-

tion, of expð�S½��Þ:

0 ¼ �
Z

d�e�S½��þJ�

�
STr ~M� STrMþ �S

� eS½�� @

@�
M��1 @

@�
e�S½��

�
Zf½J�: (D6)

Demanding this equality for all currents J, the curly
bracket in the integrand has to vanish giving (17) and
thus our symmetry relation (18).
Notice that we have used the same ingredients as in the

original derivation of the relation, including the additional
constraint and the inverse blocking kernel ��1, but we
have not relied on the definition (71) of the Wilsonian
action based on � itself.

APPENDIX E: SINGULAR ��1

The results of Sec. IVB extend to �’s with some diverg-
ing matrix elements �mn. The corresponding eigenmodes
��sing ¼ �sing�sing with �sing ! 1 are fixed: �sing ¼
�sing;f½’�. The remaining modes in � still undergo the

smearing procedure.
The other extremal case is Psing�

�1Psing ! 1, where

Psing is the projection operator on the singular part of �
�1.

Still (69) is valid but the definitions of the Wilsonian action
(71) and the normalization (72) develop singularities. If we
want to keep these definition we could simply change the
generating functional Zf½J� to Zf½ð1� PsingÞJ�which gen-
erates correlation functions h�f;reg � � ��f;regi. Here

�f;reg ¼ Preg�f with Preg ¼ ð1� PsingÞ. Then the above

derivations are unaltered with � ! �reg ¼ Preg�Preg and

��1
reg ¼ Preg�

�1Preg. With this procedure we have removed

the�sing modes from our theory. In particular the definition

of the Wilsonian action (71) with �reg leads to S½�� ¼
S½�reg�.

APPENDIX F: GENERAL BLOCKING MATRICES
�G

The restrictions of the blocking matrix originate from
the Hermiticity of the lattice action. In addition, the most
general blocking matrix �G should connect fermionic and
bosonic fields only among each other. Therefore, the form
of its inverse is restricted to be a

ð��1
G Þijmn ¼

b2 b01 0 0
b01 b0 0 0
0 0 0 b1 þ b001
0 0 �b1 þ b001 0

0
BBB@

1
CCCA

mn

; (F1)

where b001 has to be antisymmetric, whereas all other ma-
trices are symmetric. In order to get translation invariance
all matrices must be circulant.
The most general symmetric matrix, fulfilling (20) with

the symmetry operatorsM and �M defined by (86) and (87),
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is

að��1
S Þijmn ¼

d2 d1 0 0
d1 r2d2 0 0
0 0 0 �d1 �rd2
0 0 d1 �rd2 0

0
BBB@

1
CCCA

mn

;

(F2)

where d2 and d1 are symmetric circulant matrices. Such a
symmetric part, ��1

S , can always be added to ��1 without

changing the relation (27). So the matrix elements of

��1 ¼ ��1
G þ ��1

S (F3)

can be reduced without any loss of generality concerning
the modified symmetry using the freedom of choosing d2
and d1. We choose them to be

d1 ¼ �b1 and rd2 ¼ �b001 (F4)

and define

a0 :¼ b0�rb001 ; a1 :¼ b1þb1; a2 :¼ b2�r�1b001 ;
(F5)

where all ai are now symmetric circulant matrices. The
resulting matrix with reduced matrix elements compared to
��1
G is just the one given in Eq. (90). Since ��1

S is not

important for the deformed symmetry of the action the
result is not changed compared to ��1

G . However, the

deformed symmetry Mdef depends on this part. So if one
wants to investigate the locality of Mdef the most general
blocking matrix ��1

G instead of the ��1 must be

considered.
From these considerations it is clear that all entries of

��1 can in principle be zero after splitting off ��1
S . Then

the blocking matrix would consist only of a symmetric part
�S. This was done in [24] where ��1 ¼ ��1

S with d2 ¼ 0
was used. The lattice symmetry is in that case reduced to
the naive one.

APPENDIX G: DECAY OF SUSY LATTICE
OPERATORS

In this Appendix we discuss the locality properties of the
operators (95)–(97) with momentum-independent ai,
which due to the denominators resemble massive propa-
gators. Nonetheless, we will demonstrate that the position
space representations of these operators do not decay ex-
ponentially on the lattice.

Let us, as is common in the discussion of locality,
consider the limit of large lattices. That is, we replace r
in Eq. (95) by pk for k ¼ �ðN � 1Þ=2 � � � ðN � 1Þ=2 and
take N to infinity. Then for the position space representa-

tion of the (circulant) fermionic operator r̂

r̂ nm ¼ 1

2a

XðN�1Þ=2

l¼�ðN�1Þ=2
ĉl�n�m;�l; (G1)

cf. (56), the discrete Fourier transformation turns into a
Fourier integral

ĉ l ¼ lim
N!1

1

N

XðN�1Þ=2

k¼�ðN�1Þ=2
r̂ðpkÞeipkl ¼

Z 	=a

�	=a
dpr̂ðpÞeipla;

(G2)

where p is a continuous momentum and

r̂ðpÞ ¼ i
ð1þ a0 � a2m

2
bÞp

ð1þ a1mb þ a0Þ2 þ ða2mb þ a1Þ2p2
(G3)

from the solution (95).
In the limit a ! 0 and with p-independent ai, the

Fourier transform gives an exponential decay because

Z 1

�1
dp

p

�2
1 þ �2

2p
2
eipla � exp

�
�signðlÞ laj�1j

j�2j
�
: (G4)

At finite lattices the Fourier transform (G2) can be
computed in the complexified p space. The Fourier integral
consists of contributions from poles where the denomina-

tor of r̂ðpÞ vanishes and an additional part from the
corresponding complex contours that encloses the poles.

Because of the regularity of r̂ðpÞ on the real axis, the
poles appear away from it. For positive l we enclose the
poles with positive imaginary parts by adding paths p ¼
�	=aþ i
 , 
 2 ½0;1Þ. The residue at each pole is some

number coming from r̂, which we assume to be nonzero,
times a term decaying exponentially in l from the Fourier
factor in (G2). For the same reason there is no contribution
from the asymptotic contour at large Imp parallel to the
real interval ½�	=a;	=a�.
The two new contours contribute

�
Z 1

0
d
r̂ðpÞeiplajp¼�	=aþi
 ; (G5)

which turn into Laplace transforms

Z 1

0
d
½r̂ð	=aþ i
Þ � r̂ð�	=aþ i
Þ�e�
la: (G6)

For large spatial distances l only the value of r̂ at p ¼ 	=a
remains, namely

½r̂ð	=aÞ � r̂ð�	=aÞ�
Z 1=la

0
d
ð1� 
laÞ ¼ r̂ð	=aÞ 1

la
;

(G7)

where we used that r̂ is odd. Hence the additional contours

give algebraic corrections to r̂ in position space, unless r̂
vanishes at the boundary of the Brillouin zone p ¼ 	=a.
Of course the problem of algebraic tails is absent, if r is

ultralocal. Here, however, we have considered r̂ as a
function of the SLAC operator r according to the solution
(95). The way out, which is followed in the body of the
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paper, Sec. VE, is to consider general momentum-
dependent blocking kernels.

We remark that the discussion is similar for negative l
(where one encloses the poles with negative imaginary
parts). Furthermore, the algebraic corrections do not ap-
pear in mf and �hþm2

b, Eqs. (96) and (97), because

these are even functions in p.

APPENDIX H: LOCALITY CONDITION

All of the following one-dimensional considerations can
be extended easily to higher dimensions. The considered
lattice operatorsO are, because of translational invariance,
circulant matrices,

Omn ¼ On�m ¼ Fðaðn�mÞÞ: (H1)

The slightly modified condition for locality demands that F
decays faster than any polynomial. That means

jxrFðxÞj<1 8 r 2 N; x; y 2 aN: (H2)

If the Fourier transform of FðxÞ, fðpÞ, and its derivatives
have no singularities and fulfill periodic boundary condi-
tions at the edge of the BZ the following estimation can be
made:

jxrFðxÞj ¼
��������
Z
BZ
ð@rpfðpÞÞeipx

��������	
Z
BZ

j@rpfðpÞj

	 Cr <1: (H3)

Consider now a nonlocal operator similar to the SLAC
derivative. This nonlocal operator should have no singu-
larities within the BZ for all of its derivatives. The bound-
ary conditions are, however, not periodic. According to the
discussion of the locality of K and Mdef it should support
the modified locality after a multiplication with a local
operator. In view of the above argument the boundary
conditions must hence be enforced by this local operator
without spoiling the differentiability of f. Its representa-
tion in Fourier space, IðpÞ, must therefore be a function
that vanishes together with all its derivatives at the edge of
the BZ. In addition no singularities should appear within
the BZ for any of its derivatives. One function that fulfills
these requirements is

IðpÞ ¼
�
expð� �2

�2�p2Þ jpj< �;

0 jpj 
 �;
with � 	 	

a
: (H4)

It is clear that IðpÞ cannot be analytic since any analytic
function that vanishes with all its derivatives at a specific
point must be identical to zero. So the common definition
of locality in terms of analyticity in momentum space
cannot be satisfied.
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