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A nonsupersymmetric grand unified theory can exhibit a ‘‘radiative fermion mass hierarchy’’, in which

the heavier quarks and leptons get mass at tree level and the lighter ones get mass from loop diagrams.

Recently the first predictive model of this type was proposed. Here it is analyzed numerically and it is

shown to give an excellent fit to the quark and lepton masses and mixings, including the CP violating

phase �CKM. A relation between the neutrino angle �13 and the atmospheric neutrino angle is obtained.
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I. INTRODUCTION

The masses of the known quarks and leptons exhibit a
large hierarchy. This has suggested to many theorists [1]
that the light fermion mass hierarchy could be ‘‘radiative’’,
i.e. that the lightest fermions get mass from loop diagrams,
while the heaviest get mass at tree level. In the early 1980’s
several papers showed that such an idea can be imple-
mented naturally in the context of nonsupersymmetric
grand unified theories (GUTs) [2]. In models of this type,
the radiative masses come from loop diagrams containing
virtual GUT-scale particles. That is why such models must
be nonsupersymmetric: otherwise, the loops would be sup-
pressed by OðM2

SUSY=M
2
GUTÞ due to the nonrenormaliza-

tion theorems of supersymmetry.
In a recent paper [3] a very simple nonsupersymmetric

SOð10Þ model with a radiative hierarchy was proposed.
One thing that allows this model to be so simple is pre-
cisely that its hierarchy is radiative. The point is that terms
have to exist in the Lagrangian corresponding to the larger
elements of the quark and lepton mass matrices, but not to
the smallest elements, since they arise automatically from
loops. The simplification can be seen by comparing the
model of [3] to the supersymmetric SOð10Þ model on
which it was based, which had a nonradiative hierarchy
[4]. That earlier model had a somewhat larger particle
content and more Yukawa terms.

Models with radiative hierarchies are also simpler in
another way: in them it is not necessary to introduce
ad hoc very small dimensionless parameters to account
for the fermion mass hierarchies, since they are automati-
cally accounted for by the loop factors 1=16�2. Despite
radiative hierarchy models being able to have a simpler
structure, one might think they would be less predictive,
since loop diagrams tend to depend on many parameters.
However, the model proposed in [3] shows that this need
not be the case. In that paper it was shown that the model
gives a qualitatively realistic pattern of quark and lepton
masses and mixings with only 9 parameters.

While the nonsupersymmetric model proposed in [3] is
economical and qualitatively realistic, the analysis in that
paper was not sufficient to establish that it is realistic

quantitatively. In particular, several issues were not ad-
dressed. First, it was not specified what the sequence and
scales of breaking were of SOð10Þ down to the standard
model group GSM (which must, of course be consistent
with proton decay bounds and unification of gauge cou-
plings). Unless that is done, the renormalization-group
running of the quark and lepton masses needed for a global
fit of parameters cannot be performed. Second, the forms
of the mass matrices given [3] were derived under the
assumption that certain SUð5Þ-breaking effects could be
ignored. However, as will be seen, this assumption is not
necessarily consistent with the pattern of SOð10Þ breaking
that needs to be assumed in order to satisfy the constraints
of gauge coupling unification and proton decay.
SUð5Þ-breaking effects will turn out to modify significantly
the forms of the quark and lepton mass matrices given in
[3]. Third, the mb=m� ratio is problematic in the version of
the model discussed in [3]. In that model, because certain
SUð5Þ-breaking effects were treated as negligible, the clas-
sic prediction m0

b ffi m0
� was obtained. (A superscript ‘‘0’’

indicates throughout this paper quantities evaluated at the
GUT scale.) This is well-known to give a fairly good fit in
supersymmetric models for certain values of tan� [5]; but
in nonsupersymmetric models it results in a prediction of
mb=m� at low energies that is typically too large by at least
30% [6]. Fourth, the ratioms=mb is predicted in the version
of the model given in to have the Georgi-Jarlskog value
1
3m�=m� at the GUT scale [7]. However, lattice calcula-

tions [8] have suggested that ms is significantly smaller
than previous estimates of it, and the best-fit value is now
somewhat smaller than the Georgi-Jarlskog prediction.
In this paper, we address all these issues. The paper is

organized as follows. In Sec. II, the SOð10Þ model of [3] is
reviewed, and it is explained how both the tree-level and
radiative contributions to the mass matrices arise, and why
the resulting forms give a good qualitative description of
the pattern of quark and lepton masses and mixings. In
Sec. III, a breaking of SOð10Þ down to the standard model
consistent with gauge coupling unification and proton
decay bounds is specified. In Sec. IV, the effect of this
pattern of symmetry breaking on the quark and lepton mass
matrices is discussed and it is shown that forms somewhat
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different from those given in [3] result. In SEc. V, the
results of a global numerical fit to the quark and lepton
masses and mixings is given. An excellent fit is found to
the quark and lepton masses and mixings, including the CP
phase �CKM. A relation between the neutrino angle �13 and
the atmospheric neutrino angle is obtained.

II. THE MODEL

The model proposed in [3], whose predictions we ana-
lyze in detail in this paper, is a nonsupersymmetric one
with unified group SOð10Þ. In it the tree-level mass matri-
ces of quarks and charged leptons are generated by only
three effective Yukawa operators

O1 ¼ 16316310H O2 ¼ 16216310H45H=M2

O3 ¼ ðci16i16iHÞð163160HÞ=M3; i ¼ 1; 2
(1)

where 161, 162, and 163 are three families of quarks and
leptons, and the multiplets with subscript H are Higgs
fields. In O3, the factors in parentheses are contracted
into 10’s of SOð10Þ. The loop-level elements in the mass
matrices arise very simply from the tree-level elements, as
will be seen later. The three operators given in Eq. [(1)] do
the following things: O1 gives the 33 elements of the mass
matrices, i.e. the masses of the third family. O2 and O3

generate the masses of the second family and its mixing
with the third family (i.e. Vcb and �atm), and also �sol. The
masses of the first family and its remaining mixings come
from loops.

The operators in Eq. (1) come from integrating out some
‘‘extra’’ vectorlike fermion multiplets, consisting of an

SOð10Þ vector (10) and a spinor-antispinor pair (16þ
16). Thus the complete fermionic content of the model
comprises the following (left-handed) multiplets:

16i¼1;2;3 þ ð16þ 16þ 10Þ. The scales M2 and M3 in the

denominators of the operators O2 and O3 in Eq. (1) are set
by the masses of the fermions being integrated out; so that
M2 and M3 are superlarge. However, since the vacuum
expectation values (VEVs) of 45H and 16iH are also super-
large and of the same order, these operators are not highly
suppressed.

The Higgs sector of the model contains the following
multiplets: (a) A rank-4 tensor field, 210H, the role of
which is to break SOð10Þ down to the Pati-Salam group
SUð4Þc � SUð2ÞL � SUð2ÞR at a scale MG. (b) Three ad-
joint fields, 45H, 45

0
H, 45

00
H. One of these, 45H, obtains a

VEV in the B� L direction, thus participating in the

breaking of the Pati-Salam group at a scale MPS. It also
couples to the quarks and leptons and contributes to the
superheavy masses of some of them. The other two adjoint
Higgs fields play no essential role in symmetry breaking
and do not couple to quarks and leptons. As will be seen in
Sec. III, they are needed only for their effect on the running
of gauge couplings. There may also be a symmetric tensor
Higgs field 54H, in order to introduce SOð10Þ-breaking and
SUð5Þ-breaking into certain entries in the fermion mass
matrices, as will be explained in the second paragraph of
Sec. IV. It would have a VEV in the standard-model-singlet
direction. (c) There are three spinor Higgs fields, 161H,
162H, and 160H. The first two of these obtain superlarge
VEVs of orderMPS in the standard-model-singlet direction
and break the Pati-Salam group down to the standard
model group. They also couple to quarks and leptons and
contribute to the superlarge masses of some of them. 160H
obtains only a weak-scale VEV in the color-singlet/weak-
doublet component, participates in breaking the weak in-
teraction group, and contributes to quark and lepton
masses. (d) There are two vector Higgs multiplets, 10H
and 100H. These get weak-scale VEVs, participate in break-
ing the weak interactions, and contribute to quark and
lepton masses. More will be said about the Higgs sector
later. The complete set of fields of the model are given in
Table I.
The Dirac mass matrices of the up-type quarks, down-

type quarks, charged leptons, and neutrinos (denoted by
MU,MD,ML, andMN , respectively) arise from the follow-
ing set of Yukawa terms in the Lagrangian:

L Yuk ¼ M16ð1616Þ þM10ð1010Þ þ að16163Þ45H
þ X

i¼1;2

cið1016iÞ16iH þ h33ð163163Þ10H

þ h2ð16162Þ10H þ h3ð10163Þ160H
þ hð1616Þ100H: (2)

It is shown in [3] that this form of the Yukawa inter-
actions is the most general allowed by a certain simple
Uð1ÞF flavor symmetry. The Uð1ÞF charges of the fermion
and scalar multilets of the model are given in Table I. (The
numbers x, y, z, u, v in Table I can have virtually any
values, except a set of measure zero that would allow more
terms into the Yukawa Lagrangian than those shown in
Eq. (2).)
The terms on the first line of Eq. (2) are the OðMPSÞ

masses of the extra fermion multiplets; the terms on the
second line contribute OðMPSÞ masses that mix those extra

TABLE I.

SOð10Þ 161 162 163 16 16 10 10H 100H 160H 161H 162H 45H 450H 4500H 54H 210H

Uð1ÞF z 2y� x y x �x 0 �2y �2x �y �z x� 2y x� y u v 0 0
OðVEVÞ - - - - - - MW MW MW MPS MPS MPS - - MPS MPS
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fermions with the three chiral families 16i; the terms on
the third line generate the weak-scale SUð2ÞL �
Uð1ÞY-breaking masses; and the last term is needed to
give radiative masses to the first family.

We will use the notation that pðqÞ stands for a p multi-
plet of SUð5Þ contained in a q multiplet of SOð10Þ. For
example, the vacuum expectation values of the Higgs fields
16iH lie in the 1ð16Þ direction. The electroweak gauge
symmetry SUð2ÞL �Uð1ÞY is spontaneously broken by
the Higgs multiplets denoted 10H, 100H, and 160H in
Eq. (1) and, more specifically, by the neutral components
of the Y=2 ¼ �1=2 doublets contained in �5ð10HÞ, �5ð100HÞ,
and �5ð160HÞ, and the neutral components of the Y=2 ¼
þ1=2 doublets contained in 5ð10HÞ and 5ð100HÞ. Of course,
in the low-energy effective theory, which is just the stan-
dard model, there is only one Higgs doublet, which is some
linear combination of these doublets (and their Hermitian
conjugates).

According to [3], the mass matrices that result from the
terms in Eq. (2) have the form

MU ¼
0 0 0
0 0 �

3

0 � �
3 1

0
B@

1
CAmU;

MD ¼
0 0 �g1

0 �H
�
3 þ �g2

C1 C2 � �
3 1

0
B@

1
CAmD;

MN ¼
0 0 0
0 0 ��
0 � 1

0
@

1
AmU;

ML ¼
0 0 C1

0 �H C2 � �
�g1 �þ �g2 1

0
B@

1
CAmD;

(3)

where mU � h33h5ð10HÞi and mD � h33h�5ð10HÞi. (It will
be seen in Sec. IV that GUT-symmetry-breaking effects
modify these forms somewhat.) The convention here is that
the mass matrices are multiplied from the left by the left-
handed fermions and from the right by the right-handed
fermions.

The 33 elements of the mass matrices in Eq. (3) come
simply from the term h33ð163163Þ10H, as is usually the
case in SOð10Þ models [9]. (This is just the operator O1 in
Eq. (1).)

The contributions to the 23 and 32 elements denoted by
� come from integrating out the family-antifamily pair

16þ 16. The antifamily 16 appears in two mass terms
from Eq. (2), which can be combined as follows:

16ðM1616þ ah45Hi163Þ. These terms have the effect of
mixing the 16 with the 163. One linear combination of 16

and 163 obtains a superlarge mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

16 þ ðah45HiÞ2
q

’
M16, while the orthogonal combination (denoted by the

index 30) remains light. (From now on, primed indices will
be used to denote the light families that remain after the
superheavy fermions have been integrated out.) Thus, the
16 with no index has some of the third light family mixed
in with it; and the amount of this mixing is proportional to
the VEV h45Hi. As a result, the term h2ð16162Þ10H from
Eq. (2) leads to an effective operator of the form
ð16301620 Þ10H45H=M2, which is just the operator O2 of

Eq. (1). And it can easily be seen that 1=M2 ffi
h2a=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

16 þ ðah45HiÞ2
q

’ 1=M16. Note that, since h45Hi �
MPS, it must be that M16 �MPS, or else the operator O2

would be suppressed. This operator produces the contribu-
tions denoted in Eq. (3) by �. Since h45Hi / B� L, the �
contributions are 1=3 times as large for the quarks as for
the leptons.
The elements denoted by C1 and C2 arise in a similar

fashion by integrating out the SOð10Þ-vector multiplet of
quarks and leptons, 10. This multiplet contains a �5þ 5 of
SUð5Þ. The 5ð10Þ appears in several mass terms from
Eq. (2), which can be combined as 5ð10Þ½M10

�5ð10Þ þP
i¼1;2cih1ð16iHÞi�5ð16iÞ�. These terms have the effect of

mixing the �5ð10Þ with the �5ð161Þ and �5ð162Þ. One linear
combination of these �5’s obtains an OðMPSÞ mass, while
the two orthogonal linear combinations are in the light
families and denoted �510 and �520 . Consequently, the �5ð10Þ
has mixed in with it some of �510 and �520 . That means
that the term h3ð10163Þ160H in Eq. (2) leads to effective
mass terms of the form ðC1

�510 þ C2
�520 Þ1030mD. This is

just the operator O3 of Eq. (1), with M3 ffi
h3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

10 þ ð�icih16iHiÞ2
q

. This gives the terms denoted

by the Ci in Eq. (3). These contributions appear only in
ML and MD, because �5’s of SUð5Þ contain only charged
leptons and down-type quarks. In both [3,4] the M10 was
assumed to be an explicit (and therefore SUð5Þ-invariant)
mass, and therefore the same Ci appear in both ML and
MD. Note that, since h16iHi �MPS, it must also be that
M10 �MPS, as otherwise the operatorO3 and the elements
Ci would be suppressed.
An aspect of the operatorsO2 andO3 that may at first be

very puzzling, is that (as noted earlier) each operator
contains in the numerator a VEV that is of the same order
as the mass appearing in the denominator. This might
appear inconsistent with an effective field theory approach;
but actually there is nothing improper in this, and operators
of this type very commonly appear when heavy fermions
are integrated out to give effective tree-level Yukawa op-
erators for the remaining light fermions. This happens, for
example, in Froggatt-Nielson models [10] and in many
grand unified models [11–16].
The point is that in models that seek to explain the

pattern of quark and lepton masses by means of some
symmetry (flavor symmetry or grand unified symmetry or
a combination of the two) there is always an original
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‘‘symmetry basis’’ of the fermions and a ‘‘mass basis’’.
The heavy fermions (in grand unified theories they would
be superheavy fermions) that are integrated out are linear
combinations of certain fermions in the symmetry basis.
Those linear combinations are expressable in terms of
mixing angles (not CKM mixing angles, but angles de-
scribing the mixing of superheavy and light fermions). The
tangents of those angles are typically given by dimension-
less ratios of VEVs and masses, such as ah45Hi=M16 and
cih16iHi=M10 here. The effective operators obtained by
integrating out the heavy fermions, will contain factors
of sines of those angles, for example, in deriving O2 there

is a factor of ah45Hi=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

16 þ ðah45HiÞ2
q

. When these sine

factors are expanded out, they give infinite series of opera-
tors of higher and higher dimension (e.g. here containing
higher and higher powers of 45H) suppressed by higher
powers of the heavy mass scale. These series simply con-
verge to sine factors of order 1. In many model-building
papers, these mixing angles are assumed to be somewhat
smaller than 1. In that case, the sines can be replaced by
tangents, and that is equivalent to replacing the infinite

series by its first term, e.g. replacing
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

16 þ ðah45HiÞ2
q

by

M16. In many papers, no explicit mention is made of the
fact that such an approximation is being made (for ex-
ample, it is not stated in [14–16]), but such an approxima-
tion is always being made when it is stated that integrating
out some heavy fermions gives a d ¼ 5 operator.

Thus, the expressions for the quark and lepton mass
matrices given in Eq. (3) are approximate. The exact ex-

pressions involve factors, such as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðah45Hi=M16Þ2

p
and 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðPicih16iHi=M10Þ2

q
, which are just the cosines

of angles describing the mixing between the extra fermions

16þ 16þ 10 and the three chiral families 16i. If these
mixing angles are small, their cosines are very close to 1,
and the mass matrices become insensitive to their values.
This is an assumption that we make here (as in [3,14–16]),
as it reduces the number of parameters. However, there is
no a priori reason to assume that these angles are ex-
tremely small. (Indeed, if they vanished, so would �.) If
one of these angles were of order 0.25 radians, say, it would
give 3% corrections to some of the elements of the mass
matrices.

The elements denoted by �gi and �H in Eq. (3) are

necessary to make the mass matrices ML and MD be of
rank 3 rather than rank 2, and so generate masses and
mixings for the first family. As will be seen, in order to
fit the first family masses and mixings these � are must be
of order 10�2, whereas the other parameters appearing
inside in the mass matrices in Eq. (3) turn out to be of
order 1 (or, in the case of �, about 0.19). In [4], additional
vectorlike quark and lepton fields besides those in Eq. (2)
had to be introduced in order to generate these small �’s. In
[3], however, it was noted that the terms in Eq. (2) are

enough to generate the � terms automatically by one-loop
diagrams and also to explain why they are of order 10�2.
The �gi terms are given by the one-gauge-boson-loop

diagram shown in Fig. 1(a). The gauge boson in this
diagram is in a 10 of SUð5Þ (of course, it is in the adjoint
45 of SOð10Þ), so that it turns 10’s of SUð5Þ into �5’s and
vice versa. That means that the small �gi elements that

couple 10i to �53 (namely ðMDÞi3 and ðMLÞ3i) come from the
large Ci elements that couple �5i to 103 (namely ðMLÞi3 and
ðMDÞ3i) So �gi / Ci. These diagrams were evaluated in [3]

neglecting certain SUð5Þ-breaking effects, giving the result
that the same �gi appear inML andMD, as given in Eq. (3).

The diagram in Fig. 1(a) superficially looks divergent.
However, the accidental symmetry Uð1ÞF of the terms in
Eq. (1) makes ðMDÞ13 and ðMLÞ31 vanish at tree level and
guarantees that the loop is finite, as an exact calculation
indeed shows. The finiteness of this diagram is more
obvious if we write it in the form shown in Fig. 1(b). The
calculation of these loops will be discussed in Sec. IV.
The 22 elements ofML andMD (denoted �H) arise from

the one-Higgs-boson-loop diagram shown in Fig. 2.
Whereas the one-gauge-boson-loop shown in Fig. 1 must
exist if the tree-level masses in Eq. (3) exist, the diagram in
Fig. 2 only exists if certain couplings not needed for the
tree-level masses are present: namely, the last term in
Eq. (2) (hð1616Þ100H) and a Higgs-mass term of the form
10H10H. A diagram related by SOð10Þ to the one in Fig. 2
gives a 22 element for the up-quark mass matrix MU.
However, if one supposes the contributions to ðMUÞ22 and
ðMDÞ22 from these diagrams to be roughly comparable,
then ðMUÞ22=ðMUÞ33 would be of order 10�4 and thus at
most a few percent correction to mc.

FIG. 1. The diagram in (a) shows how a tree-level mass for
103 �5i (shown as a blob in the center) leads to a one-loop mass for
10i �53: i.e. the �gi elements arise radiatively from the Ci ele-

ments. The 10ð45gÞ in the loop is a superheavy gauge boson. The
diagram in (b) is more detailed and shows why the loop is finite.
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Before getting into a more detailed discussion of the
model, it is useful to explain how the structure of the
matrices given in Eq. (3) explains qualitatively many of
the features of the observed pattern of masses and mixings
of the quarks and leptons.

First, neglecting the � parameters (which are of order
10�2 because they come from one-loop diagrams) and the
parameter � (which, though a tree-level effect, is somewhat
smaller than 1), one has that all the mass matrices in Eq. (3)

are of rank 1. In this approximation, m0
b ffi m0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jC1j2 þ jC2j2

p
, where the superscript ‘‘0’’ denotes

quantities evaluated at the GUT scale. The relation m0
b ffi

m0
� is known to fit fairly well in supersymmetric grand

unified models with certain values of tan�. It works less
well in nonsupersymmetric grand unified models; however,
this relation will be substantially modified when realistic
symmetry breaking is taken into account in Sec. IV.

The large (i.e. Oð1Þ) off-diagonal elements Ci produce
large mixing angles in the left-handed lepton sector and the
right-handed quark sector. This is because they result from
mixings of �5’s of SUð5Þ, which contain, of course, left-
handed charged leptons and right-handed down-type
quarks. Consequently, these elements produce large MNS
neutrino mixing angles, but they do not produce large
CKM mixing, since CKM mixing is of the left-handed
not right-handed quarks. This is one of the basic ideas of
so-called ‘‘lopsided’’ models [17].

Moreover, the present model is ‘‘doubly lopsided’’ in the
sense that bothC1 andC2 are large [18]. (In singly lopsided
models C2 is large but not C1.) This doubly lopsided
structure can give a very simple explanation of the ‘‘bi-
large’’ pattern of neutrino mixing angles in the following

way. The MNS matrix is given by UMNS ¼ ULU
y
� , where

UL and U� are the unitary transformations of the left-
handed charged leptons and neutrinos needed to diagonal-
ize ML andM�, respectively. The transformation UL is the
product of three successive rotations. First, there is a

rotation in the 1-2 plane by an angle �a ¼ tan�1 C1

C2�� ,

which eliminates the 13 element of ML (See Eq. (3) bring-

ing the 23 element to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijC1j2 þ jC2 � �j2p

. Second, there is

a rotation in the 2-3 plane by an angle �s ¼
tan�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijC1j2 þ jC2 � �j2p
, which eliminates the 23 element

ofML, bringing the 33 element to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijC1j2 þ jC2 � �j2 þ 1

p
.

The product of these two rotations is

U0 ¼
cs ss 0

�cass cacs sa
sass �sacs ca

0
@

1
A; (4)

where sa � sin�a, ca � cos�a, ss � sin�s, and cs �
cos�s. The result of these two rotations is to bring ML to
the form

M0
L ¼

0 Oð�HÞ 0
Oð�g1Þ Oð�Þ 0

Oð�g1Þ Oð�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijC1j2 þ jC2 � �j2 þ 1
p

0
B@

1
CA:

The third rotation (call it V) is in the 1-2 plane by an angle
ofOð�H=�Þ, and is needed to eliminate the 12 elementM0

L.
(There are also small rotations of the right-handed leptons
needed to eliminate the elements below the diagonal, but
these have a negligible effect on the MNS matrix.)

Altogether, then, UMNS ¼ ULU
y
� ¼ ðVU0ÞUy

� . Since V
and U� involve small rotations (the rotations in U� are
small because the neutrino mass matrix is hierarchical, as
we shall see), it follows that UMNS is approximately given
by the matrixU0 given in Eq. (4), and therefore has the ‘‘bi-
large’’ form, with the solar angle being approximately
�s � 1, the atmospheric angle being approximately �a �
1, and the angle �13 being approximately zero. (One thing
that ought to be emphasized is that in the limit that � and
the �’s vanish, the mass matrixML is rank 1, and therefore
one leptonic mixing angle is undefined. The small elements
lift this degeneracy, however. In particular, it is the hier-
archy �H � � that determines the angle in V to be small,
and ensures a bi-large form of UMNS.)
One of the great successes of lopsided and doubly

lopsided models is that they elegantly explain the very
widely differing magnitudes of the quantities related to
the hierarchy between the second and third families. Vcb,
ms=mb, and m�=m� are all of similar magnitude (0.04,

0.02, and 0.06, respectively), U�3ð� sin�atmÞ is much

larger (0.7); and mc=mt is much smaller (0.003). This
comes about from the structure of the mass matrices in
lopsided models, which cause Vcb, ms=mb, and m�=m� to

be all of order �1;U�3 to be of order �
0; andmc=mt to be of

order �2. This can be seen as follows. Looking at MU, one
sees that both its off-diagonal elements areOð�Þ, so that the
mass of the second-family fermion is Oð�2Þ. More pre-
cisely, mc=mt ffi �2=9. For ML andMD, on the other hand,
only the off-diagonal elements on one side of the long
diagonal are Oð�Þ (we neglect the Oð�Þ elements at this
point), whereas the off-diagonal elements of the other
side of the diagonal are dominated by the large lopsided
elements Ci. Thus the mass of the second-family fermions

in these cases are Oð�1Þ. More precisely, m�=m� ’
3ms=mb ’ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jC1j2þjC2j2

p
ðjC1j2þjC2j2þ1Þ . (Note that the Georgi-Jarlskog

ratio emerges naturally.) The quark 2-3 mixing Vcb is

FIG. 2. A diagram showing how the 22 elements of the mass
matrices can arise radiatively through Higgs-boson loops.
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controlled by the 23 elements of MU and MD, which are
both Oð�Þ, whereas the leptonic 2-3 mixing U�3 is con-

trolled by the 23 (and in doubly lopsided models also the
13) element of ML, which is Oð1Þ.

The u quark is left massless by the matrices in Eq. (3).
However, that is not a bad thing. Experimentally, mu=mt is
of order 10�5, which is far smaller than the corresponding
ratios md=mb � 10�3 and me=m� � 0:3� 10�3. Thus, if
md and me arise at one-loop level, one would expect mu to
vanish at one-loop level.

Before analyzing the structure of the quark and lepton
mass matrices further, it is necessary to deal with the
question of the pattern of breaking of SOð10Þ down to
the standard model group GSM ¼ SUð3Þc � SUð2ÞL �
Uð1ÞY .

III. THE BREAKING OF SOð10Þ
If SOð10Þ broke at a single scale all the way to the

standard model group GSM, it would give the same pre-
diction for the low-energy gauge couplings as nonsuper-
symmetric SUð5Þ, which are known to be unsatisfactory.
Moreover, as in nonsupersymmetric SUð5Þ, the proton
lifetime would be too short. However, it is possible to get
satisfactory gauge coupling unification and proton lifetime
by assuming a two-stage breaking with the Pati-Salam
group [19] as the intermediate symmetry:

SOð10Þ!MG
SUð4ÞC � SUð2ÞL � SUð2ÞR

!MPS
SUð3ÞC � SUð2ÞL �Uð1ÞY:

The breaking of SOð10Þ to the Pati-Salam group at the
higher scale MG can be done by a 210H. The breaking of
the Pati-Salam group at MPS is done by the VEVs of the
adjoint and spinor Higgs fields, 45H and 16iH, which also
contribute to the superheavy quark and lepton masses
through couplings that appear in Eq. (2).

In running the gauge couplings between MG and MPS,
the following matter multiplets contribute to the beta func-
tions: (1) The quark and lepton multiplets, 161, 162, 163,

16, 16, and 10. Since the masses of these multiplets are
produced by coupling to the adjoint and spinor Higgs fields
and not the 210H, their splittings are of order MPS and can
be ignored in running betweenMG andMPS. (2) The Higgs
multiplets 161H, 162H, 16

0
H, 10H, 10

0
H, and three adjoint

Higgs multiplets. For the Higgs multiplets too, except for
the adjoints, it is assumed that the splittings are of order
MPS and can be neglected in running betweenMG andMPS.
For the adjoints, however, we assume splittings of order
MG. Under the Pati-Salam group a 45H decomposes to
ð15; 1; 1ÞH þ ð6; 2; 2ÞH þ ð1; 3; 1ÞH þ ð1; 1; 3ÞH. We as-
sume that the color-singlet pieces of the adjoints get
mass of order MG and the color-non-singlet pieces get
mass of order MPS. This is not unreasonable, since the
renormalizable couplings of the adjoints to the 210H pro-

duce splittings of order MG between the color-singlet
and color-non-singlet pieces. (One such term is

hH½IJKL�iH½IJ�H½KL�, where the fundamental indices I, J,
K, L take SUð2ÞL � SUð2ÞR values.) Of course, the whole
Higgs potential must be tuned to give the hierarchy be-
tween MG and MPS, so different patterns of splittings are
possible. It is in order to get a value ofMG large enough to
be consistent with proton-decay limits, that we assume
there are three split adjoint Higgs multiplets. More such
adjoints would push MG higher. Below the scale MPS, we
assume just the standard model field content with one-
Higgs-doublet.
The results of the running are shown in Fig. 3. In the

running, the input values used are 	�1
1 ðMZÞ ¼ 58:97,

	�1
2 ðMZÞ ¼ 29:61, and 	�1

3 ðMZÞ ¼ 8:47 [20]. The result

of the running is thatMPS ¼ 4:79� 1013 GeV. AtMPS the
standard model couplings have the values 	�1

1 ðMPSÞ ¼
41:35, 	�1

2 ðMPSÞ ¼ 43:21, and 	�1
3 ðMPSÞ ¼ 38:55. The

unification scale comes out to be MG ¼ 1:17�
1016 GeV. and 	�1

U ðMGÞ ¼ 35:65. These values are con-

sistent with present bounds on proton decay. (In this model,
the dominant contribution to proton decay comes from
dimension-6 operators produced by the exchange of gauge
bosons of mass MG. The Pati-Salam gauge bosons do not
give proton decay.) The values of the gauge couplings
plotted in Fig. 3 are used in the running of the quark and
lepton masses and mixing angles in Sec. V.
One consequence of the fact that SOð10Þ is broken down

to the Pati-Salam group at a high scale is that it makes more
natural the assumption being made in this model that
h45Hi / B� L. In the original supersymmetric version of
the model [4] this assumption was justified by the fact that
a 45H whose VEV is proportional to B� L is needed to
implement to Dimopoulos-Wilczek mechanism (or ‘‘miss-
ing VEV mechanism’’) [21] for doublet-triplet splitting.
However, in a nonsupersymmetric SOð10Þ model, that
mechanism does not work—and, in fact, doublet-triplet
splitting must be achieved through fine-tuning [22].
The justification for the assumption made in [3] that
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FIG. 3 (color online). Gauge couplings unification.
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h45Hi / B� L is therefore less clear. However, if SOð10Þ
breaks to the Pati-Salam group at the high scaleMG in such
a way that only the ð1; 3; 1ÞH þ ð1; 1; 3ÞH in the adjoints
have the large mass MG, as assumed, then the residual
ð15; 1; 1ÞH naturally obtains a VEV in the B� L direction
(and, in fact can point in no other direction without break-
ing the standard model group at a superheavy scale).

Perhaps a word should be said about the Higgs potential
and the possibility of obtaining the desired pattern of VEVs
and Higgs splittings by minimizing it. Since there are two
scales of symmetry breaking, MG and MPS, and this is an
ordinary nonsupersymmetric grand unified theory, there is
inevitably some tuning in the Higgs potential to achieve a
large ratio of these scales. However, the tuning is not so
severe—only about a factor of 0.005. Moreover, one could
imagine that some of the breaking is done dynamically,
which might avoid any tuning of parameters, though we
shall not pursue that idea here. This kind of tuning is
characteristic of multiscale models without supersymme-
try. On the other hand, in nonsupersymmetric models the
Higgs potential is much less constrained, since it does not
come from a superpotential. It contains all quadratic, cu-
bic, and quartic terms that can be constructed out of both
the Higgs fields and their Hermitian conjugates consistent
with symmetry, whereas a superpotential is at most cubic
and is made of the chiral superfields alone, without their
Hermitian conjugates. As a result, any realistic nonsuper-
symmetric model has a very large number of free parame-
ters in the Higgs potential. In the present case there are
about 20 types of terms and of order a hundred free
parameters. This makes it obvious that the simple pattern
of VEVs that we assume can be obtained by a suitable
choice of parameters, though for equally obvious reasons
we shall not attempt a minimization. The Uð1ÞF does
constrain the Higgs potential, but still allows a very large
number of terms, enough for realistic breaking. (In the
Higgs potential the Uð1ÞF constraint can be satisfied in
many types of terms by having fields multiplied by their
Hermitian conjugates, whereas this is not an option in the
Yukawa sector, which is therefore much more constrained,
and indeed must have the form in Eq. (2).)

IV. MODIFICATIONS TO THE MASS MATRICES

In this section the implications for the mass matrices of
the breaking of SOð10Þ down to the Pati-Salam group will
be analyzed.

In Eq. (3) the term M10ð1010Þ, as written, involves an
explicit mass. This was the assumption made in [3]. It is
also possible, however, and just as simple, to suppose that
this mass arises from the VEVof some Higgs field(s) that
break SOð10Þ. There are several ways that this might
happen. Perhaps the simplest is through a coupling
ð1010Þh54Hi. This is allowed by the Uð1ÞF symmetry.
[Alternatively, one could dispense with the 54H field and
have instead the effective coupling ð1010Þh45Hi�

h45Hi=MPS. This operator would arise from integrating
out fields with mass OðMPSÞ, which would have to be
introduced for this purpose. The simplest possibility would
be to introduce a 100 of fermions with Uð1ÞF charge ðy�
xÞ, and a singlet Higgs 1H withUð1ÞF charge ð2x� 2yÞ and
VEV of order MPS. The 100 would get mass from the
coupling 1001001H, and it would also have coupling
1010045H.]
If M10 reflects the breaking of SUð5Þ then it is a matrix

that gives different values when acting on the down
quarks and on the charged leptons in the SOð10Þ 10 of
fermions. Call its value for the leptons M10 and for the
down quarks M0

10. One result of this splitting is that the

entries Ci are no longer the same in the mass matrices ML

and MD. If one assumes, as before, that the quantitiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�icih16iHi=M10Þ2

p
are well approximated by 1,

then one can write the Ci contributions to the mass matri-
ces as Ci for ML and fCi for MD, where f ¼ M10=M

0
10.

This SOð10Þ-breaking effect is, as it were, optional.
However, it is quite important for fitting m0

b=m
0
�, which

otherwise would be predicted to be 1. The effects that will
now be described are unavoidable consequences of the
breaking of SOð10Þ.
SOð10Þ-breaking and SUð5Þ-breaking effects come into

the loop contributions �gi and �H in several ways.

Consider �H first. If one examines the diagram in Fig. 2
closely, one finds that its contribution toMD involves loops
with scalars that can be either color triplets or color sin-
glets, whereas its contributions to ML involve only color-
triplet scalars. When SOð10Þ breaks, the degeneracy be-
tween these two types of scalars is badly broken, which
means that one cannot assume that Fig. 2 gives the same
contribution to the two matrices. We therefore introduce a
factor fH into the 22 element of ML to reflect this fact.
The case of the elements �gi requires a more involved

discussion. First, one must recall that the vacuum expec-
tation values h1ð16iHÞi and h45Hi break the Pati-Salam
group, and therefore must be no larger than MPS, and that
the masses M10 and M16 cannot be too much larger than
these VEVs, since otherwise the entries Ci and � would be
too small. Consequently, one can assume that all the su-
perheavy fermion masses are much lighter than the scale
MG. This has implications for the loop diagrams in Fig. 1.
Some of those diagrams contain gauge bosons whose mass
is of order MPS and others contain gauge bosons whose
mass is of order MG. Because the fermions in those loops
are much lighter than MG, as just argued, the loops with
OðMGÞ gauge bosons are suppressed relative to the loops
with OðMPSÞ gauge bosons by a large factor and are there-
fore negligible. To see what this implies, one must look in
more detail at the diagrams in Fig. 1 to see how they
contribute to ML and MD.
In Fig. 4(a), is shown the contribution to ML. In this

diagram there are three possible values of the color index a,
(or, equivalently, of the pair of color indices bc on the
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superheavy gauge boson Xbc). For any of these values, the
gauge boson converts a left-handed charged lepton into a
left-handed down-type quark at one vertex, and a left-
handed charged antilepton into a left-handed down-type
antiquark at the other vertex. That shows that the gauge
boson is one of those of the Pati-Salam group SUð4Þc,
which make such transitions. (The Pati-Salam multiplet
ð4; 2; 1Þ unifies left-handed leptons and quarks, while the
multiplet ð�4; 1; 2Þ unifies left-handed antileptons and anti-
quarks.) For all three values of a, therefore, the loop in
Fig. 3(a) contains only gauge bosons whose mass is of
order MPS.

In Figs. 4(b) and 4(c) are shown the diagrams that
contribute to MD. In Fig. 4(b), the external quark has a
color index of fixed value a, which determines uniquely the
values of the color indices on the virtual gauge boson Xbc.
This gauge boson is [as in Fig. 4(a)] one of those of the
Pati-Salam group SUð4Þc, as can be seen from the fact that
it converts left-handed down quarks into left-handed
charged leptons. In Fig. 4(c) there are two choices for the
color index c on the gauge boson X1c, since it is only
required to be different from a. This gauge boson, however,

is obviously not one of those of the Pati-Salam group, since
it converts a left-handed quark into a left-handed antiquark
(and a left-handed lepton into a left-handed antilepton),
which are not unified together in the multiplets of the Pati-
Salam group. Thus the gauge boson in Fig. 4(c) has mass of
order MG 	 MPS. The diagram in Fig. 4(c) is thus highly
suppressed. From these considerations, one sees that the
contribution to ML has a factor 3 relative to the contribu-
tion to MD because of the color degeneracy in the loop.
The gauge-boson-loop integrals can be written in a

simple form if one makes the same approximation as

before, namely
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð�icih16iHi=M10Þ2

p ffi 1. In that case
the gauge-boson-loop contributions to ML and MD are
given by

ðMLÞgb‘3i ¼ 3

�
3	U

16�2

�
Ci

lnx

x� 1
;

ðMDÞgb‘i3 ¼
�
3	U

16�2

�
ðfCiÞ lnx0

x0 � 1
:

(5)

Here x � ðMg=M10Þ2 and x0 � ðMg=M
0
10Þ2, where Mg is

the mass of the colored ‘‘Pati-Salam’’ gauge bosons in
Fig. 3(a) 3(b). Recalling that f ¼ M10=M

0
10, one can re-

write these as

ðMLÞgb‘3i ¼ 3

�
3	U

16�2

�
Ci

�
M10

Mg

�
FðxÞ;

ðMDÞgb‘i3 ¼
�
3	U

16�2

�
Ci

�
M10

Mg

�
Fðx0Þ;

(6)

where FðxÞ � x1=2 lnx=ðx� 1Þ. It happens that the func-
tion FðxÞ is very slowly varying for arguments of order 1.
For example, Fð1þ yÞ ¼ 1� 1

24 y
2 þ 1

24 y
3 þ . . . , and

Fð2Þ ¼ Fð12Þ ¼ 0:98. Thus to a very good approximation

one may write

ðMLÞgb‘3i ¼ 3Ci� ðMDÞgb‘i3 ¼ Ci�: (7)

The mass matrices that result are

MU ¼
0 0 0
0 0 �

3

0 � �
3 1

0
B@

1
CAmU;

MD ¼
0 0 C1�
0 �H

�
3 þ C2�

fC1 fC2 � �
3 1

0
B@

1
CAmD;

MN ¼
0 0 0
0 0 ��
0 � 1

0
@

1
AmU;

ML ¼
0 0 C1

0 fH�H C2 � �
3C1� �þ 3C2� 1

0
@

1
AmD:

(8)

FIG. 4. Gauge-boson-loop contribution to mass matrices.
Subscripts in parentheses are family labels. a, b, c are SUð3Þc
indices. 1, 2 are SUð2ÞL indices.
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V. FITTING THE FERMION MASSES AND
MIXINGS

The forms of the mass matrices in Eq. (8) are those given
by the model at the scale MPS, since that is the mass of the
superheavy fields that are integrated out to give these
matrices. Below MPS, the model reduces to the standard
model. One can therefore use the renormalization-group
equations (RGEs) of the one-Higgs-doublet standard
model to run the measured quark and lepton masses and
mixings from low scales up to MPS and then fit the results
using the forms in Eq. (8).

Running from MZ to MPS is done using the one-loop
standard model RGEs given in [23]. The input values of the
quark and lepton masses at MZ, shown in Table II, are
taken from [24], and were computed using updated Particle
Data Group values. The input values of the CKM angles
are taken from [25]: s12 ¼ 0:2243
 0:0016, s23 ¼
0:0413
 0:0015, and s13 ¼ 0:0037
 0:0005: The lep-
tonic angles are taken from [26]: �sol ¼ 33:9� 
 2:4�,
�atm ¼ 45� 
 10�. The quark and lepton masses at MPS

that result from the running are shown in Table III. The
quark mixing angles at the Pati-Salam scale are, s12 ¼
0:2243
 0:0016, s23 ¼ 0:0464
 0:0015, and s13 ¼
0:0041
 0:0005:

Note that we fit md=ms, which is relatively well-known
from current algebra, rather than fitting md itself. For
several quantities, namely, the charged lepton masses, the
mass of the u quark, and the atmospheric neutrino angle,

we will add a ‘‘theoretical error bar’’ to the experimental
error bar in doing the 
2 fit. In the case of the charged
leptons, we add a 1% fractional error to their masses,
simply because we do not expect the forms in Eq. (8) to
be more accurate than that. (We have made approximations
of that order in deriving them.)
In the case of mu, we add a theoretical error because the

mass matrices we are using to do the fit include only tree-
level and one-loop effects. A two-loop contribution to the
11 element ofMU would be expected to be roughly of order
ð 1
16�2Þ2m0

t � 3:5 MeV. Thus we take the prediction of the

model to be that m0
u ¼ 0
 3:5 MeV. In other words, the

theoretical error formu is about 600% of the actual value of
mu, so it has no effect on the fitting.
In the case of the neutrino angles, there is an inherent

uncertainty in the prediction of this model, due to the
Majorana mass matrix of the right-handed neutrinos MR

being unknown and not predicted by the model. Because
the Dirac neutrino mass matrix MN is (to one-loop order)
given by the form in Eq. (8), which has vanishing first row
and column, it follows that the light neutrino mass matrix,
given by the usual type-I seesaw formula M� ¼
�MNM

�1
R MT

N , also has vanishing first row and column at
this order. Thus, the unitary matrix U� required to diago-
nalize M� is simply a rotation by some angle �� in the 23
plane. Thus the mixing matrix of the neutrinos is given by

UMNS ¼ ULU
y
� ¼ UL

1 0 0
0 cos�� � sin��
0 sin�� cos��

0
@

1
A; (9)

where UL is the unitary rotation of the left-handed charged
leptons required to diagonalize ML. Consequently,

sin�atm ¼ cos�� sin�
L
atm � sin�� cos�

L
sol cos�

L
atm;

¼ sin�Latm þOð��Þ
sin�13 ¼ cos�� sin�

L
13 � sin�� sin�

L
sol;

sin�sol ¼ cos�� sin�
L
sol ¼ sin�Lsol þOð�2�Þ;

(10)

where sin�Latm, sin�
L
sol, and sin�L13 are the 23, 12, and 13

elements of UL respectively. In performing the fit to the
data, we take as the neutrino mixings predicted by the
model sin�Lsol, sin�

L
atm, and sin�

L
13 (these are what are given

under ‘‘model’’ for these quantities in Table IV), and we
treat the effect of �� as a ‘‘theoretical error’’. The question
is how big to assume this error is in doing the fit.
Naively, one would expect that typically �� ¼ Oð�Þ,

since the 23 element of the Dirac neutrino mass matrix
MN is ��, so that �� vanishes in the limit � goes to zero.
Though this conclusion is correct, a more careful argument
is needed to establish it, because the form of MR may be
special, and in fact must be. The matrixMN is hierarchical,
and thus, for a ‘‘generic’’ MR, one would expect M� ¼
MNM

�1
R MT

N to be very strongly hierarchical. And indeed
the ratio of eigenvalues m2 and m3 of M� comes out to be

TABLE II.

mu 1:27
 0:50 MeV
ms=md 19:9
 0:8
ms 55
 16 MeV
mc 0:619
 0:084 GeV
mb 2:89
 0:09 GeV
mt 171:7
 3 GeV
me 0:486570161
 0:000000042 MeV
m� 102:7181359
 0:0000092 MeV
m� 1746:24
 0:20 MeV

TABLE III.

mass with error bar

fractional

error (%)

mu 0:571
 0:24 MeV 42

ms=md 18:9
 0:8 4.23

ms 25:387
 8:0 MeV 31

mc 0:278
 0:042 GeV 15

mb 1:186
 0:05 GeV 4.2

mt 86:926
 4 GeV 4.6

me 0:488848231
 0:000000042 MeV 10�5

m� 103:1990611
 0:0000092 MeV 10�5

m� 1754:46
 0:20 MeV 10�4
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Oð�4Þ for generic MR, which is much smaller than the
observed ratio of about 1/5. This suggests that there is a
hierarchy in M�1

R that partially compensates in the seesaw
formula for the hierarchy in MN . It is therefore useful to
parametrize the 23 block of the matrixM�1

R with powers of
1=� as follows: ðM�1

R Þ33 ¼ M, ðM�1
R Þ23 ¼ ðM�1

R Þ32 ¼
ða=�ÞM, ðM�1

R Þ22 ¼ ðb=�Þ2M. Then one finds that tr �M� ¼
m2 þm3 ¼ ð1þ 2aþ b2 þ �2Þðm2

D=MÞ and det �M� ¼
m2m3 ¼ �2ðb2 � a2Þðm2

D=MÞ2, where �M� is the 23 block
of M�. Defining r � det �M�=ðtr �M�Þ2 ffi m2=m3 ’ 1

5 , and

K � r=�2 ’ 5, one obtains the following equation for a
and b (which for real parameters is just that of an ellipse):
ðK � 1Þb2 þ ðaþ KÞ2 ¼ ½K2 � K � r�. It is easy to see

that typically jaj � jKj and jbj � jKj1=2. Since the angle

�� is given by tan2�� ¼ ��½ 2ð1þaÞ
1þ2aþb2��2

�, one finds that

except for special values of a and b, �� is of order �, in
agreement with the naive estimate.

In view of the above considerations one expects �� to be
of order �. While there are choices of a and b that fit the
neutrino mass ratios and make �� � 1, these are not typi-
cal. And so, while we could be generous to ourselves and
use a ‘‘theoretical error bar’’ of order 1 for the atmospheric
angle in the numerical fit (and obtain a better 
2), it seems
more justified to use a tighter theoretical error bar of �. (As
we shall see, this is indeed about the amount by which the
value of �Latm given by the model misses the experimental
value of the atmospheric angle.) There should also be a
‘‘theoretical error bar’’ for the solar angle coming from the
factor cos�� in Eq. (10), but for �� � � this is small
compared to the experimental error bar, and so we ignore
it.

In fitting, one has to take into account that the parame-
ters appearing in Eq. (8) are, in general, complex. Because
of the freedom to redefine the phases of the quark and
lepton fields, most of the phases can be ‘‘rotated away’’
from the low-energy theory. We will consider two cases. If
the group theoretical factors denoted f and fH are real,
then there are two physical phases in the mass matrices of
Eq. (8), which one can take to be phases of the parameters
� and �H. We will denote these by �� and �H. If f and fH
are complex, then there are two additional phases, which
we will denote �0 and �fH. The phase �0 comes into the

subleading terms of the 23 and 32 elements ofMD andML.
The phase �fH comes only into the 22 element ofML. The

phase �0 has only a small effect on the fit, and �fH has

almost none.
Altogether, then, we fit using 9 real parameters (MU,

MD, C1, C2, �, �, �H, f, fH) and two or four phases (��,
�H, and if f and fH are complex then also �0 and �fH).

With these we fit 16 quantities: the 9 masses of the quarks
and leptons (excluding the neutrino masses, which depend
on the unknownMR), the 3 CKM angles, the 1 CKM phase,
and the 3 neutrino mixing angles.
The results of the fit assuming f and fH are real are

given in Table IV. The asterisks in the ‘‘experimental
error’’ column are reminders that for certain entries a
‘‘theoretical error’’ is included, as explained above. The
masses are all in GeV. The CKM phase �13 is in radians.
One notes that most quantities are fit excellently. The least
good fits are to mc, ms, and jVubj. Considering that 11
parameters are fitting 16 quantities, the 
2 of 7.2 is quite
reasonable.
The parameter values for this fit are � ¼ 0:189, C1 ¼

1:03, C2 ¼ �1:51, f ¼ 0:566, fH ¼ 0:208, 16�2� ¼
2:22, 16�2�H ¼ 2:66, �� ¼ 1:52 rad, �H ¼ 0:514 rad.
Note that all these quantities are of order one. In other
words, no small dimensionless parameters are needed to fit
the quark and lepton mass hierarchies in this model. The
scales called mU and mD in Eq. (8) are given, respectively,
by 86.9 GeVand 0.79 GeV. The large ratio of these scales is
not explained by the structure of the model or by symme-
try, and presumably comes from the details of the sector
that breaks the weak interactions.
The results of the fit assuming f and fH are complex are

given in Table V. The parameter values for the fit in
Table IV are � ¼ 0:182, C1 ¼ 0:997, C2 ¼ �1:60, f ¼
0:573, fH ¼ 0:224, 16�2� ¼ 2:16, 16�2�H ¼ 3:22, �� ¼
�0:554 rad, �H ¼ �1:56 rad.
Comparison of Tables IVand V shows that the inclusion

of the phases �0 and �fH makes very little difference to the

fits. This is not surprising, since �0 appears only on sub-
leading terms in the mass matrices, and �fH appears on the

very small entry fH. For the two fits, the values of the real
parameters hardly changes. The phase angles �� and �H
both change by �2:07 rad, but that is essentially due to a
rephasing: a shift in these two phases by a certain amount

TABLE IV.

model

(at MPS)

expt.

(at MPS)

off

(%)

expt. error*

(%)

me 0.0004900 0.0004888 0.027 1.0*

m� 0.1031 0.1032 �0:13 1.0*

m� 1.756 1.754 0.07 1.0*

mu 0 0.000571 100 600*

mc 0.342 0.278 23.0 15.1

mt 87.24 86.93 0.36 4.6

ms=md 18.68 18.90 �1:14 4.23

ms 0.0358 0.0254 40.8 31.5

mb 1.17 1.186 �1:29 4.22
me

m�
= md

ms
0.0886 0.0895 �0:99

mb=m� 0.667 0.676 �1:35
Vus 0.2243 0.2243 0.002 0.71

Vcb 0.0456 0.0463 �1:51 3.24

jVubj 0.00368 0.00432 �14:8 11.6

�13 0.887 0.995 �10:8 24.12

sin�sol 0.518 0.559 �7:33 7.51

sin�atm 0.891 0.707 26.1 28*

sin�13 0.014 <0:178

2 7.2
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can be compensated by a shift in �0 together with a change
in the phase of two small subleading terms. In other words,
what is really changing a lot between the fits in Tables IV
and V is the phase �0 (which is, of course, zero for the fit in
Table IV). What this shows is that the fit is hardly affected
by large changes in �0.

In this model there is a relation between the atmospheric
angle and �13, which is given in Eq. (10). Using the best-fit
values given in Table IV, Eq. (10) yields

j sin�atmj ¼ j cos��ð0:891Þ � sin��ð0:396Þj;
j sin�13j ¼ j cos��ð�0:014Þ þ sin��ð0:518Þj:

(11)

If the parameter sin�� were a real number, these equations
would give a prediction for �13 in terms of �atm. For values
of the atmospheric angle near maximal mixing, i.e. �atm ffi

�=4, the prediction for the 13 angle would be approxi-
mately given by

j sin�13j ffi 0:160� 0:72ðsin�atm � 1=
ffiffiffi
2

p Þ: (12)

However, in fact, the parameter sin�� can be complex.
Therefore, the smaller of the two values that is obtained
for j sin�13j by solving Eq. (11) with real sin�� is a lower
bound. So, if the atmospheric mixing angle is near maxi-
mum, there is a lower bound on sin�13 given by Eq. (12).

VI. CONCLUSIONS

The model that we have studied here is the first predic-
tive grand unified model with a radiative fermion mass
hierarchy. In a number of ways, it is as economical as a
model of quark and lepton masses can be. The masses and
mixings of the second and third families come from only
three effective Yukawa operators, shown in Eq. (1). These
operators account for many features of the light fermion
spectrum: (1) the fact that Vcb is of the same order as
ms=mb and m�=m�; (2) the fact that mc=mt is much

smaller than those ratios; (3) the largeness of the atmos-
pheric and solar neutrino angles; (4) the smallness of the 13
angle; (5) the rough equality of m0

b and m0
�; and (6) the

Georgi-Jarlskog factor of about 1=3 between ms=mb and
m�=m�. The masses and mixings of the first family (except

for the solar neutrino angle) come from loop diagrams. It is
remarkable that one of these loop diagrams (Fig. 1) is
present automatically, whereas the other (Fig. 2) requires
only a single additional Yukawa term to be postulated.
It is striking that no small parameters are needed in this

model to account for the dramatic hierarchies in the quark
and lepton masses. The model yields a definite relation
between the atmospheric angle and the angle �13.
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