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The electromagnetic form factors of nucleons are calculated using an anti–de Sitter (AdS)/QCD model

by considering a Dirac field coupled to a vector field in the five-dimensional AdS space. We also calculate

a gravitational or energy-momentum form factor by perturbing the metric from the static AdS solution.

We consider both the hard-wall model where the AdS geometry is cut off at z0 and the soft-wall model

where the geometry is smoothly cut off by a background dilaton field.
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I. INTRODUCTION

The anti–de Sitter space/conformal field theory (AdS/
CFT) correspondence [1–3] is a conjecture which holds the
possibility of obtaining accurate results in the strong cou-
pling limit of gauge theories from classical calculations of
gravitationally interacting fields in a higher dimensional
space. The original correspondence was between a particu-
lar string theory in 10D and a particular conformal field
theory in 4D, namely, the large NC limit of N ¼ 4 super
Yang-Mills theory.

A particular implementation motivated by the original
AdS/CFT correspondence is the ‘‘bottom-up’’ approach,
introduced in [4,5], which is a way of using the AdS/CFT
correspondence as motivation for modeling QCD starting
from a 5D space. One may think that one has reached the
point where the 10D string theory of the original AdS/CFT
correspondence has been reduced to a gravitational theory
on AdS5, and one then asks what terms should exist in the
Lagrangian. The terms are chosen based on simplicity,
symmetries, and relevance to the problems one wishes to
study.

QCD is not a conformal field theory, so one also needs to
break a corresponding symmetry in the AdS space, in order
to obtain, for example, discrete hadron masses. Two
schemes which have the virtue of being analytically trac-
table are the hard-wall model, where the AdS space is
sharply cut off and a boundary condition imposed, and
the soft-wall model, where extra interactions are intro-
duced which have an effect akin to warping the metric
and suppressing long distance propagation in the fifth
dimension.

Having chosen a Lagrangian and a cutoff scheme, one
can study the phenomenological consequences for the 4D
correspondent theory, and compare the results to data.
Much of the work has focused on the bosonic sector [6–
24]. The works include studies of spin-1 vector and axial
states, pseudoscalars, and glueballs. Masses, decay con-
stants, and charge radii that can be compared to experi-
mental data agree with experimental data at the roughly
10% level.

Studying fermions with the AdS/CFT correspondence is
technically more complicated than studying bosons. Two

approaches have been pursued. One approach is to follow
upon the bosonic studies, and treat the fermions as
Skyrmions within the model [25–27]. The other approach
is to begin with a theory in the 5D sector that has funda-
mental fermion fields interacting with an AdS gravitational
background [28–32]. One can also consider a hybrid of the
two approaches, where one begins with fermions as
Skyrmions of a 5D model, and uses the Skyrmion model
to obtain parameters and interaction terms of another 5D
Lagrangian where the fermion fields appear as explicit
degrees of freedom [33–35].
We here pursue the AdS/CFT correspondence within a

model where the fermion stands as an explicit field in the
5D Lagrangian. We will particularly be interested in ob-
taining results for the electromagnetic and gravitational
form factors. For the electromagnetic form factors, there
is already work reported in the literature, particularly for
the hard-wall model, and we will quote some results from
this material, adding some useful detail. The derivation of
the tensor or gravitational form factors is new.
One point in mapping fermion fields from a 5D theory to

a 4D theory is that not all components of the fermion spinor
are independent. In both theories, for massive fermions,
one can obtain the (ill-named) right-handed part of the field
from the left-handed part of the field, or vice versa. An
early 4D discussion of this is in [36]. Thus, as one begins
by finding exact solutions for fermions in an AdS back-
ground, one can only choose boundary conditions for the
independent components, which one can choose to be the
left-handed ones. The left-handed 5D fermions on the
boundary are sources for right-handed fermionic currents
in the 4D theory, and the corresponding left-handed fer-
mion currents can either be obtained from these, or can be
consistently obtained from the derived right-handed fermi-
ons in AdS space.
When we study the soft-wall model for fermions, the

usual procedure of producing a ‘‘soft wall’’ by inserting an
interaction with a background dilation field via an overall
exponential factor does not by itself lead to normalizable
solutions. (Indeed, it is possible to remove the overall
exponential factor in the fermion case by rescaling the
field.) We will introduce an additional interaction with
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the background field by using an analog of a scalar poten-
tial, that is, by adding a dilation interaction to the mass
term. The resulting equations describing the interaction
with both AdS gravity and the soft-wall potential can be
solved exactly in the classical limit, with the normalizable
solutions having the feature common to soft-wall models
that their functional dependence in the extra dimension
contains a generalized Laguerre polynomial.

Our presentation will focus on the soft-wall model. It is
easy to switch our equations to the hard-wall model just by
dropping the soft-wall interaction term and using a suitable
boundary condition. We will comment on this and show
hard-wall as well as soft-wall results. We will obtain ex-
pressions for both electromagnetic and gravitational form
factors, and present the result for the nucleon radii as well
as for general momentum transfer. We will find that radii
obtained from the gravitational momentum form factor are
smaller than radii obtained electromagnetically, as is also
the case for the meson sector [23,24].

The model, focusing on the baryonic degrees of free-
dom, is outlined in Sec. II, and the two-point functions are
worked out in Sec. III. The form factors, both electromag-
netic and gravitational, are discussed in Sec. IV, and a
summary is given in Sec. V.

II. THE MODEL

In a d-dimensional field theory, the generating function
is given by

Z CFT½�0� ¼
�
exp

�
i
Z

ddxOðxÞ�0ðxÞ
��

: (1)

The precise statement of the AdS/CFT correspondence is
that the generating function of a d-dimensional CFT is
equal to the partition function of a field theory in AdSdþ1

Z CFT½�0� ¼ eiSAdSð�clÞ: (2)

On the right-hand side of the above equation, SAdSð�clÞ is
the classical action evaluated on the solution of the equa-
tion of motion with boundary condition

lim
z!0

�clðx; zÞ ¼ z��0ðxÞ: (3)

The constant � depends on the nature of operator O.
The metric of dþ 1-dimensional AdS space is given by

ds2 ¼ gMNdx
MdxN ¼ 1

z2
ð���dx

�dx� � dz2Þ; (4)

where ��� ¼ diagð1;�1;�1;�1Þ, �; � ¼
0; 1; 2; . . . ; d� 1 and we will set d ¼ 4. The z variable
extend from " ! 0, which is called the UV boundary, to1,
which is the IR boundary. In order to simulate confinement,
one can use a hard-wall model [4,5,9,14], by cutting off the
AdS geometry at z0. The mass spectrum is found to be
approximately linear at large mass mn � n. Alternatively,
one can use the soft-wall model [13,15], where the geome-

try is smoothly cut off by a background dilaton field �ðzÞ.
A choice for the dilaton field solution �ðzÞ ¼ �2z2 gives
the mass spectrum that is in agreement with Regge trajec-
tory: m2

n � n.
Consider a Dirac field coupled to a vector field in the

dþ 1-dimensional AdS space with the following action:

SF ¼
Z

ddþ1x
ffiffiffi
g

p
e��ðzÞ

�
i

2
��eNA�

ADN�

� i

2
ðDN�Þy�0eNA�

A�� ðMþ�ðzÞÞ ���

�
; (5)

where for the AdS space, eNA ¼ z�N
A is the inverse vielbein.

Covariant derivative DN ¼ @N þ 1
8!NAB½�A;�B� � iVN

ensures that the action satisfies gauge invariance and dif-
feomorphism invariance. The nonvanishing components of
the spin connection are!�z� ¼�!��z ¼ 1

z ���. The Dirac

gamma matrices have been defined in such a way that they
satisfy anticommutation relation f�A;�Bg ¼ 2�AB; that is,
for d ¼ 4, we have �A ¼ ð��;�i�5Þ. We implement the
soft-wall model by adding �ðzÞ ¼ �2z2 to the mass term.
Both the Dirac and the vector fields have an Uð2Þ isospin
structure. In particular, VN ¼ 1

2V
s
N þ Va

Nt
a, where ta is an

SUð2Þ generator normalized by TrðtatbÞ ¼ �ab=2.
The Dirac field satisfies the following equation of mo-

tion:�
ieNA�

ADN � i

2
ð@N�ÞeNA�A � ðMþ�ðzÞÞ

�
� ¼ 0: (6)

Evaluating the action on the solution, we obtain

SF½�cl� ¼
Z

ddx

�
� i

2

ffiffiffi
g

p
e��2z2 ��z�z�

�
zIR

�

¼
Z

ddx
�1

2zd
e��2z2ð ��L�R � ��R�LÞ

��������
zIR

�
; (7)

where �R;L ¼ ð1=2Þð1� �5Þ�. For the hard-wall model

the IR boundary is located at finite zIR ¼ z0, while for the
soft-wall model the z variable extends to infinity, i.e., zIR ¼
1. In the case of the hard-wall model, the IR-boundary
term can be removed by requiring that either �LðzIRÞ ¼ 0
or �RðzIRÞ ¼ 0.
Following [28–30], we add an extra term in the UV

boundary:

1

2

Z
ddx

ffiffiffiffiffiffiffiffiffiffiffiffi
�gðdÞ

q
ð ��L�R þ ��R�LÞ": (8)

This term preserves the Oðdþ 1; 1Þ isometry group of the
original action and does not change the equation of motion.
The action becomes

SF ¼
Z

ddx

�
1

zd
��L�R

�
"
: (9)

The Dirac field�R;L in momentum space can be written

in terms of a product of d-dimensional boundary fields
�0

R;L and profile functions or the bulk-to-boundary propa-
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gators fR;L, i.e.,�R;Lðp; zÞ ¼ z�fR;Lðp; zÞ�0ðpÞR;L, where
p is the momentum in d dimensions. We choose �0

LðpÞ as
the independent source field which corresponds to the
spin- 12 baryon operator OR in the d-dimensional field

theory. Hence,� is chosen such that the equation of motion
allows fLðp; "Þ ¼ 1.

The left-handed and the right-handed components of the
spin- 12 field operators in d-dimensional flat space are not

independent, since they are related by the Dirac equation.
This is realized by the relationship between �0

L and �0
R,

chosen to satisfy p6 �0
RðpÞ ¼ p�0

LðpÞ. Ignoring the inter-
action term with the vector field, the equation of motion for
the Dirac field becomes (for � ¼ �2z2)�

@z � d=2þM� �þ 2�

z

�
fR ¼ �pfL;�

@z � d=2�M� �

z

�
fL ¼ pfR; (10)

where p � ffiffiffiffiffiffi
p2

p
.

In addition to (5) or (9), we have the kinetic term of the
vector field

SV ¼
Z

ddþ1xe�� ffiffiffi
g

p
Tr

�
� F2

V

2g25

�
; (11)

where FV
MN ¼ @MVN � @NVM. The transverse part of the

vector field can be written as V�ðp; zÞ ¼ Vðp; zÞV0
�ðpÞ. At

the UV boundary, the bulk-to-boundary propagator satis-
fies Vðp; "Þ ¼ 1. According to the AdS/CFT dictionary,
the V0

�ðpÞ is the source for the 4D current operator JV�. The

equation of motion in the Vz ¼ 0 gauge is given by [15]�
@z

�
e��

z
@z

�
þ e��

z
p2

�
Vðp; zÞ ¼ 0: (12)

The normalizable mode is a solution of the above equation
with eigenvalue p2 ¼ M2

n which corresponds to the mass
of the nth Kaluza-Klein mode of the vector meson [4]. For
the soft-wall model [15], the mass eigenvalues are M2

n ¼
4�2ðnþ 1Þ, where n ¼ 0; 1; . . . . For the hard-wall model
the mass eigenvalues are Mn ¼ �0;nþ1=z0, where �0;nþ1 is

the nþ 1th zeros of the Bessel function J0.

III. TWO-POINT FUNCTION

A. Soft-wall model

To have fLðp; "Þ ¼ 1 for �ð0Þ ¼ 0 and fR not singular
requires � ¼ d

2 �M. The equations of motion of the pro-

file functions (10), with �ðzÞ ¼ �2z2, become�
@2z � 2ðMþ�2z2Þ

z
@z þ 2ðM��2z2Þ

z2
þp2

�
fR ¼ 0;

�
@2z � 2ðMþ�2z2Þ

z
@z þp2

�
fL ¼ 0: (13)

The general solution is given by Kummer’s functions of the

first and the second kind. Requiring that the profile func-
tions vanish at infinity, we obtain

fLðp; zÞ ¼ NLU

�
� p2

4�2
;
1

2
�M;�

�
; (14)

fRðp; zÞ ¼ NR�
1=2U

�
1� p2

4�2
;
3

2
�M;�

�
; (15)

where � ¼ �2z2. From the UV-boundary condition we
obtain

NL ¼ �ð	� p2

4�2Þ
�ð	Þ ; (16)

where 	 ¼ Mþ 1
2 and we have NR ¼ NL

p
2� from Eq. (10).

The normalizable wave function c ðnÞ
L;R for the nth

Kaluza-Klein mode can be obtained from Eq. (13), by
requiring that p2 ¼ m2

n. One finds that solutions exist in
terms of the Laguerre polynomial whenm2

n ¼ 4�2ðnþ 	Þ:
c ðnÞ

L ðzÞ ¼ nL�
	Lð	Þ

n ð�Þ; (17)

c ðnÞ
R ðzÞ ¼ nR�

	�ð1=2ÞLð	�1Þ
n ð�Þ: (18)

Imposing the normalization condition

Z
dz

e��2z2

z2M
c ðnÞ

L c ðmÞ
L ¼ �nm; (19)

one obtains the normalization factors

nL ¼ 1

�	�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ðnþ 1Þ

�ð	þ nþ 1Þ

s
; (20)

nR ¼ nL
ffiffiffiffiffiffiffiffiffiffiffiffiffi
	þ n

p
: (21)

For the right-handed wave function c ðnÞ
R , the normalization

factor can be obtained either by using Eq. (10) or by
imposing the above normalization condition.
For the timelike region p2 > 0, the profile functions

have an infinite number of poles which correspond to the
tower of the infinite Kaluza-Klein mode. To show this, we
write the profile functions in different forms utilizing the
Kummer transformation ([37], p. 505):

fLðp; zÞ ¼ NL�
	U

�
	� p2

4�2
; 	þ 1;�

�
; (22)

fRðp; zÞ ¼ NR�
	�ð1=2ÞU

�
	� p2

4�2
; 	;�

�
: (23)

The Kummer function can be written in integral represen-
tations

fLðp; zÞ ¼ �	

�ð	Þ
Z 1

0
dx

x	þa�1

ð1� xÞ	þ1
exp

�
� x

1� x
�

�
;

(24)
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where a ¼ �p2=ð4�2Þ. The integrand contains a generat-
ing function for the Laguerre polynomial ([37], p. 784)

1

ð1� xÞ	þ1 exp

�
� x

1� x
�

�
¼ X1

n¼0

Lð	Þ
n ð�Þxn: (25)

Performing the integrals, one obtains

fLðp; zÞ ¼ �4�2�	

�ð	Þ
X1
n¼0

Lð	Þ
n ð�Þ

p2 � 4�2ðnþ 	Þ ; (26)

which shows that the mass square of the nth Kaluza-Klein
mode is 4�2ðnþ 	Þ, as expected. Similar expansion for the
right-handed profile function yields

fRðp; zÞ ¼ �2�p�	�ð1=2Þ

�ð	Þ
X1
n¼0

Lð	�1Þ
n ð�Þ

p2 � 4�2ðnþ 	Þ : (27)

Notice that the Laguerre polynomials which appear in the
expansion precisely match the normalizable modes.

Defining fn ¼ 2�=ð�ð	ÞnRÞ ¼ c ðnÞ
R ð"Þ="2M, the profile

functions become

fLðp; zÞ ¼
X1
n¼0

fnmnc
ðnÞ
L ðzÞ

p2 �m2
n

; (28)

fRðp; zÞ ¼
X1
n¼0

fnpc
ðnÞ
R ðzÞ

p2 �m2
n

: (29)

The 5D fermion action (9) can now bewritten in terms of
a sum over modes

SF ¼
Z ddp

ð2
Þd
��0
LðpÞ

fRðp; "Þp6
"2Mp

�0
LðpÞ

¼ X
n

Z ddp

ð2
Þd
��0
LðpÞ

��f2nPRp6
p2 �m2

n

�
�0

LðpÞ; (30)

where PR ¼ ð1þ �5Þ=2 is the right-handed chirality pro-
jector. From the AdS/CFT correspondence and the appro-
priate functional derivatives, we have

Z
ddxeiqxh0jTORðxÞ �ORð0Þj0i ¼

X
n

if2nPRq6
q2 �m2

n

: (31)

One may also define the decay constant fn from
h0jORð0Þjpi ¼ fnuRðpÞ and obtain the same result by in-
serting a set of intermediate states. In order to obtain the

complete two-point function hO �Oi, one also needs the left-
handed chirality operator OL, which can be obtained from
the right-handed one using OLðpÞ ¼ ðp6 =pÞORðpÞ.

B. Hard-wall model

For the hard-wall model � ¼ 0, and the IR boundary is
at zIR ¼ z0. The mass eigenvalue of the Kaluza-Klein
mode depends on which propagators vanish at the IR
boundary. We will set fRðz0Þ ¼ 0, such that there is no

massless mode. Requiring that fLðp; "Þ ¼ 1, the solution
can be written in terms of the Bessel function

fL ¼ 


�ð	Þ
�
pz

2

�
	
�
Y	�1ðpz0Þ
J	�1ðpz0Þ J	ðpzÞ � Y	ðpzÞ

�
;

fR ¼ 


�ð	Þ
�
pz

2

�
	
�
Y	�1ðpz0Þ
J	�1ðpz0Þ J	�1ðpzÞ � Y	�1ðpzÞ

�
:

(32)

The normalizable mode, again setting p2 ¼ m2
n on

Eq. (13) with Dirichlet boundary condition �ðnÞ
R ðz0Þ ¼ 0

and �ðnÞ
L ð"Þ ¼ 0, gives

�ðnÞ
L ðzÞ ¼

ffiffiffi
2

p
z	J	ðmnzÞ

z0J	ðmnz0Þ ; �ðnÞ
R ðzÞ ¼

ffiffiffi
2

p
z	J	�1ðmnzÞ
z0J	ðmnz0Þ :

(33)

Both satisfy the normalization condition given in Eq. (19).
The mass eigenvalue determined by J	�1ðmnz0Þ ¼ 0. One
can easily see that the location of the pole of the profile
function fR;Lðp; zÞ, in the timelike region p2 > 0, is pre-
cisely at the mass eigenstates m2

n.
As in the soft-wall model, the bulk-to-boundary propa-

gators can be written in terms of a sum over normalizable
modes given in Eqs. (28) and (29), where for the hard-wall
model

fn ¼
ffiffiffi
2

p ðmn

2 Þ	�1

�ð	Þz0J	ðmnz0Þ : (34)

IV. FORM FACTORS

A. Electromagnetic form factors

For spin- 12 particles, the electromagnetic current matrix

element can be written in terms of two independent form
factors

hp2; s2jJ�ð0Þjp1; s1i ¼ uðp2; s2Þ
�
F1ðQÞ��

þ F2ðQÞ i�
��q�
2mn

�
uðp1; s1Þ; (35)

where q ¼ p2 � p1 and Q2 ¼ �q2. In this paper, our
interest is in the electromagnetic current operator of nucle-
ons which can be written in terms of isoscalar and isovector
currents

J�p;n ¼ ið12J�S �ij þ Ja�V taijÞj; (36)

where  ¼ ð1; 0Þ for the proton, and  ¼ ð0; 1Þ for the
neutron. According to the AdS/CFT dictionary, the 4D
isoscalar J

�
S and isovector J

a�
V current operators corre-

spond to the isoscalar and isovector part of the 5D gauge
field, respectively. In the simplest model, the profile func-
tions of both satisfy Eq. (12).
The isovector matrix element can be extracted from the

three-point function by the following relation:
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lim
p0
1;2
!En

1;2

ðp2
1 �m2

nÞðp2
2 �m2

nÞ
Z

d4xd4yeiðp2x�qy�p1wÞ

� h0jTOi
RðxÞJa�ðyÞ �Oj

RðwÞj0i
¼ f2n

iuðp2; s2Þhp2; s2jJa�ð0Þjp1; s1i �uðp1; s1Þ
� j�ð4Þðp2 � p1 � qÞ; (37)

and analogously for the isoscalar current.
The relevant term in the action (5) which contributes to

the three-point function is given by

SF ¼
Z

d5x
ffiffiffi
g

p
e�� ��eMA �

AVM�: (38)

However the above term only provides the F1 form factor.
Hence, we should add the following gauge invariant term
to the action:

�S;V

Z
d5x

ffiffiffi
g

p
e��i

1

2
��eMA e

N
B ½�A;�B�FðS;VÞ

MN �: (39)

We shall use different parameters: �S for the isoscalar
component and �V for the isovector component of the
vector field. They are fixed by the experimental values of
the proton and the neutron magnetic moments.

Defining invariant functions

C1ðQÞ ¼
Z

dze�� VðQ; zÞ
2z2M

ðc L
2ðzÞ þ c R

2ðzÞÞ; (40)

C2ðQÞ ¼
Z

dze�� @zVðQ; zÞ
2z2M�1

ðc L
2ðzÞ � c R

2ðzÞÞ; (41)

C3ðQÞ ¼
Z

dze�� 2mnVðQ; zÞ
z2M�1

c LðzÞc RðzÞ; (42)

where Q2 ¼ �q2 > 0, we obtain the electromagnetic form
factors for the proton

FðPÞ
1 ðQÞ ¼ C1ðQÞ þ �PC2ðQÞ; (43)

FðPÞ
2 ðQÞ ¼ �PC3ðQÞ: (44)

For the neutron, the F1 and the F2 form factors solely come
from (39). We have

FðNÞ
1 ðQÞ ¼ �NC2ðQÞ; (45)

FðNÞ
2 ðQÞ ¼ �NC3ðQÞ; (46)

with parameters �P and �N defined by �P;N ¼
ð�V � �SÞ=2.

In the soft-wall model, the bulk-to-boundary propagator
of the vector field is given by [15]

VðQ; zÞ ¼ �ð1þ aÞUða; 0;�Þ

¼ a
Z 1

0
dxxa�1 exp

�
� x

1� x
�

�
; (47)

where again a ¼ Q2=ð4�2Þ. The integral in Eqs. (40)–(42)
can be evaluated analytically. For the lowest state n ¼ 0,
we obtain

C1ðQÞ ¼
1
2 ð2þ a

	þ1Þ
ð a
	þ1 þ 1Þða	 þ 1Þ . . . ðaþ 1Þ ; (48)

C2ðQÞ ¼ �að1� 	aÞð	þ 2Þ�1ð	þ 1Þ�1

½ð a
	þ2 þ 1Þ . . . ðaþ 1Þ� ; (49)

C3ðQÞ ¼ 4	

ð a
	þ1 þ 1Þða	 þ 1Þ . . . ðaþ 1Þ : (50)

One can check that FðPÞ
1 ð0Þ ¼ 1 and FðNÞ

1 ð0Þ ¼ 0.
In the limit of a large momentum transverse, the elec-

tromagnetic form factors for the proton become

FðPÞ
1 ðQÞ ¼ 	!ð2�Þ2	

2Q2	
ð1þ 2�P	Þ; (51)

FðPÞ
2 ðQÞ ¼ 4	ð	þ 1Þ!ð2�Þ2	þ2

Q2	þ2
: (52)

Hence, M ¼ 3
2 which corresponds to 	 ¼ 2 gives the cor-

rect large momentum scaling. The constant � was simul-
taneously fixed to the proton’s and the �-meson’s mass.
The best fit, given by � ¼ 0:350 GeV, gives the proton’s
mass 0.990 GeV and the �-meson’s mass 0.700 GeV.
Parameters �P and �N can be determined by matching

the value of F2ð0Þwith the experimental data: 1.793 for the
proton and�1:913 for the neutron. One obtains, for	 ¼ 2,
�P ¼ 0:224 and �N ¼ �0:239.
The charge radius for the proton is defined by

hr2Cip ¼ � 6

GEð0Þ
dGEð0Þ
dQ2

; (53)

where GEðQÞ ¼ F1ðQÞ �Q2F2ðQÞ=ð4m2
pÞ. One obtains

hr2Cip ¼ 5

2�2
þ �P

8�2
þ 6FðPÞ

2 ð0Þ
4m2

p

¼ ð0:961 fmÞ2; (54)

which, in terms of rms radius, is about 10% larger than the
experimental result hrCi ¼ ð0:877 fmÞ.
For the neutron, the charge radius is defined by

hr2Cin ¼ �6
dGEð0Þ
dQ2

: (55)

One obtains

hr2Cin ¼
�N

8�2
þ 6FðNÞ

2 ð0Þ
4m2

p

¼ ð�0:136 fm2Þ; (56)

which is an acceptably good result compared to the experi-
ment hr2Ci ¼ ð�0:112 fm2Þ.
For the hard-wall model, the bulk-to-boundary propa-

gator is given by [14]
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VðQ; zÞ ¼ Qz

�
K0ðQz0Þ
I0ðQz0Þ I1ðQzÞ þ K1ðQzÞ

�
: (57)

The parameter z0 determines both the mass of the nucleon
and the � meson. We set z0 ¼ ð0:245 GeVÞ�1, which fits
the measured proton’s mass.

In the large Q2 region, VðQ; zÞ ! QzK1ðQzÞ, which
behaves like an exponential. It has significant support
near z ¼ 0 only. Therefore, one can replace �2

RðzÞ �
�2

LðzÞ by its approximate form near ", that is, �f2nz
4	�2.

One obtains

C1ðQÞ ¼ f2n
2Q2	

Z 1

0
dww2	K1ðwÞ; (58)

C2ðQÞ ¼ f2n
2Q2	

Z 1

0
dww2	þ1K0ðwÞ; (59)

C3ðQÞ ¼ 2m2
nf

2
n

	Q2	þ2

Z 1

0
dww2	þ2K1ðwÞ; (60)

where the integral can be solved analytically to obtain

C1ðQÞ ¼ 2	�2	!ð	� 1Þ! f2n
Q2	

; (61)

C2ðQÞ ¼ 2	�1ð	!Þ2 f2n
Q2	

; (62)

C3ðQÞ ¼ 2	þ2ð	� 1Þ!ð	þ 1Þ!m2
n

f2n
Q2	þ2

: (63)

Just as in the soft-wall model, the F1 form factor falls off

correctly like Q�4, when 	 ¼ 2. Fixing the FðPÞ
2 ð0Þ to the

experimental value 1.793, one obtains �P ¼ 0:448. Hence,
for the proton at large Q2

FðPÞ
1 ðQÞ ¼ 3:64

Q4
; FðPÞ

2 ðQÞ ¼ 12:37

Q6
: (64)

For the neutron, fixing FðNÞ
2 ð0Þ to the experimental value

�1:913, we have �N ¼ �0:478.
In the limit where Q2 ! 0, the bulk-to-boundary propa-

gator of the vector field can be expanded as

VðQ; zÞ ¼ 1�Q2z2

4

�
1� 2 ln

�
z

z0

��
; (65)

and hence, in this limit,

@zVðQ; zÞ ¼ Q2z ln

�
z

z0

�
: (66)

Substituting Eqs. (65) and (66) to Eqs. (40)–(42) and
taking the derivative with respect to Q2, we obtain the
Dirac radius for the proton hr21ip ¼ ð0:843 fmÞ2, which
corresponds to the charge radius hr2Cip ¼ ð0:910 fmÞ2.
For the neutron, we obtain hr2Cin ¼ ð�0:125 fm2Þ. These
calculated charge radius are in better agreement with ex-
perimental results compared to the soft-wall model.
In Fig. 1 we show plots ofGE andGM form factors using

the AdS/QCD model and compare it with empirical fit
given in [38]. Figure 2 shows the corresponding plots for
the neutron with the empirical fit given in [39].

B. Gravitational form factors

The most general structure of the stress tensor matrix
element for spin- 12 particles can be written in terms of three

form factors

hp2; s2jT��ð0Þjp1; s1i ¼ uðp2; s2Þ
�
AðQÞ�ð�p�Þ þ BðQÞ

� ipð���Þ	q	
2mn

þ CðQÞ

� q�q� � q2���

m

�
uðp1; s1Þ;

(67)

where p ¼ ðp1 þ p2Þ=2. This matrix element can be ex-

FIG. 1 (color online). The red dashed line and the purple dotted-dashed line are the electromagnetic form factors of the proton from
the soft-wall and the hard-wall model of AdS/QCD, respectively. The solid blue line is the corresponding form factor from the
Arrington empirical fit [38].
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tracted from the following three-point function:

h0jTOi
RðxÞT��ðyÞ �Oj

RðwÞj0i: (68)

The stress tensor operator in 4D strongly coupled theory
corresponds to the metric perturbation in the bulk.

Consider a gravity-dilaton-tachyon action [40,41], in
addition to (5). The metric is perturbed from its static
solution according to ��� ! ��� þ h��. The action in

the second order perturbation becomes

SGR ¼ �
Z

d5x
e�2�2z2

4z3
ðh��;zh

��
;z þ h��hh��Þ; (69)

where the transverse-traceless gauge conditions @�h�� ¼
0, and h

�
� ¼ 0 have been imposed. The profile function of

the metric perturbation satisfies the following linearized
Einstein equation:�

@z

�
e�2�2z2

z3
@z

�
þ e�2�2z2

z3
p2

�
hðp; zÞ ¼ 0: (70)

For the soft-wall model, the non-normalizable solution
is given by

HðQ; zÞ ¼ �ða0 þ 2ÞUða0;�1; 2�Þ

¼ a0ða0 þ 1Þ
Z 1

0
dxxa

0�1ð1� xÞ exp
��2�x

1� x

�
;

(71)

where HðQ; zÞ � hðq2 ¼ �Q2; zÞ and a0 ¼ a=2. It satis-
fies Hðp; "Þ ¼ 1 and vanishes at infinity. For the hard-wall
model, imposing Neumann boundary condition
@zHðp; z0Þ ¼ 0, we have [23]

HðQ; zÞ ¼ ðQzÞ2
2

�
K1ðQz0Þ
I1ðQz0Þ I2ðQzÞ þ K2ðQzÞ

�
: (72)

In order to calculate (68), we will need terms in the 5D

action in the form of h ���. The vielbeins are modified
according to e�	 ! e�	 � zh�	=2. In the transverse-
traceless gauge, the determinant of the metric is unchanged

from the static solution. It can be shown that the following
factor in the 5D action (5) is unchanged under perturbation:

1
8 e

M
C�

C!MAB½�A;�B�: (73)

Hence, the remaining terms in the 5D action (5) relevant in
calculating (68) are

SðGÞF ¼
Z d5x

z5

��izh��

4

�
ð ����@

$��Þ: (74)

Fourier transforming the fields

SðGÞF ¼
Z dz

z2M
e��2z2

Z d4p2d
4qd4p1

ð2
Þ12 ð2
Þ4

� �4ðp2 � q� p1Þ ��0
Lðp2Þh0��ðqÞHðq; zÞ�1

2

�
�
fLðp2; zÞfLðp1; zÞ��p� þ fRðp2; zÞfRðp1; zÞ

� p6 2

p2

��p� p6 1

p1

�
�Lðp1Þ; (75)

where HðQ; zÞ is the bulk-to-boundary propagator defined
by h��ðq; zÞ ¼ Hðq; zÞh0��ðqÞ and h0��ðqÞ acts as a source

for the 4D stress tensor operator.
The Lorentz structure of Eq. (75) shows that only an A

form factor is present. We obtain

AðQÞ ¼
Z

dz
e��2z2

2z2M
HðQ; zÞðc 2

LðzÞ þ c 2
RðzÞÞ: (76)

For the soft-wall model, an analytical solution can be
obtained. In particular, for n ¼ 0

AðQ2Þ ¼ ða0 þ 1Þ½�ð1þ a0 þ 2a02Þ
þ 2ða0 þ 2a03Þ�ð�1; 1; a0Þ�; (77)

where �ð�1; 1; a0Þ is the LerchPhi function. Results are
shown graphically in Fig. 3 for both the hard-wall and soft-
wall models, and compared to results obtained by integrat-

FIG. 2 (color online). The red dashed line and the purple dotted-dashed line are the electromagnetic form factors of the neutron from
the soft-wall and the hard-wall model of AdS/QCD, respectively. The solid blue line is the corresponding form factor from the Kelly
empirical fit [39].
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ing a model for the nucleon generalized parton distribu-
tions (GPDs) [42].

The corresponding gravitational radius is

hr2Gi ¼ � 6

Að0Þ
dAð0Þ
dQ2

¼ 3 lnð2Þ
2�2

¼ ð0:575 fmÞ2; (78)

which is slightly smaller than the gravitational radius
obtained from the second moment integral of the modified
Regge GPD model, i.e., 0.608 fm, and notably smaller than
the proton charge radius.

V. SUMMARY

We have studied baryon form factors using the AdS/
QCD correspondence, and have modeled the baryons using
fundamental fermions in the extra dimensional theory. We
have given results for both the soft-wall and hard-wall
models for both electromagnetic form factors and for the
gravitational form factor AðQ2Þ, the momentum form
factor.

The soft-wall model has extra interactions whose effect
is to effectively cut off propagation as one gets deeply into
the extra dimension. Originally, the soft-wall exponential
modifications were simply inserted [13] in order to obtain
an excited hadron spectrum more in accord with observa-
tion, but it has been shown [40,41] how to obtain the
exponential factors in a dynamical model including kinetic
terms and a scalar potential for explicit dilaton and tachyon
degrees of freedom. We have followed the latter imple-
mentation here, noting that it leads to different numerical
coefficients in the argument of the exponential for the
vector and graviton sectors. For the baryon sector, we
implemented the soft-wall model by including also a har-
monic oscillatorlike scalar potential added to the mass term
[41].
In the bottom-up approach to modeling QCD via 5D

theories and the AdS/CFT correspondence, the terms in the
5D Lagrangian are chosen based on simplicity, symme-
tries, and relevance to the quantities under study. However,
the most simple vector-fermion interaction yields only a
Dirac form factor, so a Pauli term must be introduced in the
5D action. This means that the overall normalization of the
F2 form factors is not determined ab initio, but the shape of
the form factors is fixed.
Our results for the form factors were presented both

algebraically and graphically over some Q2 range, with
the radii corresponding to each form factor given explicitly.
In all cases, radii measured from gravitational form factors
are smaller than radii measured from electromagnetic form
factors. This accords with similar observations from lattice
gauge theory [43], and one may attribute it to the fact that
higher momentum fraction matter, quarks or gluons, is
more heavily weighted in the momentum sum rule, and
high momentum fraction partons tend to have a narrower
transverse size distribution [44].
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