
Constituent gluon content of the static quark-antiquark state in Coulomb gauge

J. Greensite1 and Š. Olejnı́k2

1Physics and Astronomy Department, San Francisco State University, San Francisco, California 94132, USA
2Institute of Physics, Slovak Academy of Sciences, SK-845 11 Bratislava, Slovakia

(Received 9 January 2009; published 12 June 2009)

Motivated by the gluon-chain model of flux tube formation, we compute and diagonalize the transfer

matrix in lattice SU(2) gauge theory for states containing heavy static quark-antiquark sources, with

separations up to one Fermi. The elements of the transfer matrix are calculated by variational Monte Carlo

methods, in a basis of states obtained by acting on the vacuum state with zero-, one-, and two-gluon

operators in Coulomb gauge. The color Coulomb potential is obtained from the zero-gluon to zero-gluon

element of the transfer matrix, and it is well known that while this potential is asymptotically linear, it has

a slope which is 2 to 3 times larger than the standard asymptotic string tension. We show that the addition

of one- and two-gluon states results in a potential which is still linear, but the disagreement with the

standard asymptotic string tension is reduced to 38% for the variational states used in this study, at the

largest value of � ¼ 4=g2 ¼ 2:4 considered.
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I. INTRODUCTION

It is well known that the color Coulomb potential in non-
Abelian pure gauge theories is asymptotically linear, but
that the corresponding string tension �Coul is greater than
the standard string tension by anywhere from 100%–200%,
depending on the lattice coupling and the gauge group
[1,2]. This discrepancy should not be too surprising, since
the color Coulomb potential is only an upper bound on the
static quark potential [3], but the more relevant fact is that
the Coulombic force arises from (dressed) one-gluon ex-
change between static sources. A serious criticism of one-
gluon exchange models of the confining potential, whether
in Coulomb or covariant gauges, is that they provide no
explanation whatever for the collimation of color-electric
fields into flux tubes, and, as a consequence, no obvious
reason for the absence of long-range dipole forces. Since
long-range dipole forces are incompatible with a massive
spectrum, a theory of confinement via dressed one-gluon
exchange is in danger of inconsistency, as well as conflict-
ing with the numerical evidence for color-electric flux
tubes.

There is, however, a picture of how flux tubes can form
in Coulomb gauge, in which strong one-particle exchange
forces are an important ingredient. This is the ‘‘gluon-
chain’’ model, put forward independently by Tiktopoulos
[4], and by Thorn and one of the present authors
(cf. Ref. [5] and references therein). The idea is that as a
heavy quark and antiquark separate, they pull out a se-
quence of constituent gluons between them, as illustrated
in Fig. 1. The constituent gluons are bound together by
Coulombic nearest-neighbor interactions, and the en-
semble of gluons resembles a discretized string. In this
picture the ordering of gluons in the diagram (Fig. 1) also
corresponds to their ordering in coordinate space; the term
‘‘nearest neighbor’’ refers to gluons with repeated matrix

color indices (i.e., nearest neighbors in the diagram), and in
fact these are the only pairs which interact in the large-N
limit. In the original proposal it was supposed that the
Coulombic force at some distance scale rises faster than
linearly, and that the role of the constituent gluons is to
prevent a corresponding faster-than-linear rise in the static
quark potential, by effectively placing an upper limit on
color charge separation. We now know that the Coulomb
potential is itself linear at large scales. So the role of
constituent gluons must be to somehow reduce the magni-
tude of the static quark potential, without at the same time
destroying the linearity property. That such an effect might
take place was shown analytically by Krupinski and
Szczepaniak [6], in the context of a particular proposal
for the form of the Coulomb gauge vacuum state. It is
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FIG. 1. The gluon-chain model. As a quark-antiquark pair
moves apart, they pull out a chain of constituent gluons between
them. Open/filled shadings of the constituent gluons represent
the two matrix indices of the Aab

k operator. Dashed lines indicate

both repeated matrix indices, and nearest-neighbor Coulomb
interactions.
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desirable, however, to see if constituent gluons can have
this conjectured effect without making any assumptions
about the form of the vacuum. That goal, at present, can
only be achieved numerically, via lattice Monte Carlo
simulations.

There has been only one attempt [7], carried out 20 years
ago, to study the constituent-gluon content of the QCD flux
tube in Coulomb gauge by numerical simulation, and
thereby test the gluon-chain model. Our intention in the
present article is to greatly improve on that earlier effort,
and to quantify the reduction in the energy of a static
quark-antiquark state which can be achieved with a handful
of constituent-gluon operators.

II. THE TRANSFER MATRIX IN AVARIATIONAL
BASIS

The Euclidean-time evolution operator in lattice gauge
theory, in some physical gauge such as Coulomb gauge, is
the transfer matrix

T ¼ exp½�Ha� (2.1)

where a is the lattice spacing and H the Hamiltonian. It is
useful to consider the rescaled operator

T � T

h�0jT j�0i
¼ exp½�ðH � E0Þa� (2.2)

where �0, E0 are the ground state and vacuum energy,
respectively. To compute the static quark potential of a
quark-antiquark pair separated by a distance R, one would
ideally diagonalize the transfer matrix in the infinite-
dimensional subspace of states which contain a single
massive quark, and a single massive antiquark, located at
sites x and y with R ¼ jx� yj. The minimal energy eigen-
state of the transfer matrix, in this subspace, is the state
with the largest eigenvalue �max of T, and the static quark
potential, in lattice units, is given by

VðRÞ ¼ � logð�maxÞ (2.3)

(from here on we will work in lattice units). If we consider
any two states j�i and j�i which are obtained by acting on
the vacuum state with operators Q� and Q�, respectively,

then

h�jTj�i ¼ hQy
�ðtþ 1ÞQ�ðtÞi (2.4)

where the notation QðtÞ indicates that the operator is to be
evaluated using link variables on a hypersurface of fixed
time t. For given operators Q�;�, the right-hand side of

Eq. (2.4) can be evaluated by lattice Monte Carlo sim-
ulation.

If the quark and antiquark are not too far apart, then
according to the gluon-chain picture it should be possible
to express the minimal energy state in terms of the vacuum
state �0, and a handful of operators acting on that state.
These operators create a massive antiquark at lattice site x,

a massive quark at site y, and a small number of constituent
gluons. Let us denote the gluonic operators by Qk, defer-
ring their actual construction to the next section, with
corresponding states

jki ¼ �c aðxÞQab
k c bðyÞj�0ik ¼ 1; 2; ::;M (2.5)

where a, b denote color indices. The fQkg are functionals
of the lattice gauge field, and depend on x, y and some
number of variational parameters. In our construction,
described below in Sec. III, we use a single variational
parameter, denoted �. One can then compute, by lattice
Monte Carlo simulation, the quantities

Omn ¼ hmjni ¼ h12 Tr½Qy
mðtÞQnðtÞ�i

tmn ¼ hmjTjni ¼ h12Tr½Qy
mðtþ 1ÞUy

0 ðx; tÞQnðtÞU0ðy; tÞ�i:
(2.6)

We cannot diagonalize the transfer matrix T in the basis
fjkig, because these states are not orthogonal, in general,
nor are they normalized. So the next thing to do is to
construct a new set of orthogonal states fjk0ig from the
nonorthogonal states by the Gram-Schmidt orthogonaliza-
tion procedure

jk0i ¼ jki � Xk�1

j¼1

hj0jki
hj0jj0i jj

0i ¼ Xk
j¼1

Dkjjji: (2.7)

Defining

Nj ¼ hj0jj0i ¼ X
m

X
n

DjmDjnhmjni (2.8)

we have

jk0i ¼ jki � Xk�1

j¼1

1

Nj

X
m

DjmhmjkiX
n

Djnjni

¼ jki � Xk�1

n¼1

�Xk�1

j¼1

Djn

Nj

Xj
m¼1

Djmhmjki
�
jni: (2.9)

The Dmn coefficients can be determined iteratively by the
following set of relations:

Dkn ¼
8><
>:
�P

k�1
j¼1 N

�1
j Djn

Pj
m¼1 Djmhmjki n < k

1 n ¼ k
0 n > k

:

(2.10)

Normalize,

j�ki ¼ 1ffiffiffiffiffiffi
Nk

p jk0i ¼ 1ffiffiffiffiffiffi
Nk

p Xk
m¼1

Dkmjmi (2.11)

and calculate the M�M matrix

Tij ¼ h�ijTj�ji ¼
P

i
n¼1

Pj
m¼1

1ffiffiffiffi
Ni

p 1ffiffiffiffi
Nj

p DinDjmhnjTjmi

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
NiNj

p Xi
n¼1

Xj
m¼1

DinDjmtnm: (2.12)

Note that this matrix is derived from the quantitiesOmn and
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tmn of Eq. (2.6), both of which are calculated by lattice
Monte Carlo. We also note that the set of states fjkig, and
the orthonormal set of states fj�kig derived from them,
invariant under global (i.e., x independent) gauge trans-
formations, are physical states in Coulomb gauge, and, in
particular, the fQkg can involve products of the A-field
operator at different points in the space. There is no need
to impose local gauge invariance, as in temporal gauge, to
enforce the Gauss law. In Coulomb gauge, the Gauss law is
imposed at the level of the Hamiltonian operator, resulting
in a nonlocal Coulomb term in that operator, rather than as
a constraint on the space of physical states.

The final step is to extract the largest eigenvalue �max of
the finite matrix Tij. Since this is a variational approach,

the computation has to be repeated for a variety of values of
the variational parameter �, at each quark-antiquark sepa-
ration R. The value of � which minimizes � logð�maxÞ
gives the best variational estimate

VchainðRÞ ¼ � logð�maxÞ (2.13)

for the static quark potential. We will refer to this varia-
tional result as the ‘‘gluon-chain potential,’’ although in
practice the variational state will be a superposition of
states containing at most two constituent gluons.

III. SMEARED ONE- AND TWO-GLUON
OPERATORS

In order to actually carry out the procedure described
above, we must specify a set of operators fQab

k g which,
operating on the Coulomb gauge vacuum, generate a set of
variational trial states fjkig.

A gluon chain consists of a number of constituent gluons
lying between the heavy sources, with the ordering of the
gluons in their color indices correlating with the spatial
positions of gluons between the static sources. Suppose,
e.g., that the static quark-antiquark sources are located on
the x axis at locations x ¼ 0 and x ¼ R. Constituent gluons
which are located well outside this interval in their x
coordinates, or which have large transverse displacements
away from the x axis, will be costly in terms of Coulombic
interaction energy (recall that this energy itself increases
linearly with color charge separation). On the other hand,
highly localized constituent gluons are costly in terms of
kinetic energy. As usual, the variational procedure attempts
to find an optimal compromise between kinetic energy,
which favors spatial delocalization, and interaction energy,
which in this case favors small transverse displacement
from the line joining the quark sources. Delocalization in
the x direction is achieved by a superposition of gluon
operators (in the Qk) at different locations along the x 2
½0; R� interval.1 Delocalization in the transverse directions

can be obtained by constructing A-field operators on the
lattice, in which the high-frequency components of the A
field, in the transverse directions, are Gaussian suppressed.
The delocalized, or ‘‘transverse-smoothed,’’ operators

Ac
i ðx; t; jÞ are constructed in the following way: The L4

lattice is fixed to Coulomb gauge by standard methods
(simulated annealing þ overrelaxation), and the usual
lattice A-field variable, in the SU(2) gauge group, is de-
fined in terms of the link variables via

Akðx; tÞ ¼ 1

2i
ðUkðx; tÞ �Uy

k ðx; tÞÞ ¼ Ac
kðx; tÞ

�c

2
: (3.1)

For each lattice we loop through time slices t, space
components i ¼ 1, 2, 3, color components c ¼ 1, 2, 3,
and an additional direction j ¼ 1, 2, 3, which will be
associated with the direction of a line through the quark
and antiquark. At each i, j, c, t, and denoting x ¼
ðn1; n2; n3Þ, (with indices ni running from 0 to L� 1)
define the three-dimensional array

aðn1; n2; n3Þ ¼ Ac
i ðx; tÞ: (3.2)

Denote the finite Fourier transform of this array by
~aðn1; n2; n3Þ, with indices running over the same range of
0 to L� 1, and define

fn ¼
�
n 0 � n � L

2 � 1
n� L L

2 � n � L� 1
: (3.3)

The wave number corresponding to index ni is ki ¼
2�fni=L. Transverse smoothing is achieved by making

an exponential suppression of the large wave number
modes in the directions l, m which are transverse to the
direction j, and transforming the result back to position
space. The prescription is to modify the Fourier-
transformed array elements by the replacement

~aðn1; n2; n3Þ ! 1

L3
exp½��ðf2nl þ f2nmÞ�~aðn1; n2; n3Þ

(3.4)

where � is a variational parameter, followed by an inverse
Fourier transform back to position space. Then

Ac
i ðx; t; jÞ ¼ aðn1; n2; n3Þ (3.5)

is the field variable Ac
i on a time slice t, with suppression of

the large wave number components in the l, m directions
transverse to j. From this, we define the transverse-
smoothed matrix-valued field variable

Aiðx; t; jÞ ¼ Ac
i ðx; t; jÞ

�c

2
: (3.6)

In the same way, we define

Biðx; tÞ ¼ 1� 1
2 Tr½Uiðx; tÞ�: (3.7)

Then, just as with the Ac
i ðx; tÞ, suppress high-wave number

components in directions transverse to some direction j, as
described above. Denote the resulting field as Biðx; t; jÞ. It

1In the two-gluon states described below we have enlarged this
interval slightly, allowing for x coordinates up to two lattice
spacings outside the interval.
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is also convenient to define for i � j, the average

�A iðx; t; jÞ ¼ 1
2ðAiðx; t; jÞ þ Aiðx� ei; t; jÞ

�Biðx; t; jÞ ¼ 1
2ðBiðx; t; jÞ þ Biðx� ei; t; jÞ

(3.8)

derived from two links in the i direction which touch the
line, in the j direction, running from quark to antiquark.

Having obtained the transverse-smoothed field variables
Aiðx; t; jÞ; Biðx; t; jÞ, the next step is to define the six op-
erators fQkg from which we obtain six states

jki ¼ Qkj0i ðk ¼ 1� 6Þ (3.9)

which are used to build the trial gluon-chain state. Let the
antiquark and quark charges lie at lattice sites x0 and xR ¼
x0 þ Rej, respectively, where ej is a unit vector in the j

direction.2 Then we choose

Q1ðtÞ ¼ 12 Q2ðtÞ ¼
XR�1

n¼0

Ajðx0 þ nej; t; jÞ

Q3ðtÞ ¼
XRþ1

n¼�2

XRþ1

n0¼n

Ajðx0 þ nej; t; jÞAjðx0 þ n0ej; t; jÞ

Q4ðtÞ ¼
XRþ2

n¼�2

XRþ2

n0¼n

X
i�j

�Aiðx0 þ nej; t; jÞ �Aiðx0 þ n0ej; t; jÞ

Q5ðtÞ ¼
XR�1

n¼0

Bjðx0 þ nej; t; 1Þ12

Q6ðtÞ ¼
XR�1

n¼0

X
i�j

�Biðx0 þ nej; t; jÞ12: (3.10)

Q1 is the zero constituent-gluon operator, Q2 is the one-
gluon operator (one power of A), and the Q3�6 are two-
gluon operators, containing two powers of the A field. The
corresponding set of states fjkig are not orthogonal, but this
is taken care of by the Gram-Schmidt orthogonalization
procedure described in the last section.

The above choice of operators fQkg is dictated by sim-
plicity (only one variational parameter), and a certain
amount of trial and error. It is certainly possible to invent
operators creating more general and sophisticated trial
states, at the cost of additional variational parameters.

IV. RESULTS

We have carried out the calculation outlined in Sec. II,
with the operators Qk described in Sec. III, for SU(2)
lattice gauge theory at coupling � ¼ 2:2 on a 124 lattice
volume,� ¼ 2:3 on a 164 lattice volume, and� ¼ 2:4 on a
224 lattice volume. The operators Qk introduced in the
previous section contain a variational parameter �, and

we have calculated matrix elements Tij and VchainðRÞ for
each R, at 12 values of �

�n ¼ ðn� 1Þ�� ð1 � n � 12Þ (4.1)

with �� ¼ 0:025 at � ¼ 2:2, and �� ¼ 0:02 at � ¼ 2:3,
2.4. The choice of n which minimizes VchainðRÞ of course
depends on both � and the quark separation. For example,
the best choice at � ¼ 2:2 and quark separation R ¼ 1
lattice spacing was n ¼ 2. At � ¼ 2:4 and R ¼ 9 lattice
spacings, the optimal value was n ¼ 8. The results re-
ported below are those obtained at the optimal value of �
in each case.
One matrix element of T which does not depend on the

variational parameter is the zero-gluon to zero-gluon ma-
trix element

T11 ¼ h�1jTj�1i ¼ h1jTj1i: (4.2)

The color Coulomb potential reported in Refs. [1,2] is
derived from this matrix element, i.e.,

VCoulðRÞ ¼ � logðT11Þ: (4.3)

For purposes of comparison, we have also computed the
usual static quark potential VtrueðRÞ, which is the minimal
possible field energy of a static quark-antiquark system, by
the standard method of computing timelike Wilson loops
with ‘‘fat’’ spacelike links, and looking for a plateau in the
lattice logarithmic time derivative, as described in, e.g.,
Ref. [8].

A. Potentials

The results for the potential VchainðRÞ extracted from the
variational state, compared to the Coulomb potential
VCoulðRÞ, and the static quark potential VtrueðRÞ computed
by standard methods, are shown in Fig. 2. In this and all
subsequent figures, statistical errors are at most as large as
the symbol sizes. The first point to note is that inclusion of
one- and two-gluon operators alters the slope, but not the
linearity, of the potential. The second point is that the
additional one- and two-gluon operators in the trial state
gives an estimate for the asymptotic string tension which is
much closer to the true value. We extract string tensions, in
each case, from a fit to

VfitðRÞ ¼ �R� �

12R
þ c (4.4)

and find that while the Coulomb string tension differs from
the true string tension by a factor of 2.3 (at � ¼ 2:4), the
string tension of VchainðRÞ differs by roughly 38%. This
38% deviation is still a significant discrepancy, but it is also
a considerable improvement over the zero-gluon Coulomb
result.
The one- and two-gluon trial-state operators, described

in the previous section, are not the only ones that can be
imagined, and it may be that some modest improvement in
these operators would bring string tension derived from the
variational state much closer to the true value.

2Of course, in evaluating the transfer matrix elements Tnm by
lattice Monte Carlo simulation, we average over all x0 and j ¼
1, 2, 3 (the heavy quark sites x0, xR were denoted x, y in the
previous section).
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B. Gluon content

The energy expectation value of the one-gluon state,
extracted from the one-gluon to one-gluon element of the
transfer matrix, is estimated from the one-gluon to one-

gluon element of the transfer matrix

V1ðRÞ ¼ � logT22: (4.5)

At small quark separation, this energy greatly exceeds the
Coulomb potential VCoul, so the one constituent-gluon
content of the minimal energy state is expected to be
much smaller than the zero constituent-gluon content.
However, as R increases, this situation changes. In Fig. 3
we compare the energies of the zero- and one-gluon states
(j�1i and optimal j�2i states, respectively), as a function
of quark separation R, at � ¼ 2:4. In this case R is given in
physical units, using the usual conversion from lattice
spacing to Fermis with string tension � ¼ ð440 MeVÞ2.
We see that the Coulomb energy (energy of the zero-gluon
state) rises to meet V1ðRÞ at roughly one Fermi. It is
reasonable to expect that the one-gluon content of the
minimal energy state will rise accordingly.
At the qualitative level, the energy of a single gluon

consists of its kinetic energy due to localization between
the quarks, and its interaction energy with each quark. As
quarks separate, we expect the kinetic energy to go down,
and the Coulomb interaction energy between the quarks
and the gluon to increase. In the range of distances shown
in Fig. 3 it appears that the one-gluon energy, denoted
V1ðRÞ is roughly constant, so the fall in kinetic energy
must be rather closely balanced by a rise in interaction
energy. It is interesting, and would have been difficult to
predict a priori, that the purely Coulombic energy of the
zero-gluon state, and the kineticþ interaction energy of
the one-gluon state, equalize at a static quark separation of
about one Fermi. It may be that the Coulombic energies of
the zero- and one-gluon states rise with quark separation at
different rates; certainly the long-range color-electric field
distributions in each case are bound to differ.
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FIG. 2. The color Coulomb potential VCoulðRÞ, the ‘‘gluon-
chain’’ potential VchainðRÞ derived from the variational state,
and the static quark potential VtrueðRÞ extracted from ‘‘fat-
link’’ Wilson loops. Results are shown at lattice couplings
(a) � ¼ 2:2; (b) � ¼ 2:3; and (c) � ¼ 2:4. Continuous lines
are from a fit of data points to Eq. (4.4).
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Let

jc ðRÞi ¼ X6
k¼1

akðRÞj�ki (4.6)

denote the eigenstate of largest eigenvalue �max of the 6�
6 transfer matrix Tij, in the basis fj�iig. This is the minimal

energy variational state. By zero- and one-gluon ‘‘content’’
of this state, we mean the squared overlap jh�ijc ij2 for i ¼
1, 2, respectively. Thus a21 gives the fraction of the norm
due to the zero-gluon state, a22 the fraction due to the one-
gluon state, and 1� a21 � a22 is the fraction due to the two-
gluon states, orthogonal to �1;2. We have plotted these

fractions vs R in physical units, for data at � ¼ 2:2, 2.3,
2.4, with the result displayed in Fig. 4. The gluon content vs
R in physical units is almost coupling independent. This
scaling is gratifying, and serves as a check of the whole
procedure. It should be noted that the one-gluon content of
the minimal energy state rises to equal the zero-gluon
content at about one Fermi, which is also the distance
where the energies of the zero- and one-gluon states are
roughly equal, as noted above.

C. Coulomb energy and finite-size effects

As mentioned in the Introduction, a strong objection to
effective one-gluon exchange models of confinement is
that such models lead inevitably to long-range dipole
interactions. We may see a hint of this ‘‘dipole problem’’
in examining the lattice volume dependence of the
Coulomb potential. In Fig. 5 we plot VCoulðRÞ and
VchainðRÞ vs R in lattice units, for the coupling � ¼ 2:4
and lattice volumes 124, 164, 224. On all three L4 lattice
volumes, we see that the color Coulomb potential seems to
bend away from linear at R � L=2. This departure from
linearity is clearly a finite-size effect, and is only seen in
the vicinity of the largest possible on axis quark separa-

tions.3 However, it is very interesting to compare the
sensitivity of the color Coulomb potential to finite-size
effects, with the absence of such effects in the data for
VchainðRÞ, which is also shown in Fig. 5.
The different sensitivities of the Coulomb and chain

potentials to finite lattice size could well be associated
with the dipole problem. In particular, the color Coulomb
field associated with the zero-gluon quark-antiquark state
j�1i is not expected to be collimated in a flux tube. If the
color-electric Coulomb dipole field extends throughout the
lattice volume for the largest quark separations, then it is
reasonable to expect a corresponding sensitivity to the
finite lattice volume. A cutoff in lattice volume would cut
out a non-negligible part of the long-range field, and hence
a portion of the Coulomb energy. By contrast, if the color-
electric field of the minimal energy state jc i is largely
collimated in a region whose transverse dimensions are
small compared to the lattice size, then even for R � L=2
one would expect much less sensitivity to the finite lattice
volume. In fact, in Fig. 5, we see no finite-size sensitivity
whatever in VchainðRÞ, and the chain potential remains
linear out to the largest on axis separations at each lattice
volume. This suggests that the chain state has no long-
range dipole field, or at least that the long-range field is
greatly suppressed relative to the color dipole field of the
zero-gluon state.

V. CONCLUSIONS

The color Coulomb potential is the energy of a zero
constituent-gluon state in Coulomb gauge, with two static
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norm of the variational state) vs quark separation R in Fermis,
at � ¼ 2:2, 2.3, 2.4.
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3Our previous work on the color Coulomb potential [1] made
use of off axis separations for R � L=2, which alleviated the
distortion due to finite-size effects.
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quark-antiquark charges. The potential of such a state is
known to rise linearly, at large quark separations, but its
slope is far higher than the known asymptotic string ten-
sion. What we have found in this article is that the inclusion
of a few gluon constituents, in simple trial states, does not
alter the linear rise of energy with quark separation, but
does bring that energy very much closer to that of the true
static quark potential. According to our data, at one Fermi
we are only beginning to see the formation of a gluon-
chain state. At that distance the energies of the zero and
one-constituent-gluon states are about equal, and the zero-
and one-gluon states contribute equally to the minimal
energy state containing a static quark-antiquark pair.

It is no surprise that a variational calculation of a quark-
antiquark state in a subspace of zero, one, and two
constituent-gluon states would yield an energy less that
the energy calculated from a zero-gluon state alone; this
fact is guaranteed on general grounds. What was not
guaranteed was that (i) the Coulombic energy of the
zero-gluon state would rise linearly with separation;
(ii) the linear character of the potential would survive the
addition of a small number of constituent gluons; and
(iii) the addition of a few constituent gluons, whose aver-
age number grows with quark separation, would bring the
string tension so much closer to that of the static quark
potential. Properties (ii) and (iii) are associated with the
gluon-chain picture of string formation although, as just
mentioned, at one Fermi separation we are only beginning
to see the formation of a chain.

Many questions remain. First, to what extent is the long-
range dipole problem eliminated by inclusion of a few
constituent gluons? We have seen an indication that the
dipole problem is greatly reduced in the gluon-chain state,
as compared to the zero-gluon state, but this needs further
confirmation. Second, since there is nothing compelling
about the choice of operatorsQk in Sec. III, is it possible to
construct a different set of operators and corresponding
basis states fj�iig, such that the energy of the gluon-chain
state comes significantly closer to the static quark poten-
tial? Finally, it would be interesting to investigate chain
formation for quark-antiquark sources in higher represen-
tations, and in larger gauge groups. For example, for
N-ality k ¼ 2 sources, do the quarks pull out a single chain
of gluons, or two separate chains, as they move apart? Are
the results consistent with, e.g., Casimir scaling, or some
other rule? We hope to return to these issues in a later
publication.
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