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We report our numerical lattice QCD calculations of the isovector nucleon form factors for the vector

and axial-vector currents: the vector, induced tensor, axial-vector, and induced pseudoscalar form factors.

The calculation is carried out with the gauge configurations generated with Nf ¼ 2þ 1 dynamical

domain-wall fermions and Iwasaki gauge actions at � ¼ 2:13, corresponding to a cutoff a�1 ¼ 1:73 GeV,

and a spatial volume of ð2:7 fmÞ3. The up and down-quark masses are varied so the pion mass lies between

0.33 and 0.67 GeV while the strange quark mass is about 12% heavier than the physical one. We calculate

the form factors in the range of momentum transfers, 0:2< q2 < 0:75 GeV2. The vector and induced

tensor form factors are well described by the conventional dipole forms and result in significant

underestimation of the Dirac and Pauli mean-squared radii and the anomalous magnetic moment

compared to the respective experimental values. We show that the axial-vector form factor is significantly

affected by the finite spatial volume of the lattice. In particular in the axial charge, gA=gV , the finite-

volume effect scales with a single dimensionless quantity, m�L, the product of the calculated pion mass

and the spatial lattice extent. Our results indicate that for this quantity, m�L > 6 is required to ensure that

finite-volume effects are below 1%.
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I. INTRODUCTION

The isovector nucleon form factors are probes for nu-
cleon structure associated with the isovector vector and
axial-vector currents, Vþ

� ¼ �u��d and Aþ
� ¼ �u���5d,

with up- and down-quark spinors u and d. From these
currents, four isovector form factors arise: the Dirac (F1)
and Pauli (F2) form factors from the vector current,

hpjVþ
� ðxÞjni ¼ �up

�
��F1ðq2Þ þ

���q�
2MN

F2ðq2Þ
�
une

iq�x;

(1)

where F1 is equivalent to FV and F2=ð2MNÞ to FT in the
isovector part of the vector and induced tensor form factors
in neutron � decay under the isospin symmetry, and they
are related to the Sachs electromagnetic form factors

GEðq2Þ ¼ F1ðq2Þ � q2

4M2
N

F2ðq2Þ; (2)

GMðq2Þ ¼ F1ðq2Þ þ F2ðq2Þ; (3)

and the axial ðFAÞ and induced pseudoscalar ðFPÞ form
factors from the axial-vector current,

hpjAþ
�ðxÞjni ¼ �up½���5FAðq2Þ þ iq��5FPðq2Þ�uneiq�x:

(4)

We use the Euclidean metric convention as in the recent
RBC works [1,2]. Thus q2 stands for Euclidean four-
momentum squared and corresponds to the timelike mo-
mentum squared since q2M ¼ �q2 < 0 in Minkowski
space. Here q ¼ pn � pp is the momentum transfer be-

tween the proton (p) and neutron (n).
The vector-current form factors have been studied ex-

perimentally with high accuracy at both small (< 1 GeV2)
and large (> 1 GeV2) momentum transfers, through elec-
tron elastic scattering off proton and nuclei [3]. Early
experiments revealed that the proton is a composite particle
[4–7]: i.e. nonzero Pauli and Dirac mean-squared radii and
anomalous magnetic moments were measured among
other observables. Recent experiments have improved the
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accuracy of these form factors and deviations from earlier
perturbative QCD predictions have been observed [8,9].

As is well known, the isovector axial-vector current is
strongly affected by the spontaneous chiral symmetry
breaking in the strong interaction [10,11]. A consequence
for the nucleon is that the isovector axial charge gA de-
viates from the corresponding vector charge gV . These
isovector vector and axial-vector charges, respectively,
the vector and axial-vector form factors at the zero mo-
mentum transfer, are most accurately measured in neutron
beta decay experiments: gA=gV ¼ FAð0Þ=FVð0Þ ¼
1:2695ð29Þ [12]. Whether lattice QCD calculations can
accurately reproduce this ratio, gA=gV , is an important
test of lattice QCD.

The spontaneous breaking of chiral symmetry also
means that the corresponding form factors of the axial-
vector current are strongly coupled with the Nambu-
Goldstone particles, i.e. the pions. Using the axial Ward-
Takahashi identity and the pion-pole dominance assump-
tion on the induced pseudoscalar, one can derive the
Goldberger-Treiman relation [13], which relates the nu-
cleon mass (MN), the axial charge (gA), the pion decay
constant (F�), and the pion-nucleon coupling (g�NN):
MNgA ¼ F�g�NN . It is an interesting challenge for lattice
QCD if it can reproduce this relation.

The q2 dependence of the axial-vector form factor has
also been studied in experiments [14]. It again provides a
stringent test of QCD through a comparison of lattice QCD
calculations with such experiments. While recent experi-
ments report the induced pseudoscalar form factors
[15,16], it is less well known than the other form factors.
Hence this provides an excellent opportunity for lattice
QCD to play a leading role and guide future experiments.

In the past years, many lattice QCD studies have been
made for these isovector form factors in the above-
mentioned contexts [17,18]. Many earlier works [1,19–
22] were performed either in the quenched approximation,
neglecting dynamical sea-quark effects or were either lim-
ited to two dynamical flavors of Wilson fermion quarks
that explicitly violate chiral symmetry [23–25], limited to a
nonunitary combination of valence and sea quarks [26–29],
or just two dynamical flavors of domain-wall fermions
(DWFs) [2]. There has also been an increasing amount of
interest in the form factors of other baryons [27,30–33].

In this paper we present our results with more realistic
‘‘2þ 1 flavor’’ dynamical quarks: reasonably light and
degenerate up and down quarks and strange quark with a
realistic mass are all described by the DWF scheme [34–
38] that preserves the flavor and chiral symmetries suffi-
ciently. Earlier studies were often performed on small
spatial volumes (� ð2 fmÞ3) which are now widely re-
garded to be too small to accommodate a nucleon at light
quark masses that yield realistic axial charge [24,39]. We
use larger spatial lattice volume, as large as 2.7 fm across,
to better address the finite-size question.

The rest of the paper is organized as follows: We explain
our method of calculation in Sec. II. In Sec. III we first
summarize the numerical lattice QCD ensembles used for
this work. Then we discuss in detail the known systematic
errors in the relevant form factors calculated on these
ensembles. The numerical results are presented in
Sec. IV. Finally, we give the conclusions in Sec. V.
Since we vary only light quark mass in our simulation

while the strange quark mass is fixed, in the following we
call the light up and down-quark mass as quark mass, mf,

in the lattice unit, unless explicitly stated otherwise. We
note that some preliminary results from this study were
presented in Refs. [39–41].

II. METHOD

A. Two- and three-point functions

Following earlier studies with quenched and two dy-
namical flavors [1,2], we define the two-point function of
proton

CSðt� tsrc; pÞ ¼ 1

4

X
~x

ei ~p� ~x Tr½P 4h0j�Sð ~x; tÞ ��Gð~0; tsrcÞj0i�;

(5)

where S is the index of the smearing of the quark operator
and tsrc is the time location of the source operator. The
projection operator P 4 ¼ ð1þ �4Þ=2 eliminates the con-
tributions from the opposite-parity state for p2 ¼ 0
[42,43]. We use the standard proton operator,

�SðxÞ ¼ �abcð½uSaðxÞ�TC�5d
S
bðxÞÞuScðxÞ; (6)

where C is the matrix of the charge conjugation, and a, b, c
are color indices, to create and annihilate proton states. In
order to improve the overlap with the ground state, we
apply Gaussian smearing [44] at the source, while at the
sink we employ both local and Gaussian-smeared opera-
tors, S ¼ L or G.
In this paper we measure the nucleon isovector matrix

elements for the vector and axial-vector currents,

hpjV3
�ðxÞjpi ¼ hpj �uðxÞ��uðxÞ � �dðxÞ��dðxÞjpi; (7)

hpjA3
�ðxÞjpi ¼ hpj �uðxÞ�5��uðxÞ � �dðxÞ�5��dðxÞjpi:

(8)

While we employ the local currents in most of the calcu-
lations, the point-split conserved vector current [38] is used
for the vector charge at the lightest quark mass which will
be described later.
In order to obtain the matrix elements, we define the

three-point function with the current J and the projector
P	
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CP 	
J�

ð ~q; tÞ ¼ 1

4

X
~x;~z

ei ~q� ~z

� Tr½P	h0j�Gð ~x; tsnkÞJ�ð~z; tÞ ��Gð~0; tsrcÞj0i�
(9)

¼ �JðqÞ � fðtsrc; tsnk; t;MN; EðqÞ; qÞ þ � � � ; (10)

where tsnk is the sink time slice fixed as tsnk � tsrc ¼ 12,

and EðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ ~q2
q

. The ellipsis denotes the higher

excited-state contributions, which can be ignored for long
time separations tsnk � t � tsrc. The time independent
part of �JðqÞ is a matrix element, which is a linear combi-

nation of the form factors we seek. The time dependent part
of fðtsrc; tsnk; t;MN; EðqÞ; qÞ includes the kinematical fac-
tor and the normalization of the proton operator which we
Gaussian smear at both the source and sink. We employ the
sequential source method to reduce statistical fluctuations,
as in Refs. [20,45]. In the three-point function, initial and
final proton states carry ~q and zero momenta, respectively.
This is because the spatial momentum should be conserved
in the function as in the two-point function.
The time dependence of fðtsrc; tsnk; t;MN; EðqÞ; qÞ is

removed by taking an appropriate ratio of the three- and
two-point functions [46]

RP	

J�
ðq; tÞ ¼ K �

CP 	
J�

ð ~q; tÞ
CGðtsnk � tsrc; 0Þ

�
CLðtsnk � t; qÞCGðt� tsrc; 0ÞCLðtsnk � tsrc; 0Þ
CLðtsnk � t; 0ÞCGðt� tsrc; qÞCLðtsnk � tsrc; qÞ

�
1=2

; (11)

where K ¼ MN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EðqÞðMN þ EðqÞÞp

. The ratio RP	

J�
should

display a plateau from which the matrix element we seek is
extracted.

For each of the vector or axial-vector currents, we first
obtain �JðqÞ in Eq. (10) which is a linear combination of
the form factors. For convenience, using the ratio R we
define

�V
4 ðq; tÞ ¼

RP 4

V4
ðq; tÞ

MNðMN þ EðqÞÞ ; (12)

�V
T ðq; tÞ ¼ � 1

2

�RP 53

V1
ðq; tÞ

iq2MN

� RP 53

V2
ðq; tÞ

iq1MN

�
; (13)

for the vector current, and

�A
Lðq; tÞ ¼

R
P 53

A3
ðq; tÞ

MNðMN þ EðqÞÞ ; (14)

�A
Tðq; tÞ ¼ � 1

2

�RP 53

A1
ðq; tÞ

q2q3
þ R

P 53

A2
ðq; tÞ

q1q3

�
; (15)

for the axial-vector current. Here we also define q2 ¼
2MNðEðqÞ �MNÞ, and P 53 ¼ ð1þ �4Þ�5�3=2 implies
the z-direction is chosen as the polarization direction in
our calculation. In the plateau region of �Jðq; tÞ we deter-
mine the matrix elements of each current, �JðqÞ which has
the following relation to the form factors:

�V
4 ðqÞ ¼ F1ðq2Þ � q2

4M2
N

F2ðq2Þ; (16)

�V
T ðqÞ ¼ F1ðq2Þ þ F2ðq2Þ; (17)

for the vector current the Sachs form factors Eqs. (2) and
(3), and

�A
LðqÞ ¼ FAðq2Þ � q23

MN þ EðqÞFPðq2Þ; (18)

�A
TðqÞ ¼ MNFPðq2Þ; (19)

for the axial-vector current. In the following we use the
isovector part of the Dirac and Pauli form factors, F1;2,

rather than the vector and induced tensor form factors.
They are identical through the isospin symmetry except
the normalization of the Pauli form factor, F2 ¼ 2MNFT .
We will see that the signal of these combinations is rea-
sonable in Sec. IVB. Finally, respective form factors are
obtained by solving the sets of linear equations, (16) and
(17), or (18) and (19), at fixed q2.

B. Double-source method

We find the ensemble with the lightest quark mass of
mf ¼ 0:005 is much noisier than the ones with heavier

mass values: it is insufficient and takes an enormous
amount of calculation time to obtain reasonable statistical
error if we used only a single nucleon source/sink combi-
nation per configuration.
Fortunately, the time extent of the lattice, 64� a ¼

7:3 fm, is very large compared to the inverse of the nucleon
mass, M�1

N ¼ ð1:15 GeVÞ�1 ¼ 0:17 fm. Hence, we can
easily accommodate a pair of source/sink combinations on
each configuration without letting them interfere with each
other if the sources are separated by 32 units, as shown in
Fig. 1. We call this the double-source method.
The three-point functions are calculated with the se-

quential source method, and the sink operators are placed
12 time slices from their respective sources. The number of
the measurements is effectively doubled in this calculation
while the cost remains the same as one single source
measurement.
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III. ENSEMBLES

A. Statistics

The RBC-UKQCD joint (2þ 1)-flavor dynamical DWF
coarse ensembles [47] are used for the calculations. These
ensembles are generated with Iwasaki gauge action [48] at
the coupling � ¼ 2:13 which corresponds to the lattice
cutoff of a�1 ¼ 1:73ð3Þ GeV, determined from the ��
baryon mass [47].

The dynamical strange and up and down quarks are
described by DWF actions with the fifth-dimensional ex-
tent of Ls ¼ 16 and the domain-wall height of M5 ¼ 1:8.
The strange quark mass is set at 0.04 in lattice units and
turned out to be about 12% heavier than the physical
strange quark, after taking into account the additive cor-
rection of the residual mass, mres ¼ 0:003. The degenerate
light quark masses in lattice units, 0.005, 0.01, 0.02, and
0.03, correspond to pion masses of about 0.33, 0.42, 0.56,
and 0.67 GeV and nucleon masses, 1.15, 1.22, 1.39, and
1.55 GeV.

Two lattice volumes used are 163 � 32 and 243 � 64,
corresponding to the linear spatial extent of approximately
1.8 and 2.7 fm, respectively. The smaller volume ensem-
bles, calculated only with the heavier three light quark
masses, are used for a finite-volume study of the axial
charge and form factors discussed in Sec. IV. On the 163

ensembles we use 3500 trajectories separated by five tra-
jectories at mf ¼ 0:01 and 0.02, and by 10 at 0.03. The

main results are obtained from the larger volume ensem-
bles with the number of the configurations summarized in
Table I.

On the larger volume at the heavier three quark masses,
we make four measurements on each configuration with
the conventional single source method using tsrc ¼ 0, 16,
32, 48, or 8, 19, 40, 51. At the lightest mass the double-
source method is used, and two measurements on each
configuration are carried out using the source pairs of (0,

32) and (16, 48), or (8, 40) and (19, 51). We make an
additional two measurements on roughly half of the con-
figurations with another source pair. This means that we
make four, double-source measurements on almost half of
the configurations, while two, double-source measure-
ments are carried out on the remaining configurations.
We have checked the independence of these measurements
from each other by changing the block size in the jackknife
analysis, e.g., treating each source/sink measurement as
independent. None of these resulted in a significantly
different error estimate: typical results are shown in
Fig. 2. Thus in the following we treat the two double-
source measurements performed on a single configuration,
one with the source pairs of (0, 32) and (16, 48), and the
other with the source pairs of (8, 40) and (19, 51), as being
independent of each other.

TABLE I. Nconf , Nsep, and Nmeas denote the number of gauge
configurations, trajectory separation between each measured
configuration, and the number of measurements on each con-
figuration, respectively, on ð2:7 fmÞ3 volume. The table also
contains the pion and nucleon mass for each ensemble.

mf Nconf Nsep Nmeas m� [GeV] MN [GeV]

0.005 932a 10 4b 0.3294(13) 1.154(7)

0.01 356 10 4 0.4164(12) 1.216(7)

0.02 98 20 4 0.5550(12) 1.381(12)

0.03 106 20 4 0.6681(15) 1.546(12)

aThe total number of configurations is actually 646. We carry out
extra measurements on a subset of these (286 configurations) to
improve the statistics using different source positions.
bTwo measurements with the double-source method give effec-
tively four measurements.

0 10 20 30 40 50 60
t

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

FIG. 1. Two-point function with the double source at t ¼
ð0; 32Þ for mf ¼ 0:005.

1.5e-09

1.6e-09

1.7e-09

0.9

1

1.1

C
L
(10,0)

g
A

 at t=6

(a) (b) (c)

FIG. 2. For mf ¼ 0:005, nucleon propagator CLðt; 0Þ at t ¼
10, and axial charge gA ¼ C

P 53

A3
ð~0; tÞ=CP 4

V4
ð~0; tÞ at t ¼ 6 with

different jackknife analyses: (a) averaging four data with bin
size of 40 trajectories, (b) averaging four data with bin size of 10
trajectories, and (c) treating each measurement as independent
with bin size of 10 trajectories.
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In the following, in order to reduce possible autocorre-
lations at the larger volume the measurements are blocked
into bins of 40 trajectories each, with 20 trajectories at the
smaller volume. The statistical errors are estimated by the
jackknife method.

B. Correlation functions

The quark propagator is calculated with an antiperiodic
boundary condition in the temporal direction and periodic
boundary conditions for the spatial directions. We employ
gauge-invariant Gaussian smearing [44] at the source with
smearing parameters ðN;!Þ ¼ ð100; 7Þ, which were
chosen after a series of pilot calculations, as described in
Ref. [49]. For the calculation of the three-point functions,
we use a time separation of 12 time slices between the
source and sink operators to reduce effects from excited-
state contributions as much as possible.

To obtain the form factors at nonzero q2, we evaluate the
two- and three-point functions, Eqs. (5) and (9), with the
four lowest nonzero momenta: ~p ¼ 2�=L� ð0; 0; 1Þ, (0, 1,
1), (1, 1, 1), and (0, 0, 2), corresponding to a q2 range from
about 0.2 to 0:75 GeV2 on the large volume, while on the
small volume we use only the smallest two momentum
transfers, corresponding to q2 � 0:4 and 0:8 GeV2. All
possible permutations of the momentum including the
positive and negative directions are taken into account.

There are several choices for the definition of the mo-
mentum in the lattice calculation, e.g., pi ¼ 2�=L � ni,
sinð2�a=L � niÞ=a, or one determined from the measured
energy in the two-point function. Figure 3 shows that the
three energies with the different momentum definitions
reasonably agree with each other. In the following we
choose the continuum momentum definition pi ¼ 2�=L �
ni, since this simple definition gives smaller statistical
error for the energy than the measured one.

C. Systematic errors

There are two important sources of systematic error:
finite spatial size of the lattice and excited-state contami-
nation. Chiral-perturbation-theory-inspired analysis of the
former for meson observables suggests the dimensionless
product, m�L, of the calculated pion mass m� and lattice
linear spatial extent L, should be set greater than 4 to
ensure that the finite-volume correction is negligible below
1%, and the available lattice calculations seem to support
this. While our present parameters satisfy this condition, it
should be emphasized that such a practical criterion is not
known sufficiently for baryon observables. It is important
to check this through the present calculations, and it is
indeed an important purpose of this work.
On the other hand, one should adjust the time separation

between the nucleon source and sink appropriately so the
resultant nucleon observables are free of contamination
from excited states. The separation has to be made longer
as the quark masses decrease. In our previous study with
two dynamical flavors of DWF quarks [2] with a similar
lattice cutoff of about 1.7 GeV, we saw systematic differ-
ences between observables calculated with the shorter time
separation of 10, or about 1.16 fm, and longer 12, or
1.39 fm: the differences amount to about 20%, or 2 stan-
dard deviations. This would suggest that at the shorter time
separation of about 1.2 fm, the excited-state contamination
has not decayed sufficiently to guarantee correct calcula-
tions for the ground-state observables [41]. There is, how-
ever, a price to pay for the larger time separation as the
nucleon correlation function suffers from large statistical
noise at large times, especially with light quark masses.
Since the hadron masses are much lighter in the present
work than we considered previously (the lightest pion mass
is 0.33 GeV and nucleon 1.15 GeV) we decided to use the
separation of 12 lattice units, or about 1.4 fm.

0 0.05 0.1 0.15 0.2 0.25

p
2

0.7

0.8

0.9

p
i
=2πn

i
/L

p
i
=sin(2πn

i
/L)

meas. E(p)

FIG. 3 (color online). Measured nucleon energies in lattice
unit at mf ¼ 0:01. Estimated energies by continuum and lattice

momenta are also plotted.

0 2 4 6 8 10 12 14 16
t

0.4

0.5

0.6

0.7

0.8

0.9

Eff. mass of C
G

(t,0)

FIG. 4 (color online). Effective mass of the nucleon correlator
with Gaussian smearing applied at both source and sink, for
quark mass mf ¼ 0:005.
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While it is desirable to use a longer separation, it cannot
be made too long in practice without losing control of
statistical errors. In Fig. 4 we present the nucleon effective
mass at the lightest quark mass, mf ¼ 0:005. The nucleon

signal begins to decay at t ¼ 12, or about 1.4 fm: this is
about the longest distance we can choose without losing the
signal, and hence about as free of excited-state contami-
nation as we can achieve with the present statistics. As will
be shown in detail in this paper, the bare three-point
function signals for the form factors for this source-sink
separation of t ¼ 12 are acceptable. Whether this is a
sufficiently long separation between the source and sink
to guarantee correct calculations of ground-state observ-
ables remains a future problem.

IV. RESULTS

A. Vector and axial charges

Much of the results and discussion in this subsection
have appeared in Ref. [39]. We repeat them here for
convenience and to lay some of the ground work necessary
for discussion of the form-factor results that follow.

At zero momentum transfer the time component of the
vector form factor gives the vector charge, gV ¼ F1ð0Þ. For
our calculations at the heaviest three quark masses, we use
the four-dimensional local current. As a result, the value of
glatV , measured from the bare F1ð0Þ, deviates from unity and
gives the inverse of the renormalization, ZV , for the local
current. At the lightest quark mass, mf ¼ 0:005, we evalu-

ate the vector charge using the point-split conserved vector
current [38],V 4 as well. This is to alleviate a problem that
arises from the double-source method described in
Sec. II B: Conventionally the vector charge is calculated
from the ratio of the three-point function with the local
vector current to the two-point function with zero momen-
tum, as in Eq. (11); a strong correlation between the
denominator and numerator suppresses the statistical error
associated with such calculations. This correlation is lost in
the double-source calculation and results in larger statisti-
cal errors. Fortunately, the three-point functions of the
local and conserved currents are highly correlated, even
in this method. Therefore we evaluate the vector charge

from the ratio of the three-point functions glatV ¼
CP 4

V4
ð~0; tÞ=CP 4

V 4
ð~0; tÞ at mf ¼ 0:005. Figure 5 shows that

the error in this ratio is as small as that coming from the
single source calculation at mf ¼ 0:01.

A linear extrapolation to the chiral limit yields an accu-
rate estimate of glatV ¼ 1:3929ð17Þ, as shown in Fig. 6. This
corresponds to ZV ¼ 0:7179ð9Þ in the chiral limit and
agrees well with an independent calculation in the meson
sector [47], ZA ¼ 0:7161ð1Þ, up to the discretization error.

The axial charge is calculated from the ratio of the
vector and axial-vector form factors gA ¼ FAð0Þ=F1ð0Þ:
This ratio gives the renormalized axial charge since the
vector and axial currents, V� and A�, share a common

renormalization thanks to the good chiral symmetry prop-
erties of DWF, up to a small discretization error of Oða2Þ.
The plateaus of gA computed on volume V ¼ ð2:7 fmÞ3

are shown in Fig. 7. We checked that consistent results are
obtained by either fitting or averaging over appropriate
time slices, t ¼ 4–8, and also by fitting the data symme-
trized about t ¼ 6. The data can be symmetrized because
the source and sink operators are identical in the limit of
large statistics. We note that the statistics at our lightest
mass is the largest we know of for comparable simulation
parameters in the literature. Results obtained from the fit
using the unsymmetrized data, presented in the figure with
1 standard deviation, are employed in the analysis. These
results are compiled in Table II.

1.38

1.4

1.42

0 2 4 6 8 10 12

t

1.38

1.4

1.42

m
f
=0.005

m
f
=0.01

FIG. 5. Plateaus of glatV for mf ¼ 0:005 (top) and 0.01 (bot-
tom). Statistical errors are of comparable sizes for the two mf

values despite difference in the methods. Solid lines denote fit
results with 1 standard deviation.
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Figure 8 shows that the ð2:7 fmÞ3 data are almost inde-
pendent of the pion mass (squared) except for the lightest
point which is about 9% smaller than the others. A set of
the results obtained with a smaller volume, ð1:8 fmÞ3
shows a similar downward behavior, albeit with relatively
larger statistical uncertainties. An earlier two-flavor calcu-
lation by RBC [2] with spatial volume ð1:9 fmÞ3 and
1=a ¼ 1:7 GeV showed a clear downward behavior, but
it sets in at heavier pion mass.

We suspect that this pion mass dependence driving gA
away from the experimental value is caused by the finite
volume of our calculation. Similar behavior was observed
in quenched DWF studies [1,20] and was predicted in a
model calculation [50]. However, for pion masses close to
our lightest point such a sizable shift is not observed when
V is larger than about ð2:4 fmÞ3, not only in the quenched
case, but also the 2þ 1 flavor, mixed-action calculation in
[26] and their updated results [29]. Both the results of
quenched [1,20] and mixed-action [29] calculations on
larger volumes are presented in Fig. 8. On the other
hand, our results suggest that a volume of V ¼ ð2:7 fmÞ3
is not large enough to avoid a significant finite-volume
effect on gA when m� � 0:33 GeV in dynamical fermion
calculations. It is worth noting that the bending of the axial
charge comes from only the axial-vector part FAð0Þ, since

the vector part F1ð0Þ does not have such a pion mass
dependence (see Fig. 6).
In order to more directly compare the various results, we

plot gA against the dimensionless quantity, m�L, in the top
panel of Fig. 9. We find that the 2þ 1 flavor results on both
volumes reasonably collapse onto a single curve that
monotonically increases with m�L; in other words, they
exhibit scaling in this variable. The two-flavor results [2]
display a similar behavior which is also evident in dynami-
cal two-flavor (improved) Wilson fermion calculations as
shown in the middle panel [24,27,51] for the unitary points

sea ¼ 
val, with various volumes ð0:95–2:0 fmÞ3, pion
masses 0.38–1.18 GeV, and gauge couplings. While the
trend is similar in the quenched DWF case [1,20] with pion
masses in the range 0.39–0.86 GeV and 1=a ¼ 1:3 GeV
(see bottom panel), the scaling is violated for the point with
smallest m�L on V ¼ ð2:4 fmÞ3. The lightest point does
not follow the ð1:8 fmÞ3 data: they differ by 2.5 standard
deviations (�) at m�L� 5, suggesting that there are non-
universal terms that depend separately on m� and V. In
particular, this effect may be due to the presence of a
quenched chiral log [52]. From Ref. [52], the size of the
effect at this mass can readily explain the discrepancy
observed with the dynamical m�L scaling. Note, at this
mass, but going to V ¼ ð3:6 fmÞ3, no finite-volume effect
is detected in the quenched case as can be seen in Fig. 8.
The mixed-action, 2þ 1 flavor result with a similar

volume [26,29], is denoted by the left triangle in the top
panel. We plot their recent result at our lightest point [29].
At heavy pion masses the results are statistically consistent
with our larger volume data and essentially independent of
m�L. At m�L� 4:5 the mixed-action result, however, is
larger than ours by (a combined) 2:1� and lies between our
lightest result and the quenched DWF result with ð2:4 fmÞ3
volume [20] (the up triangle in the figure).
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FIG. 7 (color online). Plateaus of gA. V ¼ ð2:7 fmÞ3 andmf ¼
0:005, 0.01, 0.02, and 0.03, from top to bottom.

TABLE II. Summary of axial charge, gA, for both volumes.

mf 0.005 0.01 0.02 0.03

ð2:7 fmÞ3 1.073(39) 1.186(36) 1.173(36) 1.197(30)

ð1:8 fmÞ3 N=A 1.066(72) 1.115(58) 1.149(32)
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FIG. 8 (color online). Axial charge gA together with two-flavor
[2] and quenched [1,20] DWF, and mixed-action [26,29] calcu-
lations. Recent Nf ¼ 2þ 1 DWF by LHP [29] is also plotted.
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A possible explanation of the differences is that it is
simply a dynamical fermion effect as discussed in
Ref. [39]. While the mixed-action result at m�L� 4:5
has come down from higher value with larger error (the
previous result was consistent with the quenched result at
the similar m�L), the explanation using the systematic
error [53,54] of the partially quenched effect of the
mixed-action results might be valid in the present data. If
the sea quark is effectively heavy, a mixed-action calcu-
lation will be closer to the quenched case. Mixed-action
chiral perturbation theory reveals the presence of partially
quenched logs whose size is consistent with the observed
effect [55,56], as in the quenched theory. We should note
that the preliminary result obtained by LHP [29] at the
same simulation parameter as our lightest point appears
inconsistent with our result (see Fig. 8). Wewill discuss the
difference later in this section.

For the chiral extrapolation of gA, we attempt to include
the finite-volume effect in our data. While the pion mass

dependence of gA, including the finite-volume effect, has
been investigated in the small scale expansion (SSE)
scheme of heavy baryon chiral perturbation theory
(HBChPT) [24], the size of the finite-volume effect on V ¼
ð2:7 fmÞ3 predicted in SSE is less than 1% in our pion mass
region. The correction is much too small to account for the
observed finite-volume effect in our data. This suggests
that the finite-volume effect in HBChPT, which is esti-
mated by replacing all loop integrals by summations, is not
the leading finite-volume effect in gA, as in the "

0 [57] and
" [58] regimes. We also note that our attempts to fit the
mass dependence of the data to HBChPT failed, which is
likely due to the heavier quark mass points being beyond
the radius of convergence of ChPT [2,47,59].
Instead of the SSE formula, we assume the following

simple fit form, including the finite-volume effect in a way
that respects the scaling observed in the data:

Aþ Bm2
� þ CfVðm�LÞ; (20)

with fVðxÞ ¼ e�x, and where A, B, and C are fit parame-
ters. The third term corresponds to the observed finite-
volume effect, taken as a function of m�L only, and
vanishes rapidly towards the infinite volume limit, L !
1, at fixed pion mass. The same m�L dependence appears
in one of the finite-volume effect contributions in Ref. [60].
We note that this simple form is used to estimate the finite-
volume effects in the data but not the value of gA in the
chiral limit at fixed L. In the end, we choose this simplest
form, in part, because the fit result at the physical point is
not sensitive to the particular choice of fVðxÞ, as discussed
below.
In Fig. 10 we see that the 2þ 1 flavor data are described

very well by this simple fit (�2=d:o:f: ¼ 0:57), using data
computed on both volumes simultaneously. The L ! 1
extrapolation (solid line) in turn allows an extrapolation to
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the physical pion mass (m� ¼ 135 MeV), gA ¼ 1:19ð6Þð4Þ,
where the first error is statistical. The second error is an
estimate of the systematic error determined by comparing
this result with that from fits using different choices of

fVðxÞ, e.g., the full form in [60], x�3, andm2
�e

�x=x1=2. The
latter is similar to HBChPT when m�L � 1 [24,61,62].
The results of some of the fit forms are summarized in
Table III. The extrapolated value is not sensitive to the
choice of fV and is consistent with a linear fit to the three
heaviest points on the larger volume, gA ¼ 1:17ð6Þ. The
present data are insufficient to determine the detailed form
of fV , but do allow a reasonable estimate of the finite-
volume effect.

We also fit our data, with and without the fV term, to the
two-loop formula from HBChPT [59] and find that the
extrapolated result is less than 1 and that the fits are
generally unstable. This is due to the many unknown low
energy constants which cannot be determined accurately
from only four data points, even if some of them are fixed.
More importantly, though the two-loop formula extends
the range of applicability of the chiral expansion, it is still
only large enough to include our lightest point, as demon-
strated in Ref. [59]. The systematic error arising from the
difference of the renormalization constants for A� and V�

is much smaller than the quoted systematic error. From the
fit result with fVðxÞ ¼ e�x, we estimate that if one aims to
keep finite-volume effects at or below 1%, then for m� ¼
0:33 GeV, spatial sizes of 3.5–4.1 fm (m�L � 5:9–6:9) are
necessary.

As mentioned, our lightest result on ð2:7 fmÞ3 differs
from the preliminary findings from LHP [29] shown in
Fig. 8 by 1:8�. These calculations are carried out with the
same parameters except for the operator smearing and the
time separation between the source and sink operators,
�t ¼ tsink � tsrc. So, while it is possible that this difference
is simply due to the limited statistics in the preliminary
result in [29], there is the possibility that this difference is
due to a systematic error stemming from contaminations of
higher excited states. These contaminations will be negli-
gible when the time separation of the two nucleon opera-
tors in the three-point function, Eq. (9), is large enough.
The large separation, however, causes the statistical error
of the three-point function to increase. Thus, we employ a
time separation of �t ¼ 12, as described in Sec. II, while
LHP uses �t ¼ 9. While further investigation of this dif-
ference is desirable, it is beyond the scope of this paper.

Although there may be a systematic difference between
our result and the result of LHP at the lightest quark mass
on the ð2:7 fmÞ3 lattice, all recent results [29,63] (before
chiral extrapolation) with dynamical quarks are about 10%
smaller than the experimental value. In order to make a
precise test of (lattice) QCD with the axial charge, further
study of the systematic errors as the quark mass is de-
creased towards the physical point is required on large
volumes.

B. Form factors of the vector current

In this subsection we discuss the isovector part of the
Dirac and Pauli form factors, F1ðq2Þ and F2ðq2Þ. In Fig. 11
we present the ratios of the three- and two-point functions,

TABLE III. Fit results of gA, together with the extrapolated result at m
phys
� ¼ 135 MeV. In the

last row, the linear fit result using only the three heavier points at V ¼ ð2:7 fmÞ3 is presented.

fV A B C �2=d:o:f: m
phys
�

e�m�L 1.187(57) �0:12ð14Þ �8:1ð3:9Þ 0.60 1.187(55)

ðm�LÞ�3 1.226(70) �0:05ð15Þ �11:3ð5:2Þ 0.47 1.225(67)

m2
�e

�m�L=
ffiffiffiffiffiffiffiffiffiffi
m�L

p
1.148(46) �0:09ð12Þ �75ð41Þ 0.80 1.150(44)

N=A 1.172(58) 0.05(1.7) — 0.17 1.173(55)
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�V
4 and�V

T defined in Eqs. (12) and (13), at the quark mass
mf ¼ 0:01 for each momentum transfer. We find excellent

plateaus in the middle time region between the nucleon
source and sink operators at t ¼ 0 and 12 for the smaller
momenta, while the plateau at ~q / ð2; 0; 0Þ is not as well
behaved and has a larger error. This is interpreted as simply
a statistical fluctuation. In order to remove this wiggle, we
would need more statistics at this momentum. To deter-
mine the values of the ratios, we perform a constant fit
in the time interval, t ¼ 4–8, for all momentum
combinations.

The form factors are obtained by solving the linear
equations (16) and (17),

F1ðq2Þ ¼ �V
4 ðqÞ þ ��V

T ðqÞ
1þ �

; for all q; (21)

F2ðq2Þ ¼ �V
T ðqÞ ��V

4 ðqÞ
1þ �

; for q � 0; (22)

where � ¼ q2=ð4M2
NÞ. All the values of the two form

factors are shown in Table IV.

1. Dirac form factor F1ðq2Þ
Let us now turn our attention to the momentum depen-

dence of the Dirac form factor. In Fig. 12 we present the
form factor at each quark mass normalized by the respec-
tive values at zero momentum transfer.

Phenomenologically the form factor is described by the
conventional dipole form,

F1ðq2Þ ¼ 1

ð1þ q2=M2
1Þ2

; (23)

whereM1 is the dipole mass for this form factor, and fits to
experimental data give M1 ¼ 0:857ð8Þ GeV [12]. In order
to test the dipole form using our lattice results, for conve-
nience we define an effective dipole mass

Meff
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=F1ðq2Þ
p � 1

vuut : (24)

Figure 13 shows that the effective dipole mass at mf ¼
0:01 is almost flat against q2. This means that the form
factor is well explained by the dipole form Eq. (23) in the
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FIG. 12 (color online). The Dirac form factor, F1ðq2Þ, normal-
ized to unity at q2 ¼ 0.
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FIG. 13. Effective dipole mass Meff
1 for F1ðq2Þ at mf ¼ 0:01

together with the experimental result [12,23]. The result of the
dipole fit (solid line) with 1 standard deviation (dashed line) is
also presented.

TABLE IV. Form factors of vector, axial-vector currents on
ð2:7 fmÞ3. All form factors are renormalized.

mf q2 ½GeV2� F1ðq2Þ F2ðq2Þ FAðq2Þ 2MNFPðq2Þ
0.005 0.0 1.0000(11) N/A 1.073(39) N/A

0.198 0.785(19) 2.20(13) 0.959(34) 13.32(91)

0.383 0.622(22) 1.716(97) 0.892(39) 7.42(51)

0.557 0.505(28) 1.40(10) 0.754(41) 5.27(42)

0.723 0.516(53) 1.36(16) 0.792(65) 4.71(53)

0.01 0.0 1.0000(10) N/A 1.186(33) N/A

0.199 0.787(17) 2.38(15) 0.994(37) 13.00(90)

0.385 0.641(22) 1.71(12) 0.854(37) 7.48(44)

0.562 0.524(31) 1.34(11) 0.719(39) 5.01(42)

0.731 0.506(49) 1.19(13) 0.701(57) 3.95(46)

0.02 0.0 1.0000(15) N/A 1.174(37) N/A

0.200 0.805(20) 2.40(15) 1.005(33) 12.3(1.2)

0.390 0.686(32) 2.08(13) 0.890(38) 9.04(73)

0.573 0.599(49) 1.80(13) 0.839(48) 7.06(70)

0.748 0.443(37) 1.31(14) 0.668(47) 3.84(59)

0.03 0.0 1.0000(11) N/A 1.196(30) N/A

0.201 0.8302(99) 2.79(12) 1.038(28) 12.74(88)

0.394 0.700(15) 2.302(92) 0.912(32) 9.68(62)

0.580 0.595(22) 2.00(12) 0.838(40) 6.81(61)

0.760 0.500(31) 1.54(15) 0.704(50) 4.55(73)
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q2 region where we measure. The figure also shows that the
effective mass is consistent with the dipole fit result as
expected.

We estimate the Dirac root-mean-squared (rms) radius
from the dipole mass obtained by the fit as

hr21i1=2 ¼
ffiffiffiffiffiffi
12

p
M1

; (25)

whose results are presented in Table V. Figure 15 shows the
pion mass dependence of our results for the rms radius.
Here we also compare with other lattice calculations and
the experimental value. Our results show a near-linear
dependence in the pion mass squared which is quite differ-
ent from the axial charge in Sec. IVA. This suggests that
the Dirac form factor is less sensitive to the finite-volume
effect than gA, and this is confirmed by an analysis of our
results obtained on a smaller volume ð1:8 fmÞ3, shown in
Fig. 14. The smaller volume results are summarized in
Table VI. Our results can be fit linearly and extrapolated
to a value 27% smaller than experiment, 0.797(4) fm. Other
lattice calculations [1,2,22,23,25] show similar trends. The
recent results of the mixed-action calculation [29] are also
statistically consistent with our data and fit line.

This quantity is expected to logarithmically diverge in
HBChPT [64–66] at the chiral limit: such a behavior will
help in bringing our present extrapolated results closer to

experiment. However, our results atm� > 0:33 GeV fail to
reveal such a logarithmic divergence. A naive determina-
tion of the HBChPT parameters at the physical point give
the logarithmic contribution shown in Fig. 15 by the solid
line. Future work will require simulations to be performed
at lighter quark masses, e.g., m� < 0:2 GeV, if such loga-
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FIG. 14 (color online). Comparison of F1 with larger and
smaller volumes denoted by closed and open symbols, respec-
tively, at each quark mass.
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FIG. 15 (color online). Dirac rms radius hr21i1=2 determined
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HBChPT with the experimental result [12,23] is also plotted.

TABLE V. Dirac and Pauli rms radii hr21i1=2, hr22i1=2, and anomalous magnetic moment

F2ð0Þ ¼ �p ��n � 1. The linear fit results at m
phys
� ¼ 135 MeV are also presented.

mf 0.005 0.01 0.02 0.03 mphys
�

hr21i1=2 [fm] 0.564(23) 0.548(24) 0.520(31) 0.485(16) 0.584(23)

hr22i1=2 [fm] 0.578(60) 0.690(61) 0.536(21) 0.537(38) 0.636(57)

F2ð0Þ 2.82(26) 3.40(35) 3.11(21) 3.55(19) 2.75(28)

TABLE VI. Form factors of vector, axial-vector currents on
ð1:8 fmÞ3. All form factors are renormalized.

mf q2 ½GeV2� F1ðq2Þ F2ðq2Þ FAðq2Þ 2MNFPðq2Þ
0.01 0.0 1.000(27) N/A 1.066(72) N/A

0.430 0.621(52) 1.42(23) 0.580(93) 3.2(1.4)

0.812 0.46(14) 0.89(50) 0.380(70) 1.83(68)

0.02 0.0 1.000(14) N/A 1.115(58) N/A

0.437 0.705(38) 2.03(17) 0.749(49) 6.16(97)

0.833 0.501(36) 1.14(14) 0.504(47) 2.70(38)

0.03 0.0 1.0000(6) N/A 1.149(32) N/A

0.441 0.686(18) 1.91(10) 0.787(29) 6.56(70)

0.848 0.522(23) 1.258(70) 0.574(30) 3.48(30)
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rithmic effects are to be seen in lattice results of the Dirac
radius.

2. Pauli form factor F2ðq2Þ
Figure 16 shows the momentum-transfer dependence of

our results for the Pauli form factor at each quark mass.
These values are tabulated in Table IV. The form factor is
renormalized by F1ð0Þ.

This form factor can also be described by the conven-
tional dipole form,

F2ðq2Þ ¼ F2ð0Þ
ð1þ q2=M2

2Þ2
; (26)

with M2 ¼ 0:78ð2Þ GeV and F2ð0Þ ¼ 3:705 89 extracted
from fits to experimental data. In contrast to the Dirac form
factor, there are two parameters, the overall strength F2ð0Þ
and the dipole massM2: the former gives the isovector part
of the anomalous magnetic moment,�p ��n � 1, and the

latter the Pauli mean-squared radius, hr22i ¼ 12=M2
2, as in

the Dirac case. We fit the form factor with these two
parameters.

To check reliability of the dipole fit, we measure the
ratio of the Sachs electric and magnetic form factors,
Eqs. (2) and (3),

GMðq2Þ
GEðq2Þ

¼ �V
T ðqÞ

�V
4 ðqÞ

; (27)

which exhibits a mild q2 dependence [1,49]. At zero mo-
mentum transfer, we obtain 1þ F2ð0Þ from the ratio.
Figure 17 shows that the result for GEðq2Þ=GMðq2Þ � 1
at q2 ¼ 0, obtained via a linear fit in q2, is consistent with
the determination from a dipole fit of F2ðq2Þ.

In Fig. 18 we present the anomalous magnetic moment
of the nucleon, determined by the dipole fit presented in

Table V, together with some other lattice QCD calculations
and the experimental value. Our present results slightly
decrease with the pion mass, in agreement with previous
lattice calculations [1,23]. They extrapolate well linearly in
the pion mass squared and result in a value 26% smaller
than the experiment. This result at the physical pion mass is
consistent with those of previous calculations [1,19] using
a linear fit.
We present in Fig. 19 the result of the Pauli rms radius.

These results are obtained from a dipole fit and summa-
rized in Table V. Some other lattice QCD calculations
[1,23] are also plotted in the figure for comparison. We
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find the lightest point to be slightly smaller than the results
at the other quark masses, albeit with a large error. Thus,
we consider this pion mass dependence is due to statistics,
not a finite-volume effect as in the axial charge, and this is
confirmed by our results from the smaller volume simula-
tions in Fig. 20. The results are reasonably fitted by a linear

function of the pion mass squared, and we obtain hr22i1=2 ¼
0:64ð6Þ fm at the physical pion mass. This result again is
27% smaller than the experimental value, 0.88(2) fm.

Here again the quantity is expected to diverge as 1=
ffiffiffiffiffiffiffi
m�

p
in the chiral limit in HBChPT [64–66], however our results
do not indicate such divergence. In contrast to the Dirac
radius case, perhaps because of the larger statistical errors,
HBChPT can simultaneously fit the experiment and our
data. The fit inspired by a prediction [64],

Affiffiffiffiffiffiffi
m�

p
�
1þ Bm� þ Cm� log

�
m�

�

��
; (28)

where A, B, and C are free parameters (A ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2AMN=8�F

2
�F2ð0Þ

q
in HBChPT), � is the scale and fixed

to 1 GeV for simplicity, gives a larger
�2=d:o:f:ðdegrees of freedomÞ ¼ 3:4. We cannot obtain a
reasonable �2=d:o:f: without fixing the coefficient A using

the experimental values. We need further light quark mass
calculation with better statistics to test the prediction in the
lattice QCD calculation.

C. Form factors of the axial-vector current

In this subsection we show the form factors obtained
from the axial-vector currents, FAðq2Þ and FPðq2Þ. They
are extracted from the ratios of three- and two-point func-
tions defined in Eqs. (14) and (15). Figure 21 shows that the
typical plateaus of the ratios with the A3 component of the
current at mf ¼ 0:01 are reasonably flat in the middle time

region between the source and sink operators. We plot the
ratios �A

Lðq3 ¼ 0; tÞ and �A
Lðq3 � 0; tÞ separately, since

�A
Lðq3 � 0; tÞ contains both form factors, while �A

Lðq3 ¼
0; tÞ contains only FAðq2Þ. It is worth noting that there is no
�A

Lðq3 ¼ 0; tÞ in the case of ~q / ð1; 1; 1Þ. �A
Tðq; tÞ has a

slope in the range t ¼ 1–8 with large statistical errors as
shown in the bottom panel of Fig. 21. We consider the
slope to be caused by poor statistics in the data. The values
of the matrix elements for all the ratios are determined by
constant fits with the range of t ¼ 4–8.
Using the relations Eqs. (18) and (19), the two form

factors are determined through the following equations
which depend on the spatial momentum transfer in the
three-point function:

FAðq2Þ ¼
(
�A

Lðq3 ¼ 0Þ for n ¼ 0; 1; 2; 4

�A
Lðq3 � 0Þ þ q2

3

MNðMNþEðqÞÞ�
A
TðqÞ for n ¼ 3

; (29)

FPðq2Þ ¼
(
�A

TðqÞ=MN for n ¼ 2; 3
MNþEðqÞ

q2
3

ð�A
Lðq3 ¼ 0Þ ��A

Lðq3 � 0ÞÞ for n ¼ 1; 4
; (30)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q
2
[GeV

2
]

0

0.5

1

1.5

2

2.5

3

3.5

4
m

f
=0.01(2.7fm)

m
f
=0.02(2.7fm)

m
f
=0.03(2.7fm)

m
f
=0.01(1.8fm)

m
f
=0.02(1.8fm)

m
f
=0.03(1.8fm)

F
2
(q

2
)
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where n ¼ ~q2 � ðL=2�Þ2. The results for the two form
factors are summarized in Table IV.

1. Axial-vector form factor FAðq2Þ
Figure 22 shows the axial-vector form factor at each

quark mass, which is renormalized by the Dirac form
factor at zero momentum transfer, ZV ¼ 1=F1ð0Þ. This
renormalization is valid due to the good chiral properties

of DWF. At zero momentum transfer, the result at mf ¼
0:005 is smaller than the other masses which corresponds
to the bending of gA discussed in Sec. IVA. Furthermore,
the q2 dependence of the results at the lightest quark mass
is milder than the other masses.
In the following we focus only on the momentum-

transfer dependence of the axial-vector form factor: We
normalize the form factor by its value at zero momentum
transfer, respectively, for each quark mass. Figure 23
shows the results after these normalizations,
FAðq2Þ=FAð0Þ. For the heavier three masses, the results
tend to decrease with quark mass while the dependence
is opposite for the lightest mass. Similar to the vector-
current form factors, the experimental axial-vector form
factor is also traditionally considered to be fitted well by
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the dipole form,

FAðq2Þ
FAð0Þ

¼ 1

ð1þ q2=M2
AÞ2

; (31)

with the experimental data giving a best fit of MA ¼
1:03ð2Þ GeV [14] for the axial-vector dipole mass. The
experimental fit is shown by the dashed line in Fig. 23.

If the dipole form is valid in the entire q2 region, we can
extract the effective axial dipole mass,

Meff
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

FAð0Þ=FAðq2Þ
p � 1

vuut (32)

at each nonzero value of q2. Figure 24 shows that the
effective dipole mass at mf ¼ 0:01 is reasonably flat.

This means that the form factor behaves as a dipole, as in
the cases of the Dirac and Pauli form factors. We fit the
form factor with the dipole form, and the fitted dipole mass
is consistent with the effective one, as shown in Fig. 24 by
the solid line with the 1 standard deviation (dashed lines).

Figure 24 shows that the lightest quark mass data is also
well explained by the dipole form, although the results do
not approach the experimental value.
The axial rms radius is determined from the dipole mass,

hr2Ai1=2 ¼
ffiffiffiffiffiffi
12

p
=MA; (33)

and is 0.666(14) fm in the experiment. The calculated axial
rms radius from the fits is shown in Fig. 25 plotted as a
function of the pion mass squared. The results are summa-
rized in Table VII. While the result increases as the pion
mass decreases, the lightest result significantly decreases.
This pion mass dependence is similar to that observed in
the axial charge in Fig. 8. This, however, is not clear in
FAðq2Þ renormalized by ZV ¼ 1=F1ð0Þ obtained on our
smaller volume as shown in Fig. 26: the data at the lightest
quark mass on the smaller volume shows a significant
deviation from the larger volume result, but the statistical
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TABLE VII. Axial charge rms radius hr2Ai1=2, nucleon-pion coupling g�NN , and induced
pseudoscalar coupling gP. g�NN is calculated with the definition equation (37) and
Goldberger-Treiman (GT) relation equation (38) denoted as def. and GT in the table, respec-

tively. The linear fit results at m
phys
� ¼ 135 MeV obtained without the lightest quark mass are

also presented.

mf 0.005 0.01 0.02 0.03 m
phys
�

hr2Ai1=2 [fm] 0.366(36) 0.469(21) 0.423(25) 0.413(17) 0.493(33)

g�NN (def.) 8.53(82) 10.38(94) 11.1(1.3) 12.0(1.1) 9.5(1.6)

g�NN (GT) 11.84(45) 13.12(47) 12.66(78) 13.56(57) 12.79(79)

gP 6.71(60) 8.45(71) 10.31(88) 11.93(93) 6.6(1.2)
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errors are too large to allow for a more quantitative
comparison.

Here, we similarly suspect this behavior of the larger
volume to be caused by a large finite-volume effect. A
similar behavior is also seen in previous two-flavor results
as presented in Fig. 25. DWF [2] and Wilson [27] fermion
calculations on a smaller volume ð1:9 fmÞ3 have similar
pion mass dependences, but the radius begins to decrease at
heavier pion mass. Once again, this behavior is quite
similar to the case of the axial charge. Moreover, previous
quenched results obtained on large volumes [1,23] do not
exhibit such strong pion mass dependence, which is also

shown in Fig. 25. Figure 27 shows the same results of the
rms radii, but plotted as a function of m�L. The scaling of
the rms radius with m�L is not as compelling as the axial
charge case, but from the figure we estimate that m�L > 6
is required to obtain the axial charge rms radius without
significant finite-volume effects. Needless to say, other
systematic errors, e.g., due to heavier quark mass than
the physical one, should be removed to reproduce the
experimental value.
The lightest pion mass data is omitted in the following

chiral extrapolation, because we cannot rule out a large
systematic error due to the finite volume of the simulations
as discussed above. A linear fit to the heaviest three quark
masses and extrapolation to the physical pion mass yields

hr2Ai1=2 ¼ 0:49ð3Þ fm. The fit result is presented in Fig. 25

and reproduces 73% of the experimental value.

2. Induced pseudoscalar form factor FPðq2Þ
The induced pseudoscalar form factor, FPðq2Þ, is ex-

pected to have a pion pole, so its momentum-transfer
dependence should be different from the other form fac-
tors. At the lightest quark mass this form factor is sus-
pected to have a large finite-volume effect, since it is
obtained from the matrix element of the axial-vector cur-
rent together with the axial-vector form factor, as discussed
in the previous subsection.
Figure 28 shows 2MNFPðq2Þ renormalized with ZV ,

plotted against the momentum transfer squared at each
quark mass. We immediately notice that this form factor
has a much larger q2 dependence than the other form
factors. In addition, the results from all quark masses
appear to be consistent with the experimental data [15].
Note that our statistical error is much smaller than the
experiment.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

q
2
[GeV

2
]

0.4

0.6

0.8

1

1.2

m
f
=0.005(2.7fm)

m
f
=0.01(2.7fm)

m
f
=0.02(2.7fm)

m
f
=0.03(2.7fm)

experiment
m

f
=0.01(1.8fm)

m
f
=0.02(1.8fm)

m
f
=0.03(1.8fm)

F
A

(q
2
)

FIG. 26 (color online). Comparison of FAðq2Þ renormalized by
ZV ¼ 1=F1ð0Þ with larger and smaller volumes denoted by
closed and open symbols, respectively, at each quark mass.
Open symbols at q2 ¼ 0 are slightly shifted to the minus
direction in the x-axis. The dashed curve is a fit to experimental
data.

2 4 6 8 10 12

mπL

0.1

0.2

0.3

0.4

0.5

0.6

N
f
=2+1 DWF (2.7fm)

N
f
=2 DWF (1.9fm)

N
f
=0 DWF (3.6fm)

N
f
=2 Wilson (1.9fm)

N
f
=0 Wilson (3.0fm)

〈r
A

2〉1/2
[fm]

FIG. 27 (color online). Same as Fig. 25 except the horizontal
axis is the scaling variable m�L. Dashed lines denote the
experimental result [14] and its 1 standard deviation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

q
2
[GeV

2
]

0

5

10

15

20

25

30

m
f
=0.005

m
f
=0.01

m
f
=0.02

m
f
=0.03

experiment

2M
N

F
P
(q

2
)

FIG. 28 (color online). 2MNFPðq2Þ renormalized by ZV ¼
1=F1ð0Þ with experimental values [15].

TAKESHI YAMAZAKI et al. PHYSICAL REVIEW D 79, 114505 (2009)

114505-16



The induced pseudoscalar form factor is related to the
axial-vector form factor through the so-called partially
conserved axial-vector current (PCAC) relation which is
a manifestation of spontaneously broken chiral symmetry.
In the traditional PCAC current algebra with pion-pole
dominance (PPD), the PPD form,

FPPD
P ðq2Þ ¼ 2MNFAðq2Þ

q2 þm2
�

; (34)

is obtained at m� � 0. The denominator on the right-hand
side of this relation corresponds to the pion pole. We
investigate the validity of this relation in our results
through a quantity,

	PPD ¼ ðq2 þm2
�ÞFPðq2Þ

2MNFAðq2Þ
: (35)

If the relation holds we obtain unity for this quantity at all
q2. Figure 29 shows 	PPD calculated using our lattice
results for FA and FP. There is no significant q2 depen-
dence, and while the values are close to unity, they are
systematically less than one. We fit these results by a
constant for each quark mass, whose results are presented
in Fig. 29 and Table VIII. While all the fit results are
consistent with the experimental data [15,16,67] within
the larger error of the experiments, they are about 10%–
20% smaller than the prediction of the PPD form.

We should note that the quantity at the lightest quark
mass looks similar to the others, but FAðq2Þ at mf ¼ 0:005

is suspected to have a large finite-volume effect as dis-
cussed in the last subsection. This means that FPðq2Þ at
mf ¼ 0:005 is expected to suffer from a similarly sized

effect at the same quark mass. Thus, it appears that the two
large finite-volume effects cancel in this ratio.

We check the consistency of the pole mass in FPðq2Þ
with the measured pion mass at each quark mass by
observing that the pole mass is given by

ðmpole
FP

Þ2 ¼ 2	PPDMNFAðq2Þ
FPðq2Þ

� q2; (36)

where we use the fact that 	PPD � 1 in our data. Figure 30

shows that the ratio ½mpole
FP

=m��2 is reasonably consistent

with unity and has no large q2 dependence except for the
lightest quark mass point, which has large statistical error.
The values obtained from a constant fit are presented in
Table VIII. This consistency suggests that FPðq2Þ does
indeed have a pion-pole structure, which is consistent
with the PPD form, however 	PPD � 1 in our data. We

confirmed that mpole
FP

and 	PPD obtained from a monopole

fit of 2MNFA=FP are reasonably consistent with the above
results, but have larger errors.
The pion-nucleon coupling is related to the induced

pseudoscalar form factor via the relation

g�NN ¼ lim
q2!�m2

�

�ðq2 þm2
�ÞFPðq2Þ

2F�

�
; (37)

where F� ¼ 92:4 MeV. Combining the above relation
with the PPD form, Eq. (34), we obtain the Goldberger-
Treiman (GT) relation [13],

g�NNF� ¼ MNgA: (38)

In this relation we assume FAð0Þ � FAð�m2
�Þ. As such it
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TABLE VIII. 	PPD and m
pole
FP

.

mf 0.005 0.01 0.02 0.03

	PPD 0.833(25) 0.837(29) 0.903(32) 0.873(31)

½mpole
FP

=m��2 1.044(39) 1.009(19) 0.940(24) 0.977(20)
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suffers from a small mismatch in momentum transfer.
Nevertheless, if we substitute the experimental values for
the quantities, we obtain g�NN ¼ 12:9.

Figure 31 shows two calculations for the�NN coupling,
g�NN: one uses the definition of g�NN and another the GT
relation at each quark mass, plotted against the pion mass
squared. In determining g�NN , we use the measured pion
decay constant at each quark mass from Ref. [47]. Results
for g�NN from both methods are given in Table VII. From
Fig. 31, we observe that g�NN obtained from both methods
displays only a mildm2

� dependence, with the exception of
the lightest mass results which show a significant down-
ward shift away from the trend set by the three heavier
mass values. This of course is another manifestation of the
large finite-size effect observed in the axial charge (see
Sec. IVA). Hence, for the chiral extrapolation we simply
employ a linear fit form and exclude the lightest mass
point. We obtain the results at the physical pion mass,
g�NN ¼ 9:5ð1:6Þ from the definition equation (37), and
g�NN ¼ 12:8ð8Þ from the GT relation equation (38). The
value obtained using the GT relation agrees with a recent
estimation of the coupling g�NN ¼ 13:3ð9Þ obtained from
forward�N scattering data [68], and also with the previous
result, g�NN ¼ 11:8ð3Þ, from a quenched simulation per-
formed using the Wilson action [27] estimated by the GT
relation. The result from the definition equation (37), on
the other hand, is consistent with a quenched DWF deter-
mination, g�NN ¼ 10:4ð1:0Þ [1], obtained from FPð�m2

�Þ.
Rigorously speaking, the GT relation is not valid in our

data, since our data do not satisfy the PPD form due to
	PPD � 0:85. Thus, the difference between the two deter-
minations of g�NN can be explained by 	PPD. Further study
of the GT relation is an important future work, since the

relation should be satisfied in the chiral limit, and at zero
momentum transfer.
The induced pseudoscalar coupling for muon capture on

the proton, gP ¼ m�FPðq2cÞ where q2c ¼ 0:88m2
�, is de-

fined with the muon massm� and the induced pseudoscalar

form factor FP at the specific momentum transfer where
the muon capture occurs, pþ�� ! nþ ��.

Since FPðq2Þ has significantly large pion mass and
momentum-transfer dependences due to the pion pole,
we subtract this contribution before performing the mo-
mentum transfer and chiral extrapolations. To do this, we
first define the quantity with pion-pole subtraction by

�F Pðq2Þ ¼ ðq2 þm2
�ÞFPðq2Þ (39)

at each q2 and then extrapolate this to the required mo-
mentum transfer q2c. The induced pseudoscalar coupling is
estimated by the normalization factor with the physical
pion mass

gp ¼ m�

�FPðq2cÞ
q2c þ ðmphys

� Þ2 ; (40)

where mphys
� ¼ 135 MeV, at each quark mass as shown in

Fig. 32. The figure shows that the result is almost linear as a
function of the pion mass squared and decreases toward the
experimental result for the three heavier mass values.
Again the lightest mass result is an exception caused by
the finite-volume effect in gA, as discussed in Sec. IVA.
The result at the physical pion mass, presented in
Table VII, is obtained from a linear fit to the heaviest three
pion masses and is consistent with the recent experiment
[16] and analysis [67]. This result also agrees with the
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FIG. 32 (color online). Induced pseudoscalar coupling for
muon capture, gp, estimated with pion-pole subtraction. The

experimental result [16] is indicated by the star. The dashed line
with error band represents a linear extrapolation of our data
excluding the lightest point.
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previous quenched DWF result [1], while it disagrees with
a quenched Wilson determination [27,69] which is almost
half of the experimental value.

V. CONCLUSIONS

We have studied the isovector nucleon form factors with
Nf ¼ 2þ 1 flavors of dynamical quarks using the domain-

wall fermion action at a lattice cutoff of a�1 ¼ 1:73 GeV.
The form factors are calculated with four light quark
masses, corresponding to a lightest pion mass, m� ¼
0:33 GeV, and with momentum transfers down to q2 �
0:2 GeV2.

We have found the axial charge decreases significantly
at the lightest quark mass point on the larger volume while
the effect sets in for heavier quark mass on the smaller
volume. By comparing our results with those using differ-
ent volumes, numbers of flavors, and lattice fermions as a
function of the single variable m�L, we conclude that this
downward trend is caused by the finite volume used in our
calculation. The fact that such an effect is absent in
quenched and partially quenched mixed-action studies on
large volumes may be explained by the presence of un-
physical logarithms.

We have fit the data to several forms, including finite-
volume effects, and obtain gA ¼ 1:19ð6Þð4Þ, where the first
and second errors are statistical and systematic, respec-
tively, which is 7% smaller than the experimental value. In
our estimation, a spatial volume of V 	 ð3:5 fmÞ3 is re-
quired to keep the finite-volume effect at or below 1% at
m� ¼ 0:33 GeV. Hence lattice calculations should con-
tinue to push down the quark mass and increase the volume
with m�L > 6. Detailed analyses of the quark mass and
finite-volume dependence is desirable to understand the
systematic deviation from the experiment.

Our lattice results for the form factors of the vector
current are well fit by the standard dipole form. We have
evaluated the root-mean-squared radii and the difference of
the anomalous magnetic moment between the proton and
neutron from the dipole fits. The radii and the anomalous
moment are well explained by a linear function of the pion
mass squared. In the radii we have not observed divergent
quark mass behaviors predicted by HBChPT. Besides the
divergent behavior, the pion mass dependences for the
observables are quite consistent with other lattice QCD
calculations including the recent results of LHP. Because
of the linear behavior, we have concluded that the form
factors of the vector current are less sensitive to the finite-
volume effect in contrast to the axial charge. Although both
Dirac and Pauli rms radii approach to the experimental
values as the pion mass decreases, the values extrapolated

by the linear form at the physical pion mass underestimate
the experiments by about 25%. Future work will involve
simulating at lighter quark masses to search for the non-
analytic behavior predicted by HBChPT.
The axial-vector form factor is also well described by

the dipole form, even at the lightest quark mass, where the
axial charge, FAð0Þ, is suspected to have a large finite-
volume effect. The axial charge radius, obtained from the
dipole fit, has a downward tendency as a function of the
pion mass squared, which drives the radius away from the
experimental value. We have considered this dependence
to be caused by the finite volume of our simulation, as in
the case of the axial charge. We observe that our results
seem to scale as m�L, as do previous calculations using
several volumes. We have concluded that the form factors
of the axial-vector current are more sensitive to the finite
volume than those of the vector current from the observa-
tions of the finite-volume effects.
We have checked the pion-pole structure in the induced

pseudoscalar form factor with our simulations. We have
found that the pion-pole dominance form describes our
data well, with the exception that 	PPD < 1. Taking into
account that 	PPD � 1, the pole mass of the induced pseu-
doscalar form factor reasonably agrees with the measured
pion mass.
For a precision test of QCD from nucleon matrix ele-

ments, we have identified several problems that first need
to be overcome, such as finite-volume systematic errors in
the axial charge and the form factors of the axial-vector
currents, and the underestimation of the radii of the form
factors of the vector current. Further lighter quark mass and
larger volume calculations are essential to solve the prob-
lems, and such simulations are underway. Besides the
comparisons with the experimental values, it is also im-
portant future work to study why 	PPD deviates from unity.
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